
 

SINTEF Energy Research  
Production Planning 
2016-05-23 

 TR A7559- Unrestricted 
 

Report 

Hydropower Scheduling Considering 
Energy and Reserve Capacity Markets 
Using a combined SDP/SDDP algorithm 
 
Author(s) 
Arild Helseth   
Birger Mo 
Marte Fodstad 
 

 

 







 

PROJECT NO. 
502000395 

REPORT NO. 
TR A7559 
 
 

VERSION 
3 
 
 

2 of 41 

 

Document history 
VERSION DATE VERSION DESCRIPTION 

1 2016-03-17 Submitted to steering group for discussion. 

 

2 2016-04-11 
 

Revised version for internal quality control 
 

3 2016-05-23 Final version 

 
 
 



 

PROJECT NO. 
502000395 

REPORT NO. 
TR A7559 
 
 

VERSION 
3 
 
 

3 of 41 

 

Table of contents 
 

1 Introduction .................................................................................................................................. 5 

2 Model description ......................................................................................................................... 6 
2.1 Problem solving by decomposition and sampling ......................................................................... 6 
2.2 Treating stochastic exogenous prices ............................................................................................ 7 
2.3 Time resolution and decision sequences when including reserve capacity .................................. 8 
2.4 Treating reserve capacity price and volumes ................................................................................ 9 
2.5 The weekly decision problem ...................................................................................................... 10 

3 Impact on water values ............................................................................................................... 14 
3.1 Analytical expressions .................................................................................................................. 14 
3.2 The impact of reserve capacity commitment – An example ....................................................... 15 
3.3 The impact of week-ahead reserve capacity sales ...................................................................... 16 
3.4 Reserve cost curve ....................................................................................................................... 17 

4 Case studies ................................................................................................................................ 19 
4.1 System description ....................................................................................................................... 19 
4.2 Case 1 – Exaggerated sales of reserve capacity ........................................................................... 21 

4.2.1 Reservoir operation ......................................................................................................... 21 
4.2.2 Water values .................................................................................................................... 22 

4.3 Case 2 – Modest sales of reserve capacity .................................................................................. 25 
4.3.1 Reservoir operation ......................................................................................................... 26 
4.3.2 Water values .................................................................................................................... 28 
4.3.3 Sensitivity analysis ........................................................................................................... 29 
4.3.4 Profitability and cost of operation ................................................................................... 32 
4.3.5 Reserve cost curve ........................................................................................................... 33 

5 Conclusions ................................................................................................................................. 39 

6 Possible implementation in ProdRisk ........................................................................................... 39 

7 References .................................................................................................................................. 40 

A Nomenclature ............................................................................................................................. 41 

 
 
APPENDICES 

 



 

PROJECT NO. 
502000395 

REPORT NO. 
TR A7559 
 
 

VERSION 
3 
 
 

4 of 41 

 

A Nomenclature 

 
 
  



 

PROJECT NO. 
502000395 

REPORT NO. 
TR A7559 
 
 

VERSION 
3 
 
 

5 of 41 

 

1 Introduction 
 
Today's operational models for long- and medium term hydropower scheduling consider sales of energy as 
the only opportunity for the producer to earn money. However, as the producers need to adapt to a future 
with increasing share of renewable intermittent generation and emphasis on harmonising various power 
markets on European level, so do the scheduling models.  
 
In the research project "Integrating Balancing Markets in Hydropower Scheduling Methods" the key research 
question is to find how the valuation of water is affected when considering balancing markets. The project 
broadly defines balancing markets to comprise markets for intra-day, reserve capacity and regulating power. 
In theory, all relevant markets should be included when computing the optimal strategy for a hydropower 
system, but that would be an exhaustive computational task. Keep in mind that the current scheduling 
models, e.g., ProdRisk and Vansimtap, involve uncertainty in inflow and electricity (energy1) prices and 
apply weekly decision stages over a period of analyses of typically 3-5 years. 
 
The balancing markets generally allow trading two different products: energy and reserve capacity. It is 
questionable how the incorporation of additional markets cleared at different time scales involving the same 
product (energy) would contribute to the strategic scheduling of reservoirs (represented by water values). 
Thoroughly assessing that impact would call for a model with fine time resolution and many decision stages 
within the week. In our opinion, incorporating the possibility of selling reserve capacity would potentially 
have a larger impact on the water values. The work presented in this report therefore focuses on the two 
different products energy and reserve capacity in a generic manner, without going into too much details 
about the different markets in which each of those products are traded. 
 
In the Nordic market, reserve capacity is procured by the TSO's as several different products. Normally, one 
separates between primary (FCR), secondary (FRR-A) and tertiary (FRR-M) reserves. Today, each country's 
TSO primarily buys the reserve capacity products separately, but there is a political aim to further coordinate 
the provision of reserve capacity. In most European market designs, reserve capacity is primarily procured 
before clearing the day-ahead market. In the Norwegian case, Statnett buys all three reserve-types the week 
ahead of operation2. This is done to ensure that sufficient reserve capacity is available and is not bid into the 
energy market(s). Please see [5] for more information on the Nordic power market designs.  
 
This report presents a method for including sales of capacity into an existing hydropower scheduling 
algorithm. The existing algorithm is a combination of stochastic dynamic programming (SDP) and stochastic 
dual dynamic programming (SDDP), and is similar to what is used in ProdRisk. In the presented model, we 
treat reserve capacity as generic product, and the method is therefore flexible regarding the type of reserve 
capacity being traded. We assume that the producer is a risk-neutral price-taker in both the energy and 
reserve capacity market. In the analyses we have assumed that the capacity should be spinning (rotating) and 
symmetric (same amount for up- and down-regulation). In line with the current market design, we require the 
sales of capacity to take place before knowing the energy price.    
 
 
 
 
 
  
                                                      
1 We use the term energy price (rather than electricity price) throughout this document in order to clearly separate the 
two products energy and capacity. 
2 With the exception of FCR, which is also bought after clearing the day-ahead market. 
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2 Model description 
 
In the following we describe the basics of the SDP/SDDP algorithm, similar to that used in ProdRisk. 
Furthermore, we describe in detail how sales of reserve capacity can be included in this algorithm. The 
resulting mathematical model was presented in compact form in [6]. A preliminary version was presented in 
[7]. For further reading about the algorithm applied in ProdRisk, see [4, 2, 3].  
 
The mathematical model was implemented in the C++ programming language, and requires access to a third-
party linear programming (LP) solver such as COIN Clp, CPLEX or Gurobi. 
 
 

2.1 Problem solving by decomposition and sampling 
 
The objective of the medium-term hydropower scheduling problem is to find the release policies that 
maximize the expected profit over the period of analyses. It is normally solved for a period of 2-5 years 
starting at a known initial state3. It is important to include uncertainty both in future inflow to the reservoirs 
and electricity prices.  
 
We let the model take decisions in weekly stages. That is, for each week the value of the uncertain variables 
for that week are known to the model, and the optimal release policy can be made for that week. 
 
The structure of decision sequences can be represented in a scenario tree. For each decision node the tree 
further branches into a set of new decision nodes in each decision stage. Let's say we plan for a period of 104 
weeks and have 12 branches each week, the full scenario tree would have 1.72x10112 nodes, which is far 
beyond what can be stored in memory and be solved in reasonable computation times. For this reason we 
rely on algorithms that: 

a) Decompose the optimization problem into weekly decision problems that can be solved independently;  
b) Apply sampling algorithms to avoid searching the entire tree, and;  
c) Apply cut sharing to efficiently "collapse" the scenario tree. 

 
A main iteration of the SDDP algorithm is illustrated in Figure 1. It consists of a forward and backward 
iteration, as briefly outlined below. Note that this illustration and the explanation below refer to the SDDP-
part of the combined SDP/SDDP model used e.g. in ProdRisk. Stochastic price is treated by an outer SDP-
loop, will be described in section 2.2. 
 
In the forward iteration of the SDDP algorithm, we sample a set of inflow scenarios {s1-s3} and simulate 
week-by-week along these scenarios by solving an LP problem for each week. All scenarios share the initial 
state, which is defined by a vector of initial reservoirs and inflows in the first week. The simulated state 
trajectory along the sampled scenarios is shown as the thick black line in Figure 1. We keep track of the 
simulated reservoir levels and find the expected simulated profit over these scenarios, and that value serves 
as a lower bound. 
 
In the backward iteration cuts are built for each time stage, and added to a list of cuts representing that stage. 
Consider the state obtained in scenario 1 in stage T-1 in Figure 1. The simulated state trajectory (reservoir 
level and inflow) up to this point is known from the forward iteration. We now sample 3 vectors of errors or 
"white noise", so that inflow samples for the coming week can be calculated. For each sample, we solve an 
                                                      
3 Often referred to as "parallellsimulering" 
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LP problem. The average dual values on state variables are used to create a cut constraining the expected 
future profit seen from previous decision stage (T-2). An important feature here is cut sharing; Cuts 
computed for a specific initial state at a given stage can be shared among all states for that stage. 
 
We use an autoregressive inflow model with lag-1 both in the forward and backward iterations. That means 
that the inflow for the current week can be found partly by the inflow from the previous weeks, and partly by 
the sampled white noise. Note that the forward iteration is different in ProdRisk, where historical inflows are 
used directly. 
 

 
Figure 1 Illustration of a main iteration in the SDDP algorithm. 

 
 

2.2 Treating stochastic exogenous prices 
 
So far we have focused on the SDDP-part of the algorithm and the treatment of inflow as a stochastic 
variable. A stochastic exogenous price cannot be treated in the SDDP algorithm as was done with the inflow. 
This would violate the convexity requirement of the algorithm. For this reason, we will here treat the price 
process using traditional stochastic dynamic programming and combine it with the SDDP algorithm. This 
combined SDP/SDDP algorithm was presented in [4, 2], and is used in ProdRisk. 
 
The price process is modelled as a Markov chain using discrete states (price nodes), as illustrated in Figure 2. 
In each decision stage, cuts are stored per price node. Standing in price node i in stage t-1 in Figure 2, all 
possible transitions to price nodes in stage t are considered when creating the cut. 



 

PROJECT NO. 
502000395 

REPORT NO. 
TR A7559 
 
 

VERSION 
3 
 
 

8 of 41 

 

 

 
Figure 2 Treatment of the price process in the combined SDP/SDDP scheme. 

 
The price node values and transition probabilities can be generated from a set of price scenarios. Such 
scenarios are typically obtained from a fundamental market model, such as the EMPS model [8]. 
 
The discrete price process illustrated in Figure 2 is embedded in the continuous SDDP scheme illustrated in 
Figure 1. In the forward iteration the set of sampled scenarios will now include both price-node trajectories 
and sampled inflow scenarios. In the backward iteration cuts are built and stored for each time stage and 
price node. That is, cuts are not shared among price nodes within the same time stage. For a thorough 
mathematical description of this combined SDP/SDDP algorithm, please refer to [2]. Again, we point out 
that ProdRisk, when used in standard mode, differs from the prototype model presented here in that both 
prices and inflows takes "observed" rather than sampled values in the forward simulation. 
 
 

2.3 Time resolution and decision sequences when including reserve capacity 
 
The previous sections gave a short introduction to the overall decomposition method and the treatment of 
stochastic variables. Now we will focus on the formulation of the (decomposed) weekly decision problem, 
and see how sales of reserve capacity can be modeled. Before going to the mathematical formulation, the 
time resolution and decision sequences related to the decomposed problem is discussed.  
 
The decomposed problem represents a weekly decision problem where realizations of stochastic variables 
are known. That is, when solving the decision problem for a week t, we know the average power price and 
the accumulated inflow for that week. In order to respect the operational constraints in the watercourse, the 
week is divided into time steps. 
 
Figure 3 illustrates the time resolution and decision sequences that we have used in this model. A week t is 
divided into K time steps. In the figure we have divided each day in to three steps, so that K=21.  
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Energy is sold per time step at a unique price. This price is the product of the average power price per week 
(represented by a price node) and a pre-defined deterministic relative price profile within the week4. 
Capacity is sold per block, where one block typically covers a set of time steps for weekdays and/or 
weekend. As an example a block can cover hours 0-8 on weekdays and will then relate to 5 time steps (k=1, 
k=4, and so on). 
 
Reserve capacity cb,t for block b in week t is sold in the previous week t-1, as indicated in Figure 3. This 
capacity is sold per watercourse assuming that we know the probability distribution of the reserve capacity 
prices for week t.  
 

 
Figure 3 Illustration of time steps within the week. Capacity is sold the week ahead (t-1) directed at a 
specific block b. 

 
 

2.4 Treating reserve capacity price and volumes 
 
Markets for reserve capacity have a short history and are continuously subject to changes. Moreover, there is 
only one buyer (the TSO) and a limited need for capacity. Thus, it is challenging to predict both prices and 
market volumes for the future in such markets. These quantities will also depend on the type of reserves 
being traded. While primary and secondary reserves are typically priced higher in the low-load season due to 
the requirement for sufficient amount (and geographical spread) of spinning capacity, tertiary reserves are 
only traded in the winter season.  
 
In principle, we would suggest using a fundamental market model to provide forecasts of both energy and 
reserve capacity prices. The challenge is that the reserve capacity markets have so far not been represented in 
fundamental models, such as the EMPS model. In the article [6] we used EMPS and formulated a reserve 
requirement for power producing units in a specified sub-area, and interpreted the dual value of this 
requirement as the reserve capacity price. We then obtained energy and reserve capacity price series 
corresponding to the same inflow years simulated in the EMPS model. Note that this approach is likely to 
underestimate the actual costs of providing reserves, since many relevant constraints are omitted or 
approximated in the EMPS model.  
 
Once the reserve capacity price is available, one can extend the discrete Markov chain presented in section 
2.2 with the reserve capacity price dimension to represent uncertainty in the reserve price. This is illustrated 
in Figure 4, and further discussed in [6].  
 

                                                      
4 This deterministic price profile within the week is found as the average profile considering all price scenarios in 
ProdRisk. 
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We assume that the producer is a price-taker in both the energy and reserve capacity markets. Estimating the 
maximum reserve capacity that a producer in a given price area can expect to sell at fixed price seems to be a 
challenging task. In the case of primary reserves (FCR), the maximal volume that can be supplied is limited 
by the droop setting for the generators. Currently, a minimum droop setting of 2 % is allowed, corresponding 
to a maximum reserve capacity of 10% of the installed capacity. In the case of secondary (FRR-A) and 
tertiary (FRR-M) reserves, the technical limitations are not that tight. If considering sales to these markets, it 
seems more realistic to define the maximum capacity limit based on observations. The Nordic TSOs request 
reserve capacity for the synchronous system so that pre-defined requirements for the different types of 
reserve products are satisfied. Knowing these system-wide constraints, one could in principle use a 
fundamental market model (such as the EMPS model) to forecast the both the prices and volumes requested 
by the TSO for each price zone. These price/volume scenarios will then be correlated with the energy price 
scenarios obtained from the same model. 
 
 

 
Figure 4 Treatment of two price processes in the combined SDP/SDDP scheme. λE is the energy price 
and λC the reserve capacity price in a given node. 

  
  

2.5 The weekly decision problem 
 
Once we know the decision stage (week no.) and the realizations of stochastic variables, the weekly decision 
problem can be formulated as an LP problem. The problem will have the same structure (variables and 
constraints) in both the forward and backward iteration. The mathematical formulation is presented in the 
following. The nomenclature is provided in Appendix A, and is sporadically repeated in the text below. 
 
The objective function is stated in (1.1), maximising revenues from the two markets. The first two terms 
describe the weekly revenue from the reserve capacity and the energy markets, respectively. Reserve 
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capacity is sold for the week ahead (t+1) while energy is sold for the current week (t). For simplicity of 
notation, the week index is only used to specify variables and parameters for the week ahead.  
 

  , 1 , 1 , 1 , 1max C C E E
t b b t b t b t k p kh h p t

b B k K h H h H

Z c e w         
   

          
      (1.1) 

 
An auxiliary variable wh is introduced in the third term in Eq. (1.1) allowing the model to artificially supply 
water to the reservoir at a high cost φ. This variable is needed to ensure that the LP problem can be solved 
for all possible combinations of initial reservoirs and inflows. Finally the variable αp,t+1 represents the future 
expected profit, and is constrained by cuts as will be discussed later. 
 
Each hydro reservoir h has a water balance for each time step k, as described in Eq. (1.2). There is one 
variable associated with each of the possible water ways (D = discharge through turbine, S = spillage and B = 
bypass). The initial reservoir level enters as a parameter for the first time step within the week. The 
accumulated weekly inflow Ih is distributed among time steps according to their relative duration. The dual 
value πkh associated with Eq. (1.2) is the water value for reservoir h in time step k. 
    

   3
1,        [Mm ] 

h h j

D S B D S B
kh khs kh kh h kjs kj kj k h k h kh

s S j s S

v q q q w q q q v I 
  

              
      (1.2) 

 
Eq. (1.3) is included to keep track of the energy generation (and sales) resulting from the discharge. Water is 
discharged through the power station using one variable per discharge segment. These segments will be used 
in decreasing order according to their energy equivalent ηhs, provided that ηhs decreases with s (concave PQ 
curve). As long as ekh has a high enough upper bound so that energy is sold to a market with unlimited 
capacity, the dual value of (1.3) equals the energy price E E

k p  for the time step in question. 
 
 0       [MWh]

h

D
kh hs khs

s S

e q


    (1.3) 

 
So far, the presented constraints are well known for any hydropower scheduling model representing the 
energy market only. Next we will look at the constraints concerning reserve capacity sales and allocation. 
The reserve capacity cb,t sold in the previous week enters the optimization problem as a parameter. It 
therefore becomes a commitment that should be met by allocating reserve capacity on the individual power 
stations in the water course according to Eq. (1.4). The dual value b  can be interpreted as the cost (or lost 
profit) when increasing the reserve capacity requirement with one MW. 
 
  ,         [MW]     kh b t b

h H

r c 


   (1.4) 

 
We require that the reserve capacity allocated at a power station should be symmetric and spinning. That is, 
the allocated capacity should be available for both upwards and downwards regulation, and the station 
should be running at a power output that allows for down regulation. The latter is included in Eq. (1.5). In 
case the scaling factor γh equals 1, Eq. (1.5) states that if a reserve capacity rkh is allocated a station h in time 
step k, the station should at least generate energy at that level. This modelling may lead to unfortunate 
generation schedules as illustrated by the following example. Consider a station with minimum power output 
at 50 MW and a maximum reserve capacity delivery of 33 MW. Being a linear model, we cannot force the 
operation of the station to either zero or above 50 MW. In cases where reserve capacity prices are high and 
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water values are higher than power prices, the model wants to sell reserves but not energy, and may therefore 
see 33 MW as the optimal operating point. The gamma factor is included in Eq. (1.5) to make operation 

below a defined minimum power level less profitable. We define
min

max
max ,1.0h

h
h

P

R


        
, in the example 

above 50
33h  .  The scaling factor will therefore function as a means to punish artificially low energy 

generation for the sole purpose of delivering capacity reserves. In physical operation, down regulation should 
be available from the operation point to the minimum power output. We suggest that this is modelled by 

increasing the scaling factor, e.g. so that
min max

max
h h

h
h

P R

R



 . 

 

  1
0       [MW]h kh kh kh

k

r e 


    (1.5) 

 
Eq (1.6) ensures that the station has room for upward regulation. 

  max1
       [MW]kh kh h kh

k

r e P 


    (1.6) 

 
Eq.  (1.7) ensures that there is enough water in the reservoir to deliver up-regulation reserves at the lowest 
efficiency ηhS for the entire time period in question. In the case of primary and secondary regulation reserves, 
this constraint may seem conservative, as the activation of these reserves will not span several consecutive 
hours. On the other hand, since we have not included time delay and ramping constraints when modelling the 
watercourse, Eq. (1.7) will translate to a water requirement for the reservoir in question plus all upstream 
reservoirs. 

 mink
kh kh kh

hS

v r V



    (1.7) 

The expected future profit α is constrained by cuts as in Eq. (1.8). These cuts are built in the backward 
iteration and stored per time stage and price node. All state variables should be represented in the cuts. In our 
case the state variables are the reservoir levels at the end of the week, the weekly inflow in the current week 
and the reserve capacity sold per block for the next week. We have omitted the treatment of inflow from the 
cuts in Eq. (1.8) for simplicity, see e.g. [1] for more details.  
 
 , 1 , 1p t phl kh pbl b t pl

h H b B

v c    
 

      (1.8) 

 
The cuts are created based on the dual values π and μ from Eq.  (1.2) and Eq. (1.4) obtained in the backward 
iteration. These values have different signs; π is positive since it gives the increase in profit when increasing 
the right-hand side in Eq (1.2) (initial reservoir or inflow) marginally, and μ is negative since it gives the 
marginal decrease in profit (or increase in operational cost) when increasing the right-hand side in Eq. (1.4) 
(reserve capacity sold in previous week). Figure 5 illustrates how the future expected profit function is 
constrained as a function of a given reservoir level (left) and sold reserve capacity in a given block (right). 
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Figure 5 Illustration of expected future profit as a function of a reservoir volume (left) and a sold 
reserve capacity (right). 

 
The number of cuts stored increases with the number of iterations, and normally only a few of these cuts are 
binding when solving a specific LP problem. For computational efficiency, cuts are therefore treated by 
relaxation. First we solve the LP problem without any cuts. Subsequently search through the list of cuts to 
find the most violated5 and add that one to the LP problem before re-solving.  
 
All variables are non-negative and have upper bounds. In particular it is worth pointing at the sold and 
allocated reserve capacity, shown in Eq. (1.9) and (1.10), respectively. As discussed in section 2.4, one can 
e.g. define the maximum reserve capacity volume Rh

max  that a generator can deliver based on technical 
considerations or derive it from a regional requirement obtained from a fundamental market analyses. 
 
 
 max

, 10 b t h
h H

c R


     (1.9) 

 
 max0 kh hr R    (1.10) 
  
 
  

                                                      
5 A cut that is not included in optimization problem is violated if the inequality in (1.8) does not hold after inserting the 
solution from the optimization problem. 
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3 Impact on water values 
 
We will in the following simplify the formulation of the weekly decision problem provided in section 2.5 in 
order to analytically evaluate the impact of capacity sales on the water values.  
 
 

3.1 Analytical expressions 
 
We define a system comprising a single hydropower reservoir with a power station selling both energy and 
reserve capacity at a pre-defined price for one time step. As a further simplification we assume that the 
reservoir will not hit its maximum or minimum levels in this time step, but there is an upper bound Qmax 
(which equals Pmax) on discharge. The conversion factor between water and energy is assumed 1.0, so that 
water, energy and capacity refer to the same unit. The simplified problem formulation defined by equations 
(1.11)-(1.16) below. Capacity sold in this week to be delivered the next week is denoted ct+1, and capacity 
sold the previous week entering this week as an obligation is denoted Ct.   
 

  
  1 1max C E

t t t tZ c q        (1.11) 

  1    t t t tv q v I      (1.12) 

        t tq C    (1.13) 

  max      t tq Q C     (1.14) 

  , 1 1 ,    , 1...      k t k t k t k t kv c k NK        

   (1.15) 

  max
10    ,tc C   

    (1.16) 

 
 
Next we define the Lagrange function for the problem: 
 

 
 
   

 

   

1 1

1 1

1
max

, 1 1
1

max
1 1

( , , , , , , , , , )  

   

 

 

 

+ 0

t t t t k
C E

t t t

t t t t

t t t t
NK

k k t t k t k t
k

t t

L c q v

c q

v I v q

C q Q C q

v c

c C c

      

  


 

    

 

   
 

 


 

 

 

 



 
   

    

   

  

 



  (1.17) 

 
After differentiating the Lagrange function with respect to each of the four variables we can obtain the 
following Kuhn-Tucker conditions: 
 

 
11

0
NK

C
k k

kt

L

c
     




    

     (1.18) 
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 0E

t

L

q
    

    


  (1.19) 

 
11

1 0
NK

k
kt

L


 


  

    (1.20) 

 
1

0
NK

k k
kt

L

v
  




   

     (1.21) 

 
If we assume that only one cut k is binding, we see from (1.20) that 1k  , and from (1.21) that k   . 
Consequently, the water value equals the cut coefficient of the binding cut k.  
 
By joining (1.19) and (1.21) we obtain the following expression: 
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       (1.22) 

 
Expression (1.22) tells us that if there are no constraints on discharge, the water value will equal the energy 
price. If discharge is constrained by the lower bound in (1.13) for the purpose of keeping the unit spinning, 
then κ- < 0 and the water value will be higher than the energy price. Conversely, if discharge is constrained 
by the upper bound in (1.14), then κ+ > 0 and the water value will be lower than the energy price. 
 
 

3.2 The impact of reserve capacity commitment – An example 
 
Consider the following example. A reservoir has a capacity of 20, an initial level of 10, inflow in the current 
decision period of 3, a maximum discharge capacity of 4, and a symmetric reserve capacity commitment of 
2. The energy price is 4 and there are two cuts approximating the future expected profit, with coefficients 5 
and 3, as illustrated in Figure 6.  
 
If we ignore the reserve capacity commitment, the optimal decision is to produce the inflow, and end up at a 
reservoir level of 10 and a water value of 4 (equal to the energy price). In this case, both cuts will be binding, 
as illustrated by the red circle in Figure 6. 
 
If we treat the reserve capacity commitment, equation (1.14) tells us that the upper discharge boundary is 4-2 
= 2. The optimal decision is now to produce 2, ending up at a reservoir level of 11. As illustrated by the blue 
dot in Figure 6, cut number 2 is binding and the corresponding water value is 3. According to equation (1.22) 
κ+ = 1.  
 
We find that the requirement for available up-regulation capacity is binding and contributes to a reduced 
water value. 
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Figure 6 Cuts constraining future profit.  

 
Starting at a different initial point, with a reservoir of 7 and the same characteristic data as before, the 
optimal decision would be to store the inflow and end up at a reservoir level of 10, with a water value of 4. 
Again this corresponds to the red circle in Figure 6. However, due to the reserve capacity commitment, we 
need to run the station and can only store 1 unit, ending up at a reservoir level of 8. This time cut number one 
is binding and the water value is 5. According to equation (1.22)  κ- = -1.  
 
We find that the requirement for available down-regulation capacity is binding and contributes to an 
increased water value. 

 
 

3.3 The impact of week-ahead reserve capacity sales 
 
The decision whether or not to sell week-ahead reserve capacity is essentially an evaluation of the prevailing 
reserve capacity price against the expected week-ahead cost (or loss of profit) of delivering reserves. 
 
By reformulating Eq. (1.18), we obtain: 
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       (1.23) 

 
At the optimal solution, there is a balance between the binding cut coefficient(s) and the reserve capacity 
price. If reserve capacity sales hits either of its boundaries in Eq. (1.16), the reduced costs will contribute as 
well. Note that the coefficients k are negative indicating the reduced future expected profit associated with 
the sales of an additional unit reserve capacity. 
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From the optimality condition in (1.23) it can be seen that the prevailing price for reserve capacity can 
impact which cut(s) that are binding and therefore also impact the water value. 
 
 
In case sales of reserve capacity and energy are carried out simultaneously for the same decision stage (co-
optimized), the problem formulated in section 3.1 is slightly reformulated, making ct a variable that enters 
the objective function and removing ct+1. Thus, ct+1 will not be included in the cut, and we need to consider 
the impact of reserve sales in the current period rather than the next. The reformulation of the adjusted 
version of equation (1.23) will take the following form: 
 
 C              (1.24) 

 
The difference between the two modelling approaches can be explained as follows. In the sequential 
approach we sell capacity for the next decision stage with uncertain information about energy price and 
inflows for the next decision period. This uncertainty is described by discretized probability functions, and is 
reflected in the cuts of type (1.15). When considering the capacity commitment from the previous week, cut 
coefficients are computed as the probability-weighted contributions of κ- and κ+ from  (1.13) and (1.14) for 
all possible realizations of uncertain variables. For the co-optimization approach, we sell energy and capacity 
simultaneously with perfect knowledge of all stochastic variables within the week. Thus, the sales of reserve 
capacity can be fitted to match the energy sales for the given realization of stochastic variables, and the lost 
revenue from the energy market is then likely to be underestimated compared to the sequential approach. 
 
 

3.4 Reserve cost curve 
 
Reserve capacity can to a certain extent in some water courses be sold as a by-product at little additional 
cost. This is e.g. the case for a generator running at best point with available capacity for both up- and down 
regulation. There will however be threshold after which further sales of capacity more severely impacts 
system operation, and therefore is associated with a higher cost. This is the case whenever sales of capacity 
leads to a different optimal solution than would otherwise have been found in the energy-only case. In such 
cases there is a lost revenue in the energy market (representing the opportunity cost). 
 
Consider the cuts describing the expected future profit function restated in Eq. (1.25). If we assume that 
capacity is reserved for one block and that reservoir levels takes a predefined level, expected future profit for 
this decision stage can be presented as a function of the committed capacity for the next decision stage, as 
shown to the left in Figure 7. This function is concave and non-increasing. 
 
 , 1 , 1p t phl kh pbl b t pl

h H b B

v c    
 

      (1.25) 
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Figure 7 Illustration of expected future profit (left) and marginal cost (right) as a function of sold 

reserve capacity for the next decision stage. 

The function in Figure 7 provides information on the cost of delivering reserves, given a pre-defined price 
node and a combination of reservoir levels. It can provide useful information and decision aid for pricing of 
reserve capacity. The coefficient of the binding cut for a given reserve capacity level (left in the figure) is the 
marginal cost of delivering that capacity (right in the figure).  
 
The process of selling capacity is in principle a two-stage optimization problem embedded in the overall 
multi-stage hydro scheduling problem. The income from the capacity reserve sold in the current week is 
evaluated against the expected cost of meeting that obligation the next week. Thus, the marginal cost curve 
shown to the right in Figure 7 does not explicitly depend on the reserve capacity price in that decision stage.  
It will however implicitly depend on the reserve capacity price-level, since this level will impact the use of 
water and therefore also the water values.      
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4 Case studies 
 
In this section we present analyses performed with the presented model on a simple test system comprising 
one hydro "module" (reservoir and station). The system is kept simple in order to facilitate transparent result 
interpretation and discussions to the following questions:  
 

• How are water values affected when selling both energy and reserve capacity?  
• How do different modelling assumptions and system configurations impact the previous answer? 
• Can we use the model to calculate the cost of delivering reserves? 

 
 

4.1 System description 
 
The system comprises one hydro module (reservoir and power station). The reservoir has a storage capacity 
of 150 Mm3 and an average annual regulated inflow of 450 Mm3, giving a degree of regulation of 0.33. The 
stations PQ-curve is shown in Table 1. When running at its best point, the station can sell 30 MW of reserve 
capacity. 
 
Table 1 PQ description for hydropower station. 

Point P [MW] Q [m3/s] Efficiency [MW/m3/s] 
1 80 20.00 4.00 
2 90 22.56 3.91 
3 100 25.16 3.85 
4 110 27.79 3.79 
 
 
The energy price series was obtained from the EMPS model. Based on these series we generated a price 
model with two weekly average energy price nodes, as shown in Figure 8. A transition probability matrix 
was computed describing the probability of going from a given node in a given week to any of the nodes in 
the next week. The energy price follows a pre-defined (deterministic) profile within the week, scaled 
according to the average weekly price.   
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Figure 8 Energy price nodes representing two probable outcomes of average weekly energy price. 

 
System operation was computed for a period of 104 weeks, considering 21 sequentially treated time steps 
within the week. Energy is sold per time step. Moreover, we let the model sell capacity for the week ahead in 
blocks, considering 3 blocks per week covering night (00:00-08:00), day (08:00-20:00) and evening (20:00-
24:00). Note that the model does not consider activation of reserve capacity. 
 
In sections 4.2 and 4.3 we present two different cases. In the first case, presented in section 4.2, we 
exaggerate the prices and volumes for reserve capacity in order to clearly point out the differences in 
scheduling and water values when considering sales of reserve capacity. In the second case, presented in 
section 4.3, we use observed reserve capacity prices obtained from the Norwegian FCR market. This case 
provides more realistic estimates on how the scheduling and water values are expected to change when 
considering sales of reserve capacity. 
 
Each of the two cases were simulated in two different modes: 

• One-market mode (base case). Only allows sales of energy. This case was prepared by setting the 
reserve capacity price to a negative value to prohibit sales of capacity. 

• Two-market mode. Allows selling both energy and capacity following the model description 
previously defined. 

 
The model was run for 20 main iterations considering 50 samples of inflow and energy price nodes in the 
forward iterations and 4 "openings" for inflow in the backward iteration. We used a set of end-value cuts to 
account for the end-of-horizon value of water and reserve capacity. 
 
A convergence plot is shown in Figure 9, showing that the cost gap closes according to theory. We will not 
emphasize on the computational performance of the model in the following discussions. 
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Figure 9 SDDP cost gap. Upper (solid) and lower (stapled) bound per iteration. 

 
 

4.2 Case 1 – Exaggerated sales of reserve capacity  
 
In this case we exaggerate the potential for selling capacity in order to provoke significant differences in the 
two scheduling modes. In the two-market mode we allow selling 44 MW of reserve capacity at a fixed price 
of 100 Euro/MW. Due to the extremely high reserve capacity price, the model will sell capacity at the 
maximum limit continuously. At low energy prices, the generation will be at 44 MW, enough to keep the 
committed reserves spinning. At high energy prices, the station will generate 66 MW leaving 44 MW for 
upward regulation. There is no minimum power production requirement and start-up cost for the station. 
 
 

4.2.1 Reservoir operation 
 
The reservoir operations for the two modes are shown in Figure 10 and Figure 11. Operation in the two-
market mode is clearly less flexible than in the one-market mode, due to the operational constraints imposed 
by sales of capacity, as discussed above. 
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Figure 10 Simulated reservoir trajectories (max, mean and min) for the one-market mode, in Mm3. 
The green vertical lines mark weeks 15 and 45 for which water values are presented in section 4.2.2. 

 

 
Figure 11 Simulated reservoir trajectories (max, mean and min) for the two-market mode, in Mm3. 
The green vertical lines mark weeks 15 and 45 for which water values are presented in section 4.2.2. 

 
 

4.2.2 Water values 
 
We will now study the water values computed in the two modes at different points in time. The water values 
are found by evaluating the cuts that have been generated in the backward iteration of the SDDP algorithm. 
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Although the presented case study only considers one reservoir, we describe a multi-reservoir approach 
below, as used in [6].  
 
We first choose a reservoir that we would like to study results for, let's refer to this this as hs. We then 
evaluate, by assigning numerical values for the reservoir levels of all other reservoirs and capacity sales and 
moving these terms to the right-hand side. Each cut then becomes a linear inequality in one variable (vkhs). 
  
 , 1 , 1

,
p t phsl khs pl phl kh pbl b t

h H h hs b B

v v c     
  

       (1.26) 

 
Next, we divide the reservoir variable vkhs into discrete levels, and move the contribution to the right-hand 
side in (1.27). The cut with the lowest numerical right-hand side value will be binding for that particular 
state. By repeating the same procedure for all discrete values of vkhs we obtain a set of different cuts that are 
binding. The coefficient πkhs of the binding cut is then treated as the water value for that particular reservoir 
level. 
 
Figure 12 and Figure 13 show the water values obtained from week 15 and 45, respectively. These weeks are 
indicated by the green vertical lines in Figure 10 and Figure 11. Since the cuts have been generated for 
simulated reservoir states, the water value curve has finer resolution in between the band of simulated 
reservoir states. This is clearly shown in Figure 12, where the two-market water value is constant (100 
kEUR/Mm3) for the lowest reservoir levels (between 0 and 7 % filling). 100 kEUR/Mm3 was set as the cost 
of buying artificial water to the system, and the binding cut with this coefficient has most likely been 
generated in an early iteration. The red lines in Figure 12 shows that the final simulated reservoir levels in 
week 15 are all higher than 11 %, so the constant shape of the water value curve for the two-market mode at 
low reservoir levels is most likely due to the fact that few cuts are generated for these levels. 
 
Note that we have only stored and visualized simulated states for the final SDDP iteration. From the 
reservoir curves we can see that the two-market case has much smaller band in simulated trajectories than the 
one-market case in week 15. The red vertical lines in Figure 12 indicate the simulated extremal reservoir 
states in the two-market mode. For week 45 the band is not that different for the two modes, and is therefore 
not indicated in Figure 13. 
 
In week 15 the reservoir is close to empty, and the water values obtained in the two-market mode are much 
more sensitive to changes in reservoir level than in the one-market mode. This is due to the limited flexibility 
when committing a majority of the capacity as reserve. If the reservoir level is high in week 15, we know 
that the station will not generate above 66 MW in the filling season due to high reserve capacity prices, and 
the risk of spillage is therefore high. Conversely, if the reservoir is low in week 15, we know that the station 
will at least run at 44 MW, and there is less water left for generating for the electricity market if prices are 
favourable.  
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Figure 12 Water values obtained in the two modes for week 15. One-market values are solid-drawn 
and two-market values are stapled. The red vertical lines indicate the interval of simulated reservoir 
states in the final simulation of two-market mode. 

 
In week 45 one enters the season where discharge normally is higher than inflow. Again we see from Figure 
13 that the water values obtained in the two-market mode are significantly more sensitive to changes in 
reservoir than in the one-market mode. If the two-market mode reservoir level in week 45 is relatively low, 
the model is left with little flexibility in selling additional energy at favourable prices, and thus a high water 
value. On the other hand, if the reservoir level gets high enough, the maximum generation constraint of 66 
MW (keeping 44 in reserve for upward regulation) will be frequently binding, and there is a higher risk of 
spilling next spring flood. 
 
In summary we find that the water values obtained from the model can be explained by the theoretical results 
in section 3: 

• A relatively low reservoir level and high reserve capacity prices implies that the down-regulation 
capacity constraint is binding, contributing to an increase in water value (compared to the one-
market case) 

•  A relatively high reservoir level and high reserve capacity prices implies that the up-regulation 
capacity constraint is binding, contributing to a decrease in water value (compared to the one-market 
case) 
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Figure 13 Water values obtained in the two modes for week 45. One-market values are solid-drawn 
and two-market values are stapled.  

 
 

4.3 Case 2 – Modest sales of reserve capacity 
 
In this case we take a more modest, but perhaps still optimistic, view on the potential for earning money in 
the reserve capacity market. We allow the system to sell at most 22 MW of spinning reserve capacity. If one 
relates this amount to the FCR market, it would correspond to a 1% droop setting. We assume a deterministic 
prices series comprising the FCR-N prices for 2013-2014 in NO2. The weekly average values are shown in 
Figure 14. There is no minimum power production requirement and start-up cost for the station. 
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Figure 14 Reserve capacity prices used in case 2. Weekly average values for the FCR-N market in 
price area NO2. 

 
 

4.3.1 Reservoir operation 
 
The reservoir operation for the one-market mode was shown in Figure 10, and is shown in Figure 15 for the 
two-market mode. These figures indicate that the reservoir operation does not differ significantly.  
 

 
Figure 15 Simulated reservoir trajectories (max, mean and min), in Mm3, for the two-market mode in 
case 2. 
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The differences in schedules can be seen clearer when looking at the duration curves for generation, as 
shown in Figure 16. A significant part of the time the station is operated at either 88 MW or 22 MW in order 
to sell reserve capacity. The total amounts of energy produced in the two cases do not differ much.  
 

 
Figure 16 Duration curves for hydropower generation. Solid-drawn line for the one-market mode and 
stapled for the two-market mode. 

 

The duration curve for generation for the two-market mode is re-drawn in Figure 17. The corresponding 
reserve capacity commitment (capacity sold in the previous week) is shown with a solid-drawn line. The 
chosen generation level can in most time steps be explained by the reserve capacity commitment. That is e.g. 
the case for the many time steps where generation is at 88 MW or 22 MW, for which there is a maximum 
reserve capacity commitment. Furthermore, the figure shows that operation around the best point (at 80 MW) 
is not directly tied to the capacity commitment. 
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Figure 17 Duration curves for hydropower generation (stapled line) and corresponding sales of reserve 
capacity (solid-drawn line) for the two-market mode. 

 
 

4.3.2 Water values 
 
Figure 18 and Figure 19 show the water values obtained from week 15 and 45, respectively. As expected, the 
differences between the two modes are now less pronounced compared to case 1. In Figure 18, one can 
observe the same pattern as was shown for case 1, week 15 in Figure 12. The water values in the two-market 
mode are slightly higher at low reservoir levels and slightly lower at high levels. What seem to be less 
systematic crossing points of the two curves could be smoothed if we let the model run additional iterations 
and generate more cuts. This was confirmed by running some additional tests. For week 45, the water values 
are slightly higher in the two-market mode for all reservoir levels. This indicates that the operation from 
week 45 and forward is much more flexible than it was in case 1, shown in Figure 11. The risk of spilling is 
less dominating at high reservoir levels, so that the additional income from the reserve capacity market is 
reflected in the water values more or less independent of reservoir level in this week. 
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Figure 18 Water values obtained in the two modes for week 15 in case 2. One-market values are solid-
drawn and two-market values are stapled. 

 

 
Figure 19 Water values obtained in the two modes for week 45 in case 2. One-market values are solid-
drawn and two-market values are stapled. 

 

4.3.3 Sensitivity analysis 
 
We wanted to test how this water value comparison is affected by the utilization time of the power plants. To 
do so, we constructed two additional cases, one where the annual expected inflow was increased with 50% 
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(case high) and one where it was decreased by 50 % (case low). All other input data was as defined for case 
2. Both the one- and two-market cases where tested in case high and case low. 
 
Increasing the annual expected inflow in case high will lead to a higher utilization time for the station. Figure 
20 and Figure 21 show the water values obtained in case high for week 15 and 45, respectively. Comparing 
the water values in week 15 in the base case (Figure 18) and case high, one can as expected see that they 
have decreased when increasing inflow. Comparing the one- and two-market values in each figure one sees 
that the two-market values are relatively lower than the one-market values for case high. This is also true for 
week 45 in Figure 21, which is opposite from what was observed in Figure 19. When increasing the inflow 
and thus the utilization time, the delivery of up-regulation reserves in the two-market case clearly contributes 
to lower the water values. Note that the expected income is always highest in the two-market mode, cf. 
section 4.3.4. 
 

 
Figure 20 Water values obtained in the two modes for week 15 in case high (50% increase in inflow). 
One-market values are solid-drawn and two-market values are stapled.  
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Figure 21 Water values obtained in the two modes for week 45 in case high (50% increase in inflow). 
One-market values are solid-drawn and two-market values are stapled. 

 
Decreasing the annual expected inflow in case low will lead to a lower utilization time for the station. Figure 
22 and Figure 23 show the water values obtained in case low for week 15 and 45, respectively. In both 
weeks, the water value is higher in the two-market case for the range of simulated reservoir levels along the 
x-axis. With a lower utilization time, the delivery of down-regulation reserves contributes to increase the 
water values. 
 

 
Figure 22 Water values obtained in the two modes for week 15 in case low (50% decrease in inflow). 
One-market values are solid-drawn and two-market values are stapled. 
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Figure 23 Water values obtained in the two modes for week 45 in case low (50% decrease in inflow). 
One-market values are solid-drawn and two-market values are stapled. 

 

4.3.4 Profitability and cost of operation  
 
After the strategy (cuts) has been computed, we performed a final simulation with 5000 samples of inflows 
and energy prices. This was done to obtain higher accuracy in the estimates of expected future profit. The 
large number of samples needed to obtain stable results is primarily due to the sampling in the price model. 
Recall that we are sampling one out of two price nodes (indicating either a high or low price) per week over 
the whole period of analyses. The coarse representation of energy price uncertainty calls for a larger number 
of samples than would be the case if the price model was more densely discretized with lower probabilities 
of jumping from a high to a low price. 
 
The expected revenues from the two markets are shown in Table 2. When considering the revenues from 
both markets, sales of reserve capacity amounts 3.55 %. Since the two cases ends approximately at the same 
reservoir levels, we have not valuated the end reservoir in this comparison. Although sales of reserve 
capacity are expected to generate additional revenue of 1.97 MEUR, the profitability only increases by 1.63 
MEUR. The difference of 0.34 MEUR represents the lost opportunities in the energy market when selling 
capacity.  
 
Table 2 Expected revenues from the two markets. 

Case Energy sales [MEUR] Capacity sales [MEUR] Sum [MEUR] 
One market 53.88 0.00 53.88 
Two market 53.54 1.97 55.51 
 
 
Altering the generation schedules from the one- to the two-market mode for the purpose of selling an extra 
product (reserve capacity) may come at a cost (lost opportunity). That cost can be evaluated by studying the 
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dual values κ- and κ+ from equations (1.5) and (1.6), respectively. κ- will be less or equal to zero indicating 
the marginal decrease in profit when increasing the spinning requirement with one MW. κ+ will be greater or 
equal to zero indicating the marginal increase in profit if increasing Pmax with one MW. Note that increasing 
Pmax will not allow for a higher energy generation since the discharge variables are already bounded; it only 
allows for more sales of reserves.  If the dual values κ- and κ+ always are zero, selling capacity will not 
change the water values. 
 
Up-regulation can be provided by the model at no cost if the station generates less than 88 MW in all time 
steps within a reserve block. If generating at least 88 MW in at least one of the time steps, the cost of up-
regulation can be seen as -κ+ (treating costs as negative). Conversely, down-regulation is provided at no cost 
if the station generates more than 22 MW in all time steps within a reserve block. If generating at most 22 
MW in at least one of the time steps, the cost of down-regulation is κ-. Table 3 shows the percentage of time 
in which there is a cost associated with selling reserves and the maximum and mean cost observed from the 
simulation results. Up-regulation reserves are primarily costly to deliver at winter time when energy prices 
are high and we want to run the power station at full output. Down-regulation reserves are primarily costly in 
the low-load season when the reservoir level is high and we otherwise would shut-down the station and save 
the water for higher energy prices. 
 
Table 3 Cost of delivering capacity. 

 Share of time [%] Max [10E3/MW/ step ] Mean [10E3/MW/step] 
Down-regulation 33.98 0.49 0.014 
Up-regulation 37.40 0.84 0.025 
 
 

4.3.5 Reserve cost curve 
 
We can obtain the marginal cost of selling reserve capacity at different points in time by evaluating the cuts 
that have been generated in the backward iteration of the SDDP algorithm. This was discussed on a principle 
level in section 3.4. 
 
We first choose a reserve block bs that we would like to study results for. We evaluate, by assigning 
numerical values for the reservoir levels and capacity sales in other time blocks than the one we are looking 
at (bs) and moving these terms to the right-hand side: 
  
 , 1 , 1 , 1

,
p t pbsl bs t pl phl kh pbl b t

h H b B b bs

c v c      
  

       (1.27) 

 
The expected future profit function then becomes a function of the reserve capacity sold in block bs. Next, 
we divide the capacity sales variable cbs.t+1 into discrete levels. For each of these discrete levels we move the 
numerical value , 1pbsl bs tc  to the right-hand side in (1.27). The cut with the lowest numerical right-hand side 
value will then be binding for that particular state. By repeating the same procedure for all discrete values of 
cbs.t+1 we obtain a set of cuts that are binding for the different discrete reserve capacity levels. The coefficient 
μpbl of the binding cut is then treated as the marginal cost of selling a given level of reserve capacity. 
  
A marginal cost curve for sales of capacity for reserve block 3 (20:00-24:00) in week 15 is shown in Figure 
24. Since the future profit functions are concave and decreasing, we know that the shape of this curve should 
be non-decreasing. That is, the more capacity we sell, the more expensive it is for the system to deliver this 
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capacity. The rather high marginal cost at low capacity levels in Figure 24 may seem somewhat unexpected. 
One could expect that the first MWs sold do not involve any costs, provided that the station is running at its 
best point. The high values can be explained by the following moments: 

• Capacity is sold per block, and one block covers a set of hours within each day. In this example, 
capacity is sold in three different blocks, while energy is sold in 21 sequential time steps. If we relax 
the requirement coupling time-steps to blocks when selling capacity, the marginal cost curve would 
in general be steeper than in Figure 24, starting at lower costs for little capacity. 

• Capacity is sold for the week-ahead based on an expectation of energy price and inflow for the next 
week. Particularly the energy-price uncertainty will impact the shape of the marginal cost curve. If 
the energy price was known when selling reserves, the marginal cost curve would more often start at 
a lower level. 

 
Moreover, the final (and tight/binding) cuts have been computed for a narrow band of sold capacity close to 
the maximum value. Thus, one should not expect that the cost profile in Figure 24 accurately cover the 
complete range of capacity values.  
 

 
Figure 24 Marginal cost curve of capacity sales in week 45. 

 
In Figure 25 the marginal cost associated with sales of different fixed levels of reserve capacity along the 
first simulated year is presented. We represent three different capacity levels; 1, 11 and 22 MW. The solid-
drawn line represents capacity of 11 MW. As expected, we see that the marginal cost increases with 
increasing level of commitment. It is also evident that the marginal cost is much higher in certain periods of 
the year, which is related to low and high reservoir levels. 
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Figure 25 Marginal cost of delivering different amounts of reserve capacity in reserve block 3 (20:00-
24:00) for the first year. The stapled lines correspond to 1 and 22 MW, and the solid-drawn line 
corresponds to 11 MW. 

 
We wanted to test the dependence of the marginal cost shown in Figure 25 on the reserve capacity price 
level. For that reason we ran two additional cases, one where the capacity price profile was increased with a 
factor of 10, and one where it was decreased with a factor of 10. The expected marginal cost related to sales 
of 1 MW for the three cases (normal, high and low reserve capacity price) is shown in Figure 26. The radical 
variations in capacity price levels impacts the marginal cost curves, but not severely. Recall that the marginal 
cost does not explicitly depend on the reserve capacity price in a given decision stage. It will however 
implicitly depend on the reserve capacity price-level through the cuts/water values.       
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Figure 26 Marginal cost of delivering 1 MW reserve capacity in reserve block 3 (20:00-24:00) for the 
first year for different levels of reserve capacity prices. 

 
The marginal costs in Figure 25 and Figure 26 fluctuate significantly between weeks. This can be explained 
by the fact that we have embedded a two-stage stochastic optimization problem within the SDDP/SDDP 
algorithm. That is, the marginal cost of the reserve capacity sold in the current week is found by evaluating 
the resulting commitment in the week ahead. The marginal cost therefore depends heavily on the energy 
price in the week ahead. The energy price fluctuations were displayed in Figure 8. We believe that the 
fluctuations will be less pronounced for a larger system and when considering more price nodes.  
 
For comparison we ran two tests changing only the energy price input. In the first test we used two fixed 
energy price nodes throughout the period of analyses, one at 45 Euro/MWh and one at 55 Euro/MWh. Note 
that this is different from the original price input shown in Figure 8. The probabilities where set to 0.8 for a 
transition to the same price-level and 0.2 to a different level. The resulting marginal costs for reserve 
capacity are shown in Figure 27. As expected, the marginal costs vary less from week to week. In a second 
test we assumed a constant energy price of 50 Euro/MWh, see Figure 28. Sales of 1 MW reserve capacity 
comes "for free" most of the time. At the point of selling reserve capacity the model knows the energy price. 
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Figure 27 Marginal cost of delivering different amounts of reserve capacity in reserve block 3 (20:00-
24:00) for the first year. Two energy price levels: 55 and 45 Euro/MWh. 

 
As expected, the marginal cost curves in Figure 27 do not vary as much as in the original case (shown in 
Figure 25) between weeks.  
 
In the second test we used a deterministic price, giving the results in Figure 28. The marginal cost of selling 
a small amount (1 MW) of reserve capacity is zero. In this case the energy price for the week ahead is 
perfectly known, but inflow is still uncertain when selling capacity. When comparing the marginal cost 
curves in Figure 28 with those in Figure 25 and Figure 27, we see that reduced uncertainty in the planning 
leads to lower expected marginal costs of reserve capacity. If we considered both the energy price and inflow 
as deterministic, we would allow the model to perfectly co-optimize the sales of energy and capacity. This 
will enable the model to perfectly plan when to deliver reserve capacity at zero cost. 
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Figure 28 Marginal cost of delivering different amounts of reserve capacity in reserve block 3 (20:00-
24:00) for the first year. Deterministic energy price: 50 Euro/MWh. 
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5 Conclusions  
 
We have shown that sales of reserve capacity can be included in the combined SDP/SDDP method that is 
used in the program ProdRisk. The presented method assumes that reserve capacity is sold for the week-
ahead and before knowing the energy price and inflow for that week. Alternatively, one could choose to co-
optimize sales of energy and reserve capacity, but we think that the former choice better reflects the current 
market design. 
 
When considering both energy and reserve capacity sales, water values change. This was elaborated 
analytically in section 3 and numerically in section 4.  
 
In section 3, we showed that when the requirement for available down-regulation capacity is binding, it 
contributes to an increased water value. Conversely, we showed that when the requirement for available up-
regulation capacity is binding, it contributes to a reduced water value. These findings where verified in 
section 4. From the case studies we saw that in cases with low reservoir level and high reserve capacity 
prices, the down-regulation capacity constraint becomes binding, contributing to an increase in water value 
(compared to the energy-only case). Conversely, with a high reservoir level and high reserve capacity prices, 
the up-regulation capacity constraint is binding, contributing to a decrease in water value (compared to the 
energy-only case). The same pattern was also found when increasing/decreasing the utilization time of the 
system. 
 
The model needs reserve capacity prices, either represented as a deterministic or stochastic variable. The 
model user should also provide an estimate on the volumes that can be sold at the specified prices. Expected 
marginal costs for reserve capacity commitments seems to be an interesting by-product that can be extracted 
from the model. It reflects the lost revenue in the energy market when selling reserve capacity. It was shown 
that these costs heavily depends on the system state (reservoir level), but are relatively insensitive to the 
provided reserve capacity prices. For this reason, we argue that the presented functionality can be 
implemented in ProdRisk taking a dummy reserve capacity price and providing relatively stable estimates on 
the marginal cost of reserve capacity.  
 
 

6 Possible implementation in ProdRisk 
 
The presented method can be embedded in today's version of ProdRisk with modest programming effort. The 
following changes to the existing computer code are needed so that the program can:  

• Read input regarding maximum reserve capacity per station or station group 
• Include reserve constraints in the LP model 
• Compute dual values for these constraints 
• Include capacity sales in the cuts  
• Extract results  

 
We expect that the computation time will increase modestly since more constraints are included in the 
model. The convergence characteristics may also be slightly different since more state variables are 
introduced. 
 
  



 

PROJECT NO. 
502000395 

REPORT NO. 
TR A7559 
 
 

VERSION 
3 
 
 

40 of 41 

 

7 References 
 
[1] A. Gjelsvik. Løysingsmetodikk i SDDP algoritmen. Technical Report TR F5560, SINTEF Energy 
Research, 2001. 
[2] A. Gjelsvik, M. M. Belsnes, and A. Haugstad. An algorithm for stochastic medium-term 
hydrothermal scheduling under spot price uncertainty. In Proc. 13th Power System Computation Conference, 
Trondheim, Norway, 1999. 
[3] A. Gjelsvik, B. Mo, and A. Haugstad. Handbook of Power Systems I, chapter Long- and medium-
term operations planning and stochastic modelling in hydro-dominated power systems based on stochastic 
dual dynamic programming, pages 33–55. Springer, 2010. 
[4] A. Gjelsvik and S. W. Wallace. Methods for stochastic medium-term scheduling in hydro-dominated 
power systems. Technical Report TR A4438, SINTEF Energy Research, 1996. 
[5] A. Helseth, M. Fodstad, and A. L. Henden. Balancing Markets and their Impact on Hydropower 
Scheduling – Review of Nordic Market Structures and Relevant Scheduling Methods. Technical Report TR 
A7558, SINTEF Energy Research, 2016. 
[6] A. Helseth, M. Fodstad, and B. Mo. Optimal medium-term hydropower scheduling considering 
energy and reserve capacity markets. IEEE Transactions on Sustainable Energy, 2016. 
[7] A. Helseth, B. Mo, M. Fodstad, and M. Hjelmeland. Co-optimizing sales of energy and capacity in a 
hydropower scheduling model. In Proc. of IEEE PowerTech, Eindhoven, The Netherlands, 2015. 
[8] O. Wolfgang, A. Haugstad, B. Mo, A. Gjelsvik, I. Wangensteen, and G. Doorman. Hydro reservoir 
handling in Norway before and after deregulation. Energy, 34(10):1642–1651, 2009. 
 
 
 
  



 

PROJECT NO. 
502000395 

REPORT NO. 
TR A7559 
 
 

VERSION 
3 
 
 

41 of 41 

 

A Nomenclature 
Index sets  Stochastic 

variables 
 

H  Set of hydropower reservoirs/stations 
hI  Sum weekly inflow to reservoir h 

hS  Set of discharge segments for station h 
,

C
b t  Weekly average reserve capacity price  

h  Set of reservoirs upstream reservoir h E
p  Weekly average energy  price 

K  Set of time steps within the week   
B  Set of reservation blocks within the 

week 
  

    
Parameters  Decision 

variables 
 

phl  Coefficient for reservoir level for price 
node p, reservoir h and cut l khe  Generated electricity in time step k for 

station h 

pbl  Coefficient for capacity sales for price 
node p, block b and cut l hw  Artificial water supply to reservoir h 

pl  Right-hand side for price node p and 
cut l 

, 1p t   Future expected profit for price node p 
and week t + 1 

max min,h hP P  Max./Min. capacity in station h 
khv  Volume in time step k for reservoir h 

max
hR  Max. capacity reservation for station h D

khsq  Discharge in time step k through station 
h at segment s 

h  Factor limiting the use of spinning 
reserves 

S
khq  Spillage in time step k from reservoir h 

b  Total duration of reservation block b B
khq  Bypass in time step k from reservoir h 

,
C
b t  Capacity price scaling coefficient for 

block b khr  Allocated capacity in time step k for 
station h 

E
k  Energy price scaling coefficient for 

time step k , 1b tc   Sold capacity for block b in week t + 1 

  Cost of artificial water   

k  Duration of time step k   

hs  Energy equivalent for station h and 
discharge segment s 

  

max min,kh khV V  Max./Min. limit for reservoir h   
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