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ABSTRACT The increased integration of distributed energy resources (DERs) in the distribution network
with intermittent generation profiles will likely make voltage regulation a difficult task. However, DERs
bring both challenges and opportunities, as they can provide renewable forms of local energy and act as
voltage regulating components. The DERs are usually interfaced with power electronic devices, in which
both their active and reactive power outputs can be regulated and treated as continuous control variables.
In contrast, other voltage regulatory devices such as On-Load Tap-Changing (OLTC) transformers are often
controlled by making discrete tap changes. Thus, appropriate control strategies are required to control and
coordinate the DERs with other voltage regulatory devices. In this work, a distributed control strategy
based on the Alternating Direction Method of Multipliers (ADMM) is developed, which controls both the
continuous and the discrete variables in a distribution grid. The proposed control strategy is compared to
a centralized and a local control architecture, where optimal parameters have been computed for the local
controllers. Finally, a simulation study is made for the three different control architectures using a modified
CIGRE medium voltage network. The results showed significant improvements in the daily voltage profiles
while also reducing the power losses by over 30% when using an optimal control strategy.

INDEX TERMS Voltage control, optimal control, distributed control, optimal power flow, reactive power.

I. INTRODUCTION
The transmission systems operators (TSOs) have tradi-
tionally been in charge of generating and supplying the
necessary active and reactive power, mainly through coor-
dinating different synchronous generators and compensator
units [1]. However, the expected increase in distributed
energy resources (DERs) and localized renewable energy
sources (RES) is likely going to cause more voltage fluc-
tuations in the grid. Thus, the distribution system operators
(DSOs) will have to take a more active role in controlling the
voltage and reducing large variations in the power flows at
the DSO-TSO connection [1], [2]. Furthermore, as reactive
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power sources connected to the transmission network are
replaced by DERs in the distribution network, coordinated
control will be necessary to reduce losses and achieve optimal
operation.

The distribution system has primarily been a passive net-
work, with seasonally changing tap settings of the On-Load
Tap-Changing (OLTC) transformers being one of the main
methods for local voltage control [3]. As a result, voltage and
reactive power control in the distribution system have been
done largely independently from each other [4]. However,
with the adoption of more inverter-based DERs, it becomes
important to properly control and coordinate these to ensure
a stable voltage profile [5]. Thus, it becomes necessary to
consider the regulation of the reactive power flow, while
controlling the bus voltage levels and coordinatingDERswith
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other voltage regulating network components (such as OLTC,
capacitor banks etc). Additionally, there will be a need for
coordination among DSOs and TSO as they have their own
objectives, control variables, and data security concerns.

Different control strategies have been proposed for the
distribution system, but there are still many challenges that
need to be addressed. These include proper selection of con-
trol architectures, adequate parameter settings of local con-
trollers, and the cost-effective coordination of a large number
of DERs. In [4], proper selection and trade-off of different
control architectures is identified as one of the major chal-
lenges in voltage control. The communication bandwidth,
latency, and the scalability of a centralized control architec-
ture limit the ability of DERs from being engaged as active
resources [6]. Instead, in most of the reviewed literature, the
best outcome is anticipated through a combination of central-
ized, distributed, and decentralized control systems dispersed
throughout the distribution network [7], [8]. Nevertheless,
the barriers for practical implementation for the different
architectures are not well-understood [9].

Distributed control has received significant attention in
the research literature with several recent review papers [7],
[10], [11]. Both centralized and distributed control strategies
are able to achieve optimal operation. However, distributed
control comes with several potential benefits over centralized
control, such as reduced computational requirements, fewer
communication lines, and safer sharing of personal data [11].
Most distributed algorithms tend to apply some augmented
Lagrangian decomposition method [7], [10]. Out of these
methods, the Alternating Direction Method of Multipliers
(ADMM) is one of the most popular and has been studied in,
e.g., [12], [13], [14], and [15]. In [16], a matrix-based formu-
lation was used to implement an ADMM based multi-agent
system on a cyber Hardware-in-the-Loop platform.

Most of the distributed control and ADMM algorithms
that have been proposed for distribution systems only con-
sider continuous variables for inverter-basedDERs. However,
many voltage regulation devices in the distribution grid con-
sist of switches and tap changes which are discrete variables.
Unfortunately, including discrete control from, e.g., On-Load
Tap-Changing (OLTC) transformers can cause convergence
issues for the ADMM algorithm, which was demonstrated
in [14].

The optimal operation of local energy communities using
ADMM was investigated in [17], which included both
discrete and continuous variables. Binary variables were
included in the local optimization problems to enforce that
energy could not be sold and bought simultaneously. As a
result, the value of the binary variables did not impact the
cost of the optimal solution, which would not be appli-
cable for controlling voltage regulation devices. A novel
distributed voltage control strategy was proposed in [18],
where each node follows a rule-based algorithm to determine
the best trade-off between a local and a global objective
to avoid violating the voltage constraints. However, rule-
based algorithms may not be optimal, and it is difficult

to include other objectives, such as minimizing line losses.
Deep reinforcement learning was used in [19] to create a
model-free and distributed control algorithm for controlling
switchable capacitor banks, voltage regulators, and different
DERs. It was demonstrated that distributed control algo-
rithms could be designed to reduce system losses and reg-
ulate the voltages similarly to a centralized control structure.
However, an accurate model is required to learn the optimal
control policies, and it is difficult to know how it will perform
during unexpected events.

More recently, the Alternating Direction Inexact Newton
algorithm (ALADIN) method has been proposed for solv-
ing distributed optimal power flow problems [20]. ALADIN
resembles ADMM but can also guarantee convergence to a
local optimum for non-convex problems and has been shown
to converge faster than ADMM [21]. However, the ALADIN
method relies on an update step that requires a central coor-
dination controller and is, thus, not a fully distributed control
algorithm. Similarly, a centralized ADMM algorithm was
developed in [22] for solving mixed-integer nonlinear prob-
lems (MINLP) for distribution systems.

Distributed control algorithms based on ADMM that
handles both discrete and continuous variables have been
developed in [23], [24], [25], and [26]. Second-order cone
programming (SCOP) combined with a branch and bound
methodwas used in [23] to control the tap positions of the step
voltage regulators and other DERs. However, it requires that
the step voltage regulators are located on the shared branches
between the adjacent control areas, and the algorithm could
not dispatch other discrete variables, such as switched capac-
itor banks. Two ADMM algorithms were used in [24], first to
find the approximate values for the discrete variables and then
repeat the ADMM to find the continuous variables. A two-
stage algorithm was developed in [25], where an outer loop
was added to the ADMM algorithm. The inner ADMM loop
can be solved in closed form, whereas the outer loop uses
an interior-point method, with the model being linearized by
perturbing it for each iteration. Another two-stage approach
was proposed in [26]. The algorithm combines model predic-
tive control with ADMM, with the discrete variables being
solved and updated at a slower time scale compared to the
continuous variables.

A. CONTRIBUTION
ADMM-based distributed controllers for both discrete and
continuous have been developed in [23], [24], [25], and [26].
These methods incorporate additional layers and functions
to the ADMM and show improvements in the performance
and convergence of the distributed controllers. They also
increase the individual controllers’ complexity and computa-
tional burden by requiring appropriate solvers and additional
optimization algorithms. However, the individual nodes in
the distribution grids often deploy cheap sensors with limited
computational capacity. Consequently, implementing more
advanced control algorithms and solvers can be difficult in
many practical applications.
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In this work, a distributed control system based on ADMM
is designed to minimize the losses and voltage deviations in
a distribution grid. In contrast to other existing work that
focuses on optimal controller performance, the aim of this
paper is to develop an algorithm that can easily be imple-
mented and approximately solve a distributed optimization
algorithm for discrete and continuous variables. A novel
approach is proposed for incorporating discrete control vari-
ables into the ADMM algorithm by introducing two addi-
tional variables and expanding the augmented Lagrangian.
This modification results in the ADMM algorithm becoming
bilinear which can be solved iteratively. Thus, it tries to take
advantage of the already existing iterative requirement of
the ADMM, where the resulting optimization problems can
be solved in closed form. Therefore, it can be more easily
implemented in practical implementations, as in [16], but
where also discrete variables can be included.

The proposed algorithm is evaluated against two other
control strategies in a case study. Typically, distributed con-
trollers are only compared to a centralized controller, even
if a simpler local control strategy could potentially achieve
similar performance [27]. Thus, for comparison purposes,
both a centralized and a local control strategy are designed
where the parameters for the local controllers have been
optimized specifically for the simulated model.

In summary, the two main contributions of this paper are:
• An ADMM-based algorithm for distributed controllers
with both continuous and discrete control variables. The
resulting optimization problem can be solved with a
closed form solution and can thus more easily be imple-
mented in most control devices.

• A case study that compares the performances of central-
ized, local, and distributed controller architectures for
voltage control in distribution networks.

B. PAPER STRUCTURE
The structure of the paper is as follows: Part II starts by pro-
viding some relevant background before describing the cen-
tralized, and local control strategies in the subsections II-A,
and II-B, respectively. The proposed ADMM based dis-
tributed control algorithm is presented in section III and con-
stitutes the main contribution of this work. In section IV, the
simulation results are presented, with the final conclusions
drawn in section V.

II. PROBLEM FORMULATION AND CONTROL STRATEGIES
For balanced radial distribution networks, the relationship
between the voltage and the power flows can be given by the
nonlinear DistFlow equations [28], [29], [30]:

Pi→j = Pj→k + Pj − pj − ri,jli→j (1)

Qi→j = Qj→k + Qj − qj − xi,jli→j (2)

vj = vi − 2
(
ri,jPi→j + xi,jQi→j

)
+
(
r2i,j + x

2
i,j
)
li→j (3)

li→j =
P2i→j + Q

2
i→j

vi
(4)

FIGURE 1. Schematic diagram of the DistFlow model for a radial network.

where Pi→j,Qi→j, ri,j, and xi,j are the active power flow, reac-
tive power flow, line resistance, and line reactance between
node i and j, respectively. The node voltage Vj is in (3) and
(4) represented by its squared value, i.e., vj = V 2

j . The Dist-
Flow equations typically assume a unidirectional power flow,
where the power flows to and from a node j as illustrated in
Figure 1 with an OLTC located at node 0. Here, the upstream
(j − 1) and the downstream (j + 1) nodes from node j have
been denoted i and k , respectively. It will be assumed that the
node connected to the OLTC behaves as a reference bus and
that it is possible to provide the OLTC with different voltage
setpoints. Pj is the active load, and Qj is the reactive load at
node j. Finally, if there are existing DERs in node j, then their
active and reactive power generation is given by pj, and qj,
respectively. Otherwise, pj, and qj will be equal to zero. Thus,
the voltage in the grid can be controlled by pj and qj from
different DERs or by using other voltage regulatory devices
such as OLTCs [31].

The DistFlow equations in (1)−(4) can be made linear by
neglecting the line losses such that li→j = 0. Ignoring the
losses will cause some model errors, but these are often con-
sidered to be relatively small [32]. The linearized DistFlow
equations, are thus, given by

Pi→j = Pj→k + Pj − pj (5)

Qi→j = Qj→k + Qj − qj (6)

vj = vi − 2
(
ri,jPi→j + xi,jQi→j

)
(7)

Ensuring that the voltage is kept within allowable limits
is considered the main objective of the distribution grid.
However, there exist several other objectives related to grid
performance, e.g., minimizing voltage deviations, reducing
active power losses, and load sharing between the DERs [10].
Based on the DistFlow models, the total voltage deviations
from its setpoint vrefj can for a network with n-nodes be
expressed as:

Jv =
n∑
j=0

(vj − v
ref
j )2. (8)

The power losses in the network can, as in [29], be approxi-
mated to

JL ≈
n−1∑
i=0

ri,j
P2i→j + Q

2
i→j

vnom
(9)

with vnom being the nominal voltage of the network. Finally,
to encourage reactive power-sharing, a term of the total
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FIGURE 2. Centralized, local and distributed control architecture [10].

reactive power can be defined as

Jq =
n∑
j=1

q2j . (10)

Achieving optimum for every objective is likely not fea-
sible due to their conflicting nature, and thus, different pri-
orities need to be assigned to them. Thus, it is necessary to
use appropriate control strategies to avoid a sub-optimal per-
formance. Based on the communication structure, the three
main types of control system architectures are illustrated in
Figure 2 and can be categorized as centralized, local, and
distributed control [10].

A. CENTRALIZED CONTROL FORMULATION
Centralized control structures usually adopt a model-based
optimization strategy, using some representation of the power
flow equations [33]. Combining the model equations in
(1)−(4) with the objectives in (8)−(10) results in the opti-
mization problem:

min
P,Q,v,q

wvJv + wLJL + wqJq (11)

subject to (1), (2), and (3), ∀j ∈ n, (12)

qj ≤
√
s2j − p

2
j , ∀j ∈ n, (13)

vmin ≤ v0 ≤ vmax , (14)

where wv, wL , and wq are scalar weights to assign differ-
ent priorities on the objectives. It will be assumed that the
generated active power pj always is at it maximum value.
Thus, the optimization problem in (11)−(14) solves for the
reactive setpoints qj and the voltage setpoint v0 for the
OLTC. As a result, qj will be constrained in (13) by pi
and the apparent power capacity sj of the inverter. Whereas
v0 in (14) is constrained by some upper vmax and lower
vmin limits.

The setpoint v0 will in (11)−(14) be treated as a continuous
variable. However, the voltage at the OLTCwill be influenced
by its tap position, which is a discrete variable. Consequently,
there may be a mismatch between the desired voltage v0 and
the actual voltage at the secondary side of the OLTC. This
mismatch could be removed by representing the tap positions
of the OLTC with discrete variables, but would result in
a mixed-integer nonlinear programming problem (MINLP)
that is difficult to scale.

B. LOCAL CONTROL FORMULATION
Local control solutions aim to control the DERs and the
voltage regulatory devices solely based on local information.
It was also demonstrated in [27] that a local control strategy
could achieve similar performance to a centralized controller.
However, the controllers in [27] was designed for reactive
power dispatch in photovoltaic (PV) systems but did not
consider different types of DERs or other voltage regulatory
devices with discrete control variables. Therefore, a local
control strategy based on rule-based control [34], [35] and
droop controllers is proposed for controlling both DERs and
OLTCs.

1) DROOP CONTROL FOR DERs
Droop controllers are often preferable for inverter-based
DERs, where the reactive power injection is a controllable
and continuous variable. For an inverter located at bus j,
a volt-var droop control strategy can be given by

qj = q∗j + Kj
(
V ∗j − Vj

)
(15)

Here, V ∗j and Vj are the target, and the measured voltage at
node j, respectively. The target reactive power is denoted q∗j
and will, together with the droop gain Kj and the voltage
difference determine the reactive power setpoint qj. However,
as in (13), the power output of an inverter will be constrained
by its maximum apparent power sj. Thus, to avoid having to
reduce the active power produced, qj will be restricted by

qmaxj :=

√
s2j − p

2
j . (16)

As a result, the reactive power setpoint from the droop con-
troller in (15) will be adjusted according to:

qj =


−qmaxj , ifqj ≤ −qmaxj

qmaxj , ifqj ≥ qmaxj

qj, otherwise.

(17)

2) RULE-BASED CONTROL FOR OLTC TRANSFORMERS
The voltage levels in a radial network are dependent on the
power flows, as seen in (3). Consequently, the voltage at the
OLTC should be higher when the power demands are high to
ensure all the voltages are kept above the allowed limit. Thus,
a rule-based algorithm can be designed that sets the voltage
at the OLTC based on the measured power flow.

Let PT be the active power that flows through an OLTC
transformer with N different tap positions. Assuming that the
minimum voltage at the secondary side can be defined as
Vmin
0 and that each tap position change corresponds to a volt-

age change given by 1V . Then, by specifying some appro-
priate references for the active power flow Pref ,1T · · ·Pref ,NT ,
a rule-based control strategy for computing the desired
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voltage V0 at the OLTC transformer can be formulated as

V0 =



Vmin
0 + N1V , if PT ≥ P

ref ,N
T

...

Vmin
0 + 21V , if Pref ,3T > PT ≥ P

ref ,2
T

Vmin
0 + 11V , if Pref ,2T > PT ≥ P

ref ,1
T

Vmin
0 , otherwise.

(18)

3) SELECTION OF THE LOCAL CONTROL PARAMETERS
The local controllers work autonomously without any com-
plex communication structures. Therefore, it can often be
assumed that the performance of local control strategies is not
comparable to more advanced control structures. However,
if the parameters Kj, q∗j , V

∗
j , and P

ref
T are chosen optimally,

using, e.g., a meta-heuristic [36], or a surrogate modeling
and optimization approach [37] then it could be possible
to achieve similar performance to more complex control
architectures. However, the local controllers are less flexible
and may perform poorly when having to operate in different
circumstances than they were originally designed for.

III. ADMM FOR DISTRIBUTED CONTROL
A distributed control structure consists of multiple local con-
trollers that try to reach a consensus on the optimal operation
of the network by communicating with its neighbors. Even
though there is no need for a centralized controller, the dis-
tributed controllers are often designed based on the knowl-
edge of the entire system. Thus, they work by decomposing,
e.g., (11)−(14) into smaller sub-problems that can be solved
locally by each distributed controller. Here, the proposed dis-
tributed controllers will be based on the Alternating Direction
Method of Multipliers (ADMM). Therefore, a brief overview
of ADMM will be presented next, but for a more detailed
survey of ADMM and its applications, the reader is referred
to [38].

A. ALTERNATING DIRECTION METHOD OF MULTIPLIERS
(ADMM)
Alternating direction method of multipliers (ADMM) is an
algorithm that solves optimization problems by partitioning
the decision variables into two groups. The algorithm solves
problems of the form:

min
y,z

f (y)+ g(z) (19)

subject to A y+ Bz = c, (20)

where y ∈ Rny , z ∈ Rnz , A ∈ Rnc×ny , B ∈ Rnc×nz , and c ∈
Rnc . The functions f (·) and g(·) are assumed to be convex and
separable across the decision variable y and z. The ability to
split the objective into two parts is what constitutes one of the
main requirement of the ADMM method.

The problem in (19)−(20), can according to [38] be for-
mulated as the scaled augmented Lagrangian,

Lρ(y, z,3) = f (y)+ g(z)+
ρ

2

∥∥Ay+ Bz− c+3∥∥22 (21)

FIGURE 3. Power flows between node j and its three neighboring nodes.

where ρ > 0 is a penalty parameter, and 3 is an esti-
mate of the the Lagrangian multiplier. The ADMM algorithm
finds the solution to the problem in (19)−(20) by iteratively
solving:

y = argmin
y
f (y)+

ρ

2

∥∥Ay+ Bz− c+3∥∥22, (22)

z = argmin
z
g(z)+

ρ

2

∥∥Ay+ Bz− c+3∥∥22, (23)

3 = 3+ Ay+ Bz− c. (24)

Thus, the optimal y and z are solved in an alternating fashion,
hence the name, alternating direction.

B. PROPOSED ADMM FORMULATION FOR DISTRIBUTED
CONTROL
ADMM algorithms for distributed control based on the lin-
earized DistFlow equations in (5)−(7) have previously been
proposed in [29] and [30]. These assume that the power flows
are unidirectional, i.e., that the location of the voltage source
and the end nodes remain unchanged. However, in smart grids
and self-healing networks, there may be a need to reroute the
network, which could alter the power flow directions. There-
fore, these distributed control algorithms will be modified to
avoid having to assume a unidirectional power flow.

The linearized DistFlow equations in (5)−(7) can be gen-
eralized, as illustrated in Figure 3, such that for a node j with
m neighboring nodes, they are given by

m∑
l=1

Pj→l = −Pj + pj (25)

m∑
l=1

Qj→l = −Qj + qj (26)

vl|j = vj + 2
(
rj,lPj→l + xj,lQj→l

)
, ∀l ∈ m. (27)

Here, the subscripts for the voltages vl|j represent the voltage
computed by the j:th node for its neighboring node l. The
active and reactive power flows are similarly to the ones given
in (5) and (6) with the subscripts in Pj→l and Qj→l indicating
the active and reactive power flows from node j to node l.
As a result, the power flow direction is determined by its sign.
A positive value means the power flows from l to j, whereas
a flow is in the opposite direction will have a negative sign.
Thus, the individual nodes do not require knowledge of the
direction the voltage source v0 is located at.

To ensure that the voltages vj and vl|j correspond to the
voltages computed at the neighboring nodes, the following

2492 VOLUME 11, 2023



J. R. A. Klemets, M. Z. Degefa: Distributed Algorithm for Controlling Continuous and Discrete Variables

constraints must hold ∀l ∈ m:

vj = vj|l, vl|j = vl, (28)

where vl , and vj|l are the voltages computed by the neighbor-
ing node l. Similarly, the power flow from node j to l must be
equal its negative value from node l to j, such that ∀l ∈ m:

Pj→l = −Pl→j, Qj→l = −Ql→j. (29)

However, vl , vj|l , Pl→j, and Ql→j in (28)−(29) will be com-
puted by the neighboring node l, and can thus, not be included
in the optimization problem for node j. Instead, local copies
will be used that are denoted v̂l , v̂j|l , P̂l→j and Q̂l→j for
the neighboring variables. These variables will iteratively be
updated until a consensus has been reached.

Based on (8), (9), and (10) an objective function for node j
can be expressed as

Jj =
ωv

m+ 1

[
(vj − v

ref
j )2 +

m∑
l=1

(vl|j − v
ref
l )2

]
+
ωL

2

[ m∑
l=1

rj,l
P2j→l + Q

2
j→l

vnom

]
+ ωqqj. (30)

Here, the references vrefl for the neighboring nodes have been
included in the objective function to improve the convergence
of the ADMM algorithm. By dividing the voltage deviations,
and active power losses with m + 1, and 2, respectively,
the sum of the objective in (30) for all nodes will equal the
objective in (11) for the centralized controller.

Using (30) with (25)−(27) and the local copies, an opti-
mization problem for node j can be formulated as

min
Pj→l ,Qj→l ,vl|j,vj,P̂l→j,Q̂l→j,v̂j|l ,v̂l ,qj

Jj (31)

subject to (25), (26) and (27) ,

qj ≤
√
s2j − p

2
j , (32)

vl|j = v̂l, ∀l ∈ m, (33)

vj = v̂j|l, ∀l ∈ m, (34)

Pj→l = −P̂l→j, ∀l ∈ m, (35)

Qj→l = −Q̂l→j, ∀l ∈ m. (36)

The objective function in (31) and the constraints in
(33)−(36) can as in (21) be expressed as the augmented
Lagrangian:

Lj = Jj +
ρ

2

m∑
l=1

[(
vj − v̂j|l +3

(vL )
l

)2
+
(
vl|j − v̂l +3

(vN )
l

)2
+
(
Pj→l + P̂l→j +3

(P)
l

)2
+
(
Qj→l + Q̂l→j +3

(Q)
l

)2]
. (37)

The proposed ADMM algorithm results in an iterative dis-
tributed control algorithm which after v̂j|l , v̂l , P̂l→j, Q̂l→j,

3
(vL )
l , 3(vN )

l , 3(P)
l , and 3(Q)

l have been initialized, follows
the following steps:

1) Local optimization: For each node j solve the follow-
ing optimization problem:

min
Pj→l ,Qj→l ,vl|j,vj,qj

Lj (38)

subject to (25), (26), (27), and (32) (39)

Here, v̂j|l , v̂l , P̂l→j, Q̂l→j, 3
(vL )
l , 3(vN )

l , 3(P)
l , and 3(Q)

l
are given, and thus, (38)−(39) is a convex and quadratic
optimization problem. The resulting values of vl|j, vj,
Pj→l , andQj→l from solving (38)−(39), will be shared
with the neighboring nodes in the next step.

2) Share and update variables: For each node j, collect
vl , vj|l , Pl→j, and Ql→j from all the l ∈ m neighboring
nodes and update the local copies:

v̂l|j =
1
2

(
vl|j + vl

)
, ∀l ∈ m, (40)

v̂j =
1
2

(
vj + vj|l

)
, ∀l ∈ m, (41)

P̂l→j =
1
2

(
Pj→l − Pl→j

)
, ∀l ∈ m, (42)

Q̂l→j =
1
2

(
Qj→l − Ql→j

)
, ∀l ∈ m. (43)

3) Update Lagrangian multipliers: For node j, update
the Lagrangian multipliers according to

3
(vL )
l = 3

(vL )
l + vj − v̂j|l, ∀l ∈ m, (44)

3
(vN )
l = 3

(vN )
l + vl|j − v̂l, ∀l ∈ m, (45)

3
(P)
l = 3

(P)
l + Pj→l + P̂l→j, ∀l ∈ m, (46)

3
(Q)
l = 3

(Q)
l + Qj→l + Q̂l→j, ∀l ∈ m. (47)

Iteartivley repeating the above steps will guarantee that the
ADMM algorithm converges to the optimal solution as long
as the problem is convex. Thus, the resulting the distributed
controllers will give the same results as the centralized con-
troller in (11) if the linearized DistFlow equations in (5)−(7)
were used instead of (1)−(4). A closed form solution can also
be derived for (38)−(39) for the ADMMalgorithm. However,
it results in a large expression and will not be shown here.

The primal and dual residuals are often used to determine
when to terminate the iterative process of the ADMM [23],
[38]. However, in practical implementations, a more straight-
forward approach is to set the number of iterations to a value
that is sufficiently large to ensure convergence [16]. As long
as the distributed controllers stay synchronized and run in
parallel, they will update the setpoints simultaneously after
the final iteration.

C. INCORPORATING BINARY VARIABLES WITH ADMM
The ADMM algorithm in the previous section is only appli-
cable for nodes with inverter-based DERs and nodes that are
not connected to the OLTC. For the node at the OLTC, the
optimization problem in (38)−(39) can be modified to also
include v0 and the constraint in (14). However, this will result
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in a sub-optimal solution since the resulting voltage setpoint
will be a continuous variable, whereas the actual voltage of
the OLTC will be influenced by its bandwidth 1V . Thus,
an alternative method will be proposed.

LetVm be the voltagemeasurement at the secondary side of
the OLTC and V0 =

√
v0 its voltage setpoint. The OLTC will

make a tap change if the difference between the V0 and Vm
is greater than the bandwidth1V . Thus, two binary variables
b− and b+ are defined that represent a tap decrease and a
tap increase, respectively. Consequently, a tap change for the
OLTC corresponds to the squared voltage v0 according to

v0 = b−(Vm −1V )2 + b+(Vm +1V )2 (48)

Assuming that b− and b+ can not both be active at the same
time, then the voltage at the OLTC with or without a tap
change can be given by

v0 = V 2
m + b

−
(
1V 2

− 2 Vm1V
)
+ b+

(
1V 2

+ 2 Vm1V
)
.

(49)

The optimization problem in (38)−(39), can thus, be mod-
ified to include (49) and the binary variables b−, and b+:

min
Pj→l ,Qj→l ,vl|j,vj,qj,b−.b+

Lj + ωb
(
b− + b+

)
(50)

subject to (25), (26), (27), and (49) , (51)

b(−) + b(+) ≤ 1 (52)

Here, a small scalar weight ωb has been included in the
objective to avoid changing taps in the OLTC too frequently.
The constraint in (52) ensures that b− and b+ can not be
active at the same time. However, using binary variables with
the ADMM algorithm can be problematic, primarily due to
two reasons. First, the ADMM method is only guaranteed
to converge for convex problems. Secondly, even in the case
of convergence, it often results in a greedy algorithm, i.e.,
the binary variable will converge to a local optimum, which
is often sub-optimal. Therefore, a different formulation is
proposed, where the binary variables are replaced with con-
tinuous variables.

It has been well-established that binary variables can be
transformed into continuous variables by constraining the
variables such that [39]:

b− − b−b− = 0, b+ − b+b+ = 0. (53)

Similarly, the constraint in (52) is equivalent to

b−b+ = 0. (54)

The constraints in (53)−(54) are nonlinear, and thus, at first,
glance does not seem to simplify the problem. However,
by introducing two additional variables b̂− and b̂+, the con-
straints in (53)−(54) can be rewritten as

b− − b−b̂− = 0, b+ − b+b̂+ = 0, (55)

b−b̂+ = 0, b+b̂− = 0, (56)

b− = b̂−, b+ = b̂+. (57)

The resulting constraints in (55)−(57) are bilinear and can be
solved iteratively between {b−, b+} and {b̂−, b̂+}. Therefore,
it fits well with the ADMM algorithm since it already solves
the optimization problem iteratively.

Defining:

Lb

:=
ρb

2

(
b−b̂+ +3(b−b+))2

+
ρb

2

(
b+b̂− +3(b+b−))2

+
ρb

2

(
b−−b−i b̂

−
+3(b−))2

+
ρb

2

(
b+ − b+i b̂

+
+3(b+))2

+
ρb

2

(
b−−b̂−+3(b−b−))2

+
ρb

2

(
b+−b̂++3(b+b+))2

(58)

then for the node with the OLTC, the steps for the proposed
ADMM algorithm can be adapted such that:

1) Local optimization: For node j, solve the following
optimization problem:

min
Pj→l ,Qj→l ,vl|j,vj,qj,v0,b−,b+

Lj + Lb + ωb
(
b− + b+

)
(59)

subject to (25), (26), (27), (32), and (49)

(60)

2) Share and update variables: For node j, collect vl , vj|l ,
Pl→j, andQl→j for all the l ∈ m neighboring nodes and
update the local copies as in (40)−(43). Next, update
b̂− and b̂+ according to

b̂− = −
b+3b+b−

− b− −3b−
− b−3b−b−

− (b−)2

1+ (b−)2 + (b+)2
(61)

b̂+ = −
b−3b−b+

− b+ −3b+
− b+3b+b+

− (b+)2

1+ (b−)2 + (b+)2
(62)

Here, (61) and (62) are the closed form expressions for
the optimal solution of (58) with respect to b̂− and b̂+.

3) Update Lagrangian multipliers: For node j, update
the Lagrangian multipliers as in (63)−(68) and then
update the Lagrangian multipliers for the binary
variables:

3(b−)
= 3(b−)

+ b− − b−b̂− (63)

3(b+)
= 3(b+)

+ b+ − b+b̂+ (64)

3(b−b−)
= 3(b−b−)

+ b− − b̂− (65)

3(b+b+)
= 3(b+b+)

+ b+ − b̂+ (66)

3(b−b+)
= 3(b−b+)

+ b−b̂+ (67)

3(b+b−)
= 3(b+b−)

+ b+b̂− (68)

4) Update the penalty parameter ρb: Based on the cur-
rent value Lb and its value from the previous iteration
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FIGURE 4. Modified CIGRE MV network grid model [41].

Lbprev, update the binary penalty parameter (ρb) accord-
ing to

ρb =

{
τρb, if Lbprev − Lb ≥ ε
ρb, otherwise

(69)

where 1� ε ≥ 0, and τ > 1.
For non-convex problems, convergence is only guaranteed

for the ADMM algorithm if the penalty parameter is chosen
sufficiently large [40]. Consequently, ρb must be chosen large
enough to ensure convergence of the proposed algorithm.
However, too large values for ρb often results in a sub-optimal
solution since the algorithm will prioritize satisfying the
constraints in (55)−(57) over minimizing the main objective
in (50). Initializing ρb with a small value and updating it
according to (69) has shown to give good results as it allows
the algorithm to first prioritize the main objective before
being forced to converge by satisfying the binary constraints.

IV. CASE STUDY
The three different control strategies are implemented and
simulated on a modified CIGRE medium voltage network
[41]. The model topology consists of 14 different busses as
shown in Figure 4, where the busses 1 and 12 are connected
to a 220 kV line through two separate OLTCs. Figure 5 shows
the 24 hour load profiles for the different busses. Node 6, 7,
8, 11, and 14 are connected to some local power generation,
where their 24 hour generation profiles are shown in Figure 6.
These consist of four PV systems and one wind turbine,
where each of them is interfaced through an inverter with a
maximum capacity of 3.0 MVA. During the middle of the
day, the total power generation will exceed the total load
demand, whereas later in the day, the opposite is true. Thus,
the controllers’ ability to control the voltages and line losses
with changing power flow directions can be evaluated.

Two different cases are simulated for each control strategy,
wherein case 1, the OLTC at bus 12, has been deactivated
by opening its associated switch. In case 2, the OLTC at

FIGURE 5. Daily load profiles at the different busses for the CIGRE
network.

FIGURE 6. Generated power for a 24h period by the PV systems and wind
turbine (WT), located at bus 6, 7, 8, 11, and 14, respectively.

bus 12 will be active while the OLTC at bus 1 has been
taken out of service. This is to demonstrate the adaptability
of the different control strategies when there is a need for
rerouting the network caused by, e.g., a fault. Additionally,
in case 2, the PV system at node eight has been taken out
of commission. Consequently, there will be less local power
production in case 2, and the direction of the power flows will
differ compared to case 1.

The objective of the controllers is to minimize the voltage
deviations and the active power losses in the network by
controlling the OLTC and using the reactive power available
at the DERs. The local control strategy has been optimized for
case 1 using the method in [37] by simulating the grid model
and the expected load and power generation for multiple sets
of controller parameters.

A. SIMULATION RESULTS FOR CASE 1
The three different control architectures were each simulated
for a 24 hour period. The resulting average voltages for the
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FIGURE 7. The average voltages together with their maximum and
minimum voltages when using the local, centralized (central), and
distributed (ADMM) control architectures. The blue area shows the
maximum and minimum voltages when the network is left uncontrolled
(NoCtrl), with the black dashed line being the desired voltage reference
for the network.

grid, together with the minimum and maximum values, are
shown in Figure 7. The voltages for each control strategy
are compared to the maximum and minimum voltages when
all the DERs and OLTC are left uncontrolled (No Ctrl)
to highlight the advantage of using the control strategies.
However, as seen in Figure 7, there are little differences
in the voltage performance between the local, central, and
distributed (ADMM) controllers. Similarly, when comparing
the active power losses in Figure 8, all three control strategies
give significant improvement to having no control. However,
the difference between the three control systems is almost
negligible.

The voltage setpoints sent to the OLTC are shown in Fig-
ure 9. Here, the centralized controller treats the voltage set-
point for the OLTC as a continuous variable, and thus, there
is a disparity between the setpoint and the actual measured
value. Similarly, the local controller computes the voltage set-
point based on the active power that flows through the OLTC,
which also causes a voltage error. However, the ADMM
algorithm uses binary variables to ensure a setpoint change
is equal to the bandwidth of the OLTC. Thus, the ADMM
will determine when a setpoint change is necessary or if the
setpoint should be equal to the measured voltage. As a result,
the voltage setpoint from the ADMM will almost perfectly
match the measured voltage at the OLTC, which reduces the
model error compared to the centralized controller.

The voltage setpoint from the ADMM is also compared
to the optimal setpoint when using the linearized DistFlow
model with binary variables as a centralized controller. The

FIGURE 8. The active power losses when using the local, centralized
(central), and distributed (ADMM) control architectures.

setpoints from the ADMM algorithm are almost equivalent to
the optimal setpoints. The only exceptions are around the 8h,
10h, and 16h mark, where the ADMM will make a change
about 10 minutes prior to the optimal setpoints. However,
its impact on the performance will be negligible. Thus, sug-
gesting that the proposed ADMM algorithm is capable of
providing near-optimal setpoints.

Figure 10 shows the computed reactive power setpoints for
the three different control systems. Despite some differences
between the controllers, it does not significantly impact the
performance related to the active power losses or the voltage
deviations. Thus, showing that near-optimal performance can
be achieved in multiple ways.

B. SIMULATION RESULTS FOR CASE 2
In case 2, the location of the voltage sources has changed from
bus 1 to bus 12, and consequently, there will be a change in
the direction of the power flows. Additionally, the PV system
at bus 8 has been deactivated, and thus, it will not be able to
provide any active or reactive power to the grid.

Both the centralized and the distributed ADMM control
strategies are able to adapt to these changes and give similar
improvements in the voltage, as seen in Figure 7. However,
the voltage in case 2 for the local control strategy will deviate
more than in case 1 since the controllers had been designed
for case 1. Similarly, the active power losses in Figure 8
are slightly higher for the local controllers, whereas both the
centralized and the distributed controllers give similar results.
Nevertheless, despite the sub-optimal tuning of the local
controllers, all three strategies are able to give significant
improvements in both voltage deviations and power losses
compared to having no control.

Finally, the voltage setpoints for the OLTC and the reactive
power setpoints for the DGs are shown in Figure 9, and
Figure 10, respectively. As in case 1, it can be seen that the
voltage setpoints in Figure 9 for the centralized and local
strategies will differ from the actual measured voltage values.
Whereas the measured voltage will almost perfectly align
with the setpoints from the ADMM algorithm. The optimal
setpoint is, in this case, equivalent to the one computed
by the ADMM, thus, demonstrating the effectiveness of the
proposed method.
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FIGURE 9. The measured voltage and the voltage setpoints for the OLTC
using the local, centralized (central), and distributed (ADMM) control
architectures. The black dotted lines represent the optimal setpoints to
the OLTC when using a linearized DistFlow model with binary variables in
a centralized controller.

C. SUMMARY OF THE SIMULATION RESULTS
The simulation results are summarized in Table 1, which
shows the average voltage of the network with two standard
deviations and the total active power losses for the two cases.
The results from a centralized MINLP controller that uses
continuous and discrete variables with the nonlinear model
in (1)−(4) have also been included in Table 1 to use as a
reference when comparing the performance of the different
controllers. The centralized controller and the ADMM algo-
rithm gives the best performance with the centralized con-
troller slightly outperforming the ADMM algorithm due to
its use of a nonlinear model. Therefore, in this case study, the
model errors of using a linear model in the ADMM algorithm
have a larger impact than the model errors for the central
controller when using continuous variables for the OLTC step
changes. However, if the voltage bandwidth for the OLTC
had been larger or if there had been multiple other voltage
regulatory devices with discontinuous properties, then the
results may have been different. Nevertheless, both control
strategies gave results close to the optimal MINLP controller.

Interestingly, the local control strategy is able to provide
similar performance to the centralized and distributed control
strategies. Especially in case 1 since controller parameters
had been optimized for that simulation. However, the local
control architecture is still able to give a significant improve-
ment in the performance in case 2 compared to using no
control. Thus, demonstrating the benefits of implementing
some type of control strategy, even though it may not be
optimal.

D. CONVERGENCE OF THE ADMM ALGORITHM
The generalized DistFlow equations used for the proposed
ADMMalgorithmwill result in more decision variables com-

FIGURE 10. The injected reactive power to the grid at the different DGs
when using the local, centralized (central), and distributed (ADMM)
control architectures. Note that in case 2, the PV system at bus 8 has been
deactivated, and thus, its reactive power output will be zero.

TABLE 1. Simulation results when using no (No Ctrl), local, centralized
(central), and distributed (ADMM) control. The results are compared with
an optimal algorithm that solves an MINLP problem.

pared to, e.g., the approach in [29]. As a consequence of
having more decision variables, one would expect the conver-
gence time to increase. However, by providing each nodewith
the setpoints for the neighboring nodes, the proposed ADMM
algorithm will have a similar convergence compared to [29],
as shown in Figure 11. However, as previously addressed in
[29] and [38], the convergence of the ADMM algorithm will
be heavily influenced by the value on ρ.
Finally, the convergence properties of the proposed

ADMM algorithm with binary variables are investigated.
Here, the value of ρ will be kept constantly at 50 for all
the nodes, but different values will be used for ρb. The
convergence results can be seen in Figure 12 and show how
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FIGURE 11. Convergence of the reactive power setpoints toward their
optimal values for different values on ρ when comparing the proposed
ADMM algorithm to the one in the reference [29]. Here, the voltage at the
slack bus is constant, and thus, the binary variables have not been
included.

FIGURE 12. Convergence of the voltage setpoint for the OLTC towards its
optimal value for different values on ρb.

different values of ρb influence the convergence. If the value
is chosen too large, there is a high probability that the algo-
rithm will converge to a sub-optimal solution. Choosing a
too small value can cause the ADMM algorithm to become
unstable and not converge, highlighting the challenge when
using ADMM for non-convex problems. However, by using
the proposed adaption method in (69), it is possible to reach
convergence while also very frequently finding the optimal
solution. This was also demonstrated in Figure 9, where
voltage setpoints computed for the OLTC by the ADMM
were almost identical to the optimal setpoints.

V. CONCLUSION
A centralized, local, and distributed control architecture have
been designed for voltage control and loss reduction in a
distribution network. The main focus has been on distributed
controllers, where a novel method for incorporating discrete
variables in the ADMM algorithm is presented. Compared
to other works, the distributed optimization problem can
approximately be solved in closed form, which makes it
easier to implement in most control devices.

All three control architectures showed significant reduc-
tions in voltage deviations and active power losses compared
to having no control. However, the control strategies gave
very similar performances, demonstrating that near-optimal
control can be achieved in multiple ways. Thus, it suggests
that the best control structure will be case-specific, where
more emphasis should be put on, e.g., ICT infrastructure,
scalability, needs for reconfiguration, and resilience towards
cyberattacks and different types of disturbances when choos-
ing the control architecture. Future works will investigate
the challenges related to those three aspects together with
cyber-physical testing of the different control architectures in
a more realistic laboratory environment.
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