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Abstract

Purpose

This study aims to explore training strategies to improve convolutional neural network-

based image-to-image deformable registration for abdominal imaging.

Methods

Different training strategies, loss functions, and transfer learning schemes were considered.

Furthermore, an augmentation layer which generates artificial training image pairs on-the-

fly was proposed, in addition to a loss layer that enables dynamic loss weighting.

Results

Guiding registration using segmentations in the training step proved beneficial for deep-

learning-based image registration. Finetuning the pretrained model from the brain MRI data-

set to the abdominal CT dataset further improved performance on the latter application,

removing the need for a large dataset to yield satisfactory performance. Dynamic loss

weighting also marginally improved performance, all without impacting inference runtime.

Conclusion

Using simple concepts, we improved the performance of a commonly used deep image reg-

istration architecture, VoxelMorph. In future work, our framework, DDMR, should be vali-

dated on different datasets to further assess its value.
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Introduction

For liver surgery, minimally invasive techniques such as laparoscopy have become as relevant

as open surgery [1]. Among other benefits, laparoscopy has shown to yield higher quality of

life, shorten recovery time, lessen patient trauma, and reduce blood loss with comparable

long-term oncological outcomes [1]. Overcoming challenges from limited field of view to

manoeuvrability, and a small work space are the foundations of laparoscopy success. Image-

guided navigation platforms aim to ease the burden off the surgeon, by bringing better visuali-

sation techniques to the operating room [2, 3]. Image-to-patient and image-to-image registra-

tion techniques (hereafter image registration) are at the core of such platforms to provide

clinically valuable visualisation tools. The concept of image registration refers to the alignment

of at least two images, matching the location of corresponding features across images in order

to express them into a common space. Both rigid and non-rigid registration are the two main

strategies to define the alignment between the images. Rigid registration uses affine transfor-

mations, which are quicker to compute but less accurate as these are applied globally. Non-

rigid registration, also known as deformable registration, defines a diffeomorphism, i.e., a

point-to-point correspondence, between the images. However, non-rigid registration comes at

the expense of higher computational needs and thus hardware constraints might hinder the

development and deployment of such algorithms. In medicine, image registration is manda-

tory for fusing clinically relevant information across images; groundwork for enabling image-

guided navigation during laparoscopic interventions [4, 5]. Additionally, laparoscopic preop-

erative surgical planning benefits from abdominal computed tomography (CT) to magnetic

resonance imaging (MRI) registration to better identify risk areas in a patient’s anatomy [6].

During laparoscopic liver surgeries, intraoperative imaging (e.g., video and ultrasound) is

routinely used to assist the surgeon in navigating the liver while identifying the location of

landmarks. In parenchyma-sparing liver resection (i.e., wedge resection) for colorectal liver

metastasis, a minimal safety margin around the lesions is defined to ensure no recurrence and

spare healthy tissue [7]. When dealing with narrow margins and close proximity to critical

structures, a high accuracy in the registration method employed is paramount to ensure the

best patient outcome. Patient-specific cross-modality registration between images of different

nature (e.g., CT to MRI) is practised [8], yet being a more complex process compared to

mono-modal registration.

The alignment of images can be evaluated through different metrics based either on inten-

sity information from the voxels, shape information from segmentation masks, or spatial

information from landmarks’ location or relative distances. The most common intensity-

based similarity metrics are the normalised cross-correlation (NCC), structural similarity

index measure (SSIM), or related variations [9, 10]. For segmentation-based metrics, the most

notorious are the Dice similarity coefficient (DSC) and Hausdorff distance (HD) [11]. How-

ever, target registration error (TRE) is the gold standard metric for practitioners, conferring a

quantitative error measure based on the target lesion location across images [12].

Research on the use of convolutional neural networks (CNNs) for image registration has

gained momentum in recent years, motivated by the improvements in hardware and software.

One early application of deep learning-based image registration (hereafter deep image registra-

tion) was performed by Wu et al. [13]. They proposed a network built with two convolutional

layers, coupled with principal component analysis as a dimensionality reduction step, to align

brain MR scans. Expanding upon the concept, Jaderberg et al. [14] introduced the spatial

transformer network, including a sampling step for data interpolation, allowing for gradients

to be backpropagated. Hence, further enabling neural network deformable image-to-image

registration applications. Publications on CNNs for image-registration show a preference for
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encoder-decoder architectures like U-Net [15], followed by a spatial transformer network, as

can be seen in Quicksilver [16], VoxelMorph [9], and other studies [17]. Mok et al. [18] pro-

posed a Laplacian pyramid network for multi-resolution-based MRI registration, enforcing

the non-rigid transformation to be diffeomorphic.

The development of weakly-supervised training strategies [19, 20] enabled model training

by combining intensity information with other data types (e.g., segmentation masks). Inten-

sity-based unsupervised training for non-rigid registration was explored for abdominal and

lung CT [21, 22]. Building cross-modality image registration models through reinforcement

learning has also been explored [23]. However, semi-supervised training of convolutional

encoder-decoder architectures has been favoured for training registration models and produc-

ing the displacement map [24].

In our study, the focus is brought towards improving the training scheme of deep neural

networks for deformable image registration to cater more easily to use-cases with limited data.

We narrowed the scope to mono-modal registration, and the investigation of transfer learning

across image modalities and anatomies. Our proposed main contributions are:

• an augmentation layer for on-the-fly data augmentation (compatible with TensorFlow GPU

computational graphs), which includes generation of ground truth samples for non-rigid

image registration, based on thin plate splines (TPS), removing the need for pre-computa-

tion and storage of augmented copies on disk,

• an uncertainty weighting loss layer to enable adaptive multi-task learning in a weakly-super-

vised learning approach,

• and the validation of a cross-anatomy and cross-modality transfer learning approach for

image registration with scarce data.

Materials and methods

Dataset

In this study, two datasets were selected for conducting the experiments: the Information

eXtraction from Images (IXI) dataset and Laparoscopic Versus Open Resection for Colorectal

Liver Metastases: The Oslo-CoMet Randomized Controlled Trial dataset [1, 25].

The IXI dataset contains 578 T1-weighted head MR scans from healthy subjects collected

from three different hospitals in London. This dataset is made available under the Creative

Commons CC BY-SA 3.0 license. Only T1-weighted MRIs were used in this study, but other

MRI sequences such as T2 and proton density are also available. Using the advanced normali-

zation tools (ANTs) [26], the T1 images were registered to the symmetric Montreal Neurologi-

cal Institute ICBM2009a atlas, to subsequently obtain the segmentation masks of 29 different

regions of the brain. Ultimately, left and right parcels were merged together resulting in a col-

lection of 17 labels (see the online resource Table A in S1 Appendix). The data was then strati-

fied into three cohorts: training (n = 407), validation (n = 87), and test (n = 88) sets.

The Oslo-CoMet trial dataset, compiled by the Intervention Centre, Oslo University Hospi-

tal (Norway), contains 60 contrast-enhanced CTs. The trial protocol for this study was

approved by the Regional Ethical Committee of South Eastern Norway (REK Sør-Øst B 2011/

1285) and the Data Protection Officer of Oslo University Hospital (Clinicaltrials.org identifier

NCT01516710). Informed written consent was obtained from all participants included in the

study. Manual delineations of the liver parenchyma, i.e., liver segmentation masks, were avail-

able as part of the Oslo-CoMet dataset [4]. Additionally, an approximate segmentation of the

vascular structures was obtained using the segmentation model available in the public
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livermask tool [27]. The data was then stratified into three cohorts: training (n = 41), validation

(n = 8), and test (n = 11) sets.

Preprocessing

Before the training phase, both CT and MR images, as well as the segmentation masks, were

resampled to an isotropic resolution of 1 mm3 and resized to 128 × 128 × 128 voxels. Addition-

ally, the CT images were cropped around the liver mask before the resampling step. Cubic

spline interpolation was used for resampling the intensity images, whereas segmentations were

interpolated using nearest neighbour. The segmentation masks were stored as categorical 8-bit

unsigned integer single-channel images, to enable rapid batch generation during training.

To overcome the scarcity of image registration datasets for algorithm development, we pro-

pose an augmentation layer, implemented in TensorFlow [28], to generate artificial moving

images during training. The augmentation layer allows for data augmentation and preprocess-

ing. The layer features gamma (0.5 to 2) and brightness augmentation (±20%), rotation, and

rigid and non-rigid transformations, to generate the moving images. Data preprocessing

includes resizing and intensity normalisation to the range [0, 1]. The maximum displacements,

rigid and non-rigid, can be constrained to mimic real-case scenarios. In our case, 30 mm and 6

mm respectively. Rotation was limited to 10˚, for any of the three coordinate axes.

The non-rigid deformation was achieved using TPS applied on an 8 × 8 × 8 grid, with a

configurable maximum displacement. Rigid transformations include rotation and translation.

Model architecture

The baseline architecture consists of a modified VoxelMorph model [9], based on a U-Net

[29] variant. The model was used to predict the displacement map, as depicted in Fig 1. After

the augmentation step, the fixed (If) and the generated moving (Im) images were concatenated

into a two-channel volumetric image and fed to the VoxelMorph model. The model returns

the displacement map (F) i.e., a volume image with three channels, which describes the rela-

tive displacement of each voxel along each of the three coordinate axes. Finally, the predicted

fixed image (Ip) is reconstructed by interpolating voxels on the moving image at the locations

defined by the displacement map. This way, the model can be trained by comparing the pre-

dicted image with the original fixed image.

When provided, the segmentations (Sm) are likewise updated using the same displacement

map. The symmetric U-Net architecture was designed with six contraction blocks featuring

32, 64, 128, 256, 512, and 1024 convolution filters respectively. Each contracting block con-

sisted of a convolution with kernel size 3 × 3 × 3 and a LeakyReLU activation function, fol-

lowed by max pooling with stride 2. The decoder blocks consisted of a convolution and a

LeakyReLU activation function, followed by a nearest neighbour interpolation upsampling

layer. The output convolutional layer, named Head in Fig 1, was set to two consecutive convo-

lutions of 16 filters with LeakyReLU activation function. A convolution layer with three filters

was used as the output layer. This produces a displacement map with the same size as the input

images and three channels, one for each displacement dimension.

Model training

The registration model was trained in a weakly-supervised manner, as proposed by Hu et al.
[19]. Instead of evaluating the displacement map directly as in traditional supervised training,

only the final registration results were assessed during training.

Due to the complexity of the task at hand, a single loss function would provide limited

insight of the registration result, therefore a combination of well-known loss functions was
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deemed necessary. Balancing the contribution of these operators can be challenging, time con-

suming, and prone to errors. We therefore used uncertainty weighting (UW) [30], which com-

bines losses as a weighted sum and enables the loss weights to be tuned dynamically during

backpropagation. Our loss function L was implemented as a custom layer, and consists of a

weighted sum of N loss functions L and M regularisers R:

Lðyt; ypÞ ¼
XN

i¼1

oiLiðyt; ypÞ þ
XM

j¼1

ljRj ð1Þ

such that ∑ωi = ∑λi = 1. By default, the weights ωi and λi were initialised to equally contribute

in the weighted sum, but can be set manually from a priori knowledge on initial loss and regu-

larisation values. In our experiments, the default initialisation for the loss weights was used,

except for the regularisation term, which was initialised to 5 × 10−3.

For training the neural networks we used the Adam optimiser. Gradient accumulation was

performed to overcome memory constraints and enable larger batch training. The batch size

was set to one, but artificially increased by accumulating eight mini-batch gradients. The learn-

ing rate was set to 10−3 with a scheduler to decrease by 10 whenever the validation loss pla-

teaued with a patience of 10. The models were trained using a custom training pipeline.

Training curves can be found in Figs A-D in S3 Appendix. The training was limited to 105

epochs, and manually stopped if the model stopped converging. The model with the lowest val-

idation loss was saved.

Experiments

The experiments were conducted on an Ubuntu 18.04 Linux desktop computer with an

Intel1Xeon1Silver 4110 CPU with 16 cores, 64 GB of RAM, an NVIDIA Quadro P5000 (16

GB VRAM) dedicated GPU, and SSD hard-drive. Our framework, DDMR, used to conduct

the experiments was implemented in Python 3.6 using TensorFlow v1.14. To accelerate the

Fig 1. Proposed deep image registration pipeline. Generation of artificial moving images on-the-fly, prediction of the displacement map using a

modified U-Net, and finding the optimal loss weighting automatically using uncertainty weighting.

https://doi.org/10.1371/journal.pone.0282110.g001
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research within the field, the source code is made openly available on GitHub (https://github.

com/jpdefrutos/DDMR).

As aforesaid, our aim was to improve the training phase of image registration for CNN

models. To that extent, four experiments were carried out:

(i) Ablation study Different training strategies and loss function combinations were evaluated

to identify the key components in deep image registration. Three different training strate-

gies were considered, all using weakly-supervised learning: 1) the baseline (BL) using only

intensity information, 2) adding segmentation guidance (SG) to the baseline, and 3) adding

uncertainty weighting (UW) to the segmentation-guided approach. For all experiments, the

input size and CNN backbone were tuned prior and kept fixed. All designs are described in

Table 1 and evaluated on both the IXI and Oslo-CoMet datasets. Six loss weighting schemes

were tested, using different combinations of loss functions, including both intensity and

segmentation-based loss functions. For the second experiment, the entire model was fine-

tuned directly or in two steps, i.e., by first finetuning the decoder, keeping the encoder fro-

zen, and then finetuning the full model. A learning rate of 10−4 was used when performing

transfer learning.

(ii) Transfer learning To assess the benefit finetuning for deep image registration to applica-

tions with a small number of samples available, e.g., abdominal CT registration.

(iii) Baseline comparison The trained models were evaluated against a traditional registration

framework (ANTs), to better understand the potential of deep image registration. This

experiment was performed only on the Oslo-CoMet dataset, as ANTs was used to generate

the segmentations on the IXI dataset. Two different configuration were tested: symmetric

normalisation (SyN), with mutual information as optimisation metric, and SyN with cross-

correlation as metric (SyNCC).

(iv) Training runtime The last experiment was conducted to assess the impact of the augmen-

tation layer (see Fig A in S2 Appendix). The GPU resources were monitored during train-

ing. Only the second epoch was considered, as the first one served as warm-up.

Evaluation metrics

The evaluation was done on the test sets of the IXI and Oslo-CoMet datasets, for which the

fixed-moving image pairs were generated in advance, such that the same image pairs were

used across methods during evaluation. After inference, the displacement maps were resam-

pled back to isotropic resolution using piecewise 3D linear interpolation. The final predictions

Table 1. Configurations trained on both the IXI and Oslo-CoMet datasets.

Design Model Loss function

BL-N Baseline NCC

BL-NS Baseline NCC, SSIM

SG-ND Segmentation-guided NCC, DSC

SG-NSD Segmentation-guided NCC, SSIM, DSC

UW-NSD Uncertainty weighting NCC, SSIM, DSC

UW-NSDH Uncertainty weighting NCC, SSIM, DSC, HD

BL: baseline, SG: segmentation-guided, UW: uncertainty weighting, N: normalized cross correlation, S: structural

similarity index measure, D: Dice similarity coefficient, H: Hausdorff distance.

https://doi.org/10.1371/journal.pone.0282110.t001
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were then evaluated using four sets of metrics to cover all angles. Image similarity was assessed

under computation of NCC and SSIM metrics. Segmentations were converted into one-hot

encoding and evaluated using DSC, HD, and HD95 (95th percentile of HD) measured in milli-

metres. The background class was excluded in the segmentation metrics computation. For

image registration, TRE was estimated using the centroids of the segmentation masks of the

fixed image and the predicted image, also measured in millimetres. In addition, the methods

were compared in terms of inference runtime, only measuring the prediction and application

of the displacement map, as all other operations were the same between the methods.

Five sets of statistical tests were conducted to further assess: 1) performance contrasts

between designs, 2) benefit of transfer learning, 3) benefit of segmentation-guiding, 4) benefit

of uncertainty weighting, and 5) performance contrasts between the baseline and segmenta-

tion-guided models, and the traditional methods in ANTs (SyN and SyNCC). For the tests, the

TRE metric was used, as it is considered the gold standard for surgical practitioners. Test 1)

was conducted on the evaluations of the IXI test set, whereas tests 2) to 5) were performed

using the results on the Oslo-CoMet test dataset only. Furthermore, for the tests only involving

the Oslo-CoMet dataset, the two-step transfer learning approach was used as reference, as

these models showed the best results.

For the statistical test 1), multiple pairwise Tukey’s range tests were conducted on the

IXI experiment comparing all the designs described in Table 1. For 2), benefit of transfer

learning was assessed using a one-sided, non-parametric test (Mann-Whitney U test), com-

paring the differences between the BL-N, SG-NSD, and UW-NSD designs on the Oslo-

CoMet experience. The three generated p-values were corrected for multiple comparison

using the Benjamini-Hochberg method. For 3)-5), Mann-Whitney U tests were conducted

comparing BL-N and SG-NSD to assess benefit of segmentation-guiding, SG-NSD and

UW-NSD to assess benefit for uncertainty weighting, and BL-N and SG-NSD against SyN

and SyNCC to assess the difference in performance between deep image registration and

traditional image registration solutions, respectively. The two p-values were corrected

using the Benjamini-Hochberg method. The results for all five sets of tests can be found in

S4 Appendix.

The Python libraries statsmodels (v0.12.2) [31] and SciPy (v1.5.4) [32] were used for the sta-

tistic computations. A significance level of 0.05 was used to determine statistical significance.

Results

In Tables 2 to 5, the best performing methods in terms of individual performance metrics, i.e.,

most optimal mean and lowest standard deviation, were highlighted in bold. See the online

resources for additional tables and figures not presented in this manuscript.

On the IXI dataset, fusing NCC and SSIM improved performance in terms of intensity-

based metrics for the baseline model, whereas segmentation metrics were degraded (see

Table 2). Adding segmentation-guiding drastically increased performance across all metrics

compared to the baseline. Minor improvement was observed using uncertainty weighting,

whereas adding the Hausdorff loss was not beneficial. In terms of TRE, multiple pairwise

Tukey’s range tests confirmed the benefit of segmentation-guiding (p< 0.001), however, no

significant improvement was observed in introducing uncertainty-weighing (p = 0.9). The

complete pairwise comparison can be found in Table A in S1 Appendix.

On the Oslo-CoMet dataset, a similar trend as for the IXI dataset was observed (see

Table 3). However, in this case, the baseline model was more competitive, especially in terms

of intensity-based metrics. Nonetheless, segmentation-guiding was still better overall

(p< 0.001 in terms of TRE), as well as uncertainty weighting (p = 0.0093 in terms of TRE).
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Finetuning the entire model trained on the IXI dataset to the Oslo-CoMet dataset (see

Table 4 transfer nonfrozen), yielded similar intensity-based metrics overall, but drastically

improved the segmentation-guided and uncertainty weighted models in terms of segmenta-

tion metrics. The best performing models overall used uncertainty weighting. When finetun-

ing the model in two steps, the uncertainty weighted designs were further improved to some

extent (see Table 5 frozen encoder). The statistical analysis 2) shows significance improvement

of the TRE when performing transfer learning and finetuning in two steps, for the UW-NSD

model (p = 0.0014) and SG-NSD (p = 0.0021) models. No statistical significance was observed

for the BL-N (p = 0.8608).

The traditional methods, SyN and SyNCC, performed well on the Oslo-CoMet test set.

However, the segmentation masks were distorted, in particular the vascular segmentations

mask (see Fig C in S5 Appendix). Both methods performed similarly, but the SyNCC was con-

siderably slower. Segmentation guidance was deemed critical in obtaining better performance

in terms of TRE (p< 0.001) compared to SyN and SyNCC. Yet no significant difference was

observed on the baseline models (p = 0.5845). All deep learning models had similar inference

runtimes of less than one second, which was expected as the final inference model architec-

tures were identical. On average, the CNN-based methods were *13× and *421× faster than

SyN and SyNCC, respectively. The deep learning models struggled with image reconstruction,

unlike ANTs (see Fig C in S5 Appendix). For instance, anatomical structures outside the seg-

mentation masks were poorly reconstructed in the predicted image, e.g., the spine of the

patient.

Table 2. Evaluation of the models trained on the IXI dataset.

Model SSIM NCC DSC HD HD95 TRE Runtime

BL-N 0.23±0.16 0.52±0.12 0.03±0.01 109.71±26.19 100.26±27.91 29.47±8.46 0.83±0.77

BL-NS 0.25±0.16 0.53±0.12 0.02±0.01 145.36±22.41 138.19±23.48 30.06±9.07 0.73±0.56

SG-ND 0.45±0.24 0.46±0.10 0.61±0.08 4.64±1.37 2.15±0.54 1.08±0.39 0.82±0.58

SG-NSD 0.46±0.24 0.46±0.11 0.61±0.07 4.54±1.42 2.10±0.49 1.07±0.37 0.74±0.64

UW-NSD 0.47±0.24 0.46±0.11 0.63±0.08 4.44±1.40 2.03±0.51 0.97±0.36 0.72±0.59

UW-NSDH 0.47±0.24 0.46±0.11 0.61±0.07 4.63±1.49 2.14±0.52 1.06±0.36 0.75±0.59

Unregistered 0.45±0.21 0.24±0.07 0.07±0.06 21.77±5.15 18.73±4.88 11.53±3.01 -

The best performing methods for each metric are highlighted in bold.

https://doi.org/10.1371/journal.pone.0282110.t002

Table 3. Evaluation of the models trained on the Oslo-CoMet dataset.

Model SSIM NCC DSC HD HD95 TRE Runtime

BL-N 0.52±0.10 0.20±0.07 0.23±0.09 54.10±7.22 30.36±3.58 18.11±7.62 0.78±1.50

BL-NS 0.62±0.13 0.17±0.07 0.29±0.07 37.69±8.04 22.06±5.17 13.95±4.78 0.76±1.44

SG-ND 0.55±0.15 0.16±0.06 0.38±0.14 22.03±8.27 12.74±6.12 7.60±3.96 0.76±1.46

SG-NSD 0.58±0.13 0.12±0.07 0.35±0.07 25.22±7.92 14.49±4.22 8.91±3.08 0.77±1.49

UW-NSD 0.54±0.13 0.11±0.06 0.26±0.07 25.08±6.67 18.47±5.34 11.52±3.32 0.77±1.49

UW-NSDH 0.59±0.14 0.14±0.06 0.35±0.11 24.49±8.67 14.57±5.93 8.34±4.31 0.78±1.50

Unregistered 0.60±0.13 0.09±0.05 0.24±0.08 24.60±5.56 19.06±4.89 11.86±2.75 -

The best performing methods for each metric are highlighted in bold.

https://doi.org/10.1371/journal.pone.0282110.t003
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The use of the augmentation layer resulted in a negligible increase in training runtime of

7.7% per epoch and 0.47% (*74 MB of 16 GB) increase in GPU memory usage (see Fig A in

S2 Appendix).

Discussion

Development of CNNs for image registration is challenging, especially when data is scarce. We

therefore developed a framework called DDMR to train deep registration models, which we

have evaluated through an ablation study. By pretraining a model on a larger dataset, we found

that performance can be greatly improved using transfer learning, even if the source domain is

from a different image modality or anatomic origin. Through the development of novel aug-

mentation and loss weighting layers, training was simplified by generating artificial moving

images on-the-fly, removing the need to store augmented samples on disk, while simulta-

neously learning to weigh losses in a dynamic fashion. Furthermore, by guiding registration

using automatically generated segmentations and adaptive loss weighting, registration perfor-

mance was enhanced. In addition, negligible increase in inference runtime and GPU memory

usage was observed. The added-value of our method lies in the use of generic concepts, which

can therefore leverage most deep learning-based registration designs.

From Tables 2 to 5, segmentation guidance boosts the performance of the image registra-

tion both on the SG and UW models, further confirmed by the results of the performance con-

trast analysis shown in Table A in S4 Appendix (p< 0.001), and Figs A-C in S5 Appendix,

Table 4. Evaluation of models trained on the Oslo-CoMet dataset from finetuning the entire architecture.

Model SSIM NCC DSC HD HD95 TRE Runtime

BL-N 0.52±0.08 0.17±0.07 0.23±0.07 57.98±5.36 33.00±5.14 24.09±5.92 0.77±1.45

BL-NS 0.61±0.09 0.16±0.07 0.14±0.03 82.91±6.96 59.94±6.41 34.41±13.03 0.77±1.46

SG-ND 0.56±0.13 0.14±0.07 0.43±0.09 15.81±5.56 9.05±3.18 5.89±3.10 0.79±1.56

SG-NSD 0.58±0.13 0.14±0.07 0.42±0.10 16.26±6.37 9.50±3.51 5.84±3.01 0.76±1.48

UW-NSD 0.58±0.12 0.14±0.06 0.48±0.11 15.53±5.80 7.84±3.17 4.05±2.41 0.76±1.47

UW-NSDH 0.59±0.12 0.14±0.06 0.47±0.10 15.29±5.65 7.91±2.82 3.95±2.09 0.78±1.51

Unregistered 0.60±0.13 0.09±0.05 0.24±0.08 24.60±5.56 19.06±4.89 11.86±2.75 -

The best performing methods for each metric are highlighted in bold.

https://doi.org/10.1371/journal.pone.0282110.t004

Table 5. Evaluation of the models trained on the Oslo-CoMet dataset from finetuning in two steps.

Model SSIM NCC DSC HD HD95 TRE Runtime

BL-N 0.52±0.07 0.19±0.07 0.24±0.06 60.92±26.06 39.96±30.25 22.34±8.60 0.79±1.52

BL-NS 0.62±0.10 0.17±0.07 0.14±0.04 85.71±6.40 60.93±4.15 32.84±11.90 0.76±1.45

SG-ND 0.56±0.12 0.14±0.07 0.44±0.09 16.12±5.29 8.87±2.94 5.12±2.52 0.77±1.48

SG-NSD 0.58±0.12 0.15±0.07 0.43±0.08 16.93±6.50 9.17±3.02 5.21±2.40 0.77±1.49

UW-NSD 0.60±0.11 0.15±0.06 0.53±0.13 15.13±5.68 6.97±2.83 3.40±1.91 0.77±1.48

UW-NSDH 0.60±0.12 0.15±0.06 0.50±0.12 14.79±5.79 7.37±2.99 3.55±2.14 0.77±1.48

SyN 0.61±0.13 0.20±0.07 0.49±0.01 17.93±3.44 9.62±1.57 22.34±4.96 10.01±3.69

SyNCC 0.63±0.13 0.20±0.07 0.49±0.01 18.59±2.99 9.64±1.61 22.31±5.04 323.81±87.13

Unregistered 0.60±0.13 0.09±0.05 0.24±0.08 24.60±5.56 19.06±4.89 11.86±2.75 -

The best performing methods for each metric are highlighted in bold.

https://doi.org/10.1371/journal.pone.0282110.t005
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found in the online resources. The introduction of landmarks to guide the training, in the

form of boundaries of the different segmentation masks, allows for a better understanding of

the regions occupied by each anatomical structure. This observation is drawn by the improve-

ment of the segmentation-based metrics on the finetuned models (see Table 5 frozen encoder).

And further confirmed by the statistical tests 2) and 3), in which the Mann-Whitney U test

showed significant difference for the segmentation guidance (p< 0.001) and uncertainty

weighting models (p = 0.0093) (see Table C in S4 Appendix). No statistical difference was

observed for the baseline models (see Table 5 frozen encoder). A larger dataset is required to

fully assess the significance of the transfer learning, as only eleven test samples were available

for this study.

Surprisingly, adding HD to the set of losses had limited effect on the performance. We

believe this is due to HD being sensitive to outliers and minor annotation errors, which is

likely to happen as the annotations used in this study were automatically generated. Further-

more, NCC proved to be a well-suited intensity-based loss function, with no real benefit of

adding an additional intensity-based loss function such as SSIM.

From studying the adaptive loss weights evolution during training (see Figs E-L in S3

Appendix), it is possible to deduce an interpretation regarding influence and benefit from

each loss component over the network. Evidently, SSIM was favoured over NCC during train-

ing, even though SSIM was deemed less useful for image registration compared to NCC. A

rationale can be hypothesised from SSIM being easier to optimise, being a perception-based

loss. Interestingly, the loss weight curves all seemed to follow the same pattern. Upweighted

losses are linearly increased until a plateau is reached and the opposite behaviour happens

for the downweighted losses. This may indicate that uncertainty weighting lacks the capacity

of task prioritisation, which could have been helpful at a later stage in training. Such an

approach has been proposed in the literature [33], simply not for similar image registration

tasks. Hence, a comparison of other multi-task learning designs might be worth investigating

in future work.

From Tables 4 and 5 it can be observed the benefit of using segmentation guidance for

training deep registration models. Furthermore, when compared to the traditional method

ANTs, using SyN and SyNCC, a significant improvement on TRE is observed (p< 0.001)

(Table D in S4 Appendix), with differences close to 17 mm on the Oslo-CoMet test set. Further

improved using uncertainty weighting. No significant value was observed between the baseline

model and ANTs (p = 0.5845), which shows that naive image-only training is not enough for

the model to understand the registration task. Not surprisingly, runtimes of the deep registra-

tion models are dramatically better than those of ANTs, taking the latter up to five minutes on

average using the SyNCC configuration.

A sizeable downside in training CNNs for image registration remains the long training run-

time. Having access to pretrained models in order to perform transfer learning alleviates this

issue, but the substantial amount of training data required, and in our use case annotated data,

persists as another tremendous drawback.

Once deployed, such registration models often fail to generalise to other anatomies, imag-

ing modalities, and data shifts in general, resulting in ad hoc solutions. As part of future work

investigations, developing more generic deep image registration models would be of interest,

tackling both training and deployment shortcomings.

In this study, only synthetic moving images and mostly algorithm-based annotations

were used for evaluation. To verify the clinical relevance of the proposed models, a dataset

with manual delineations of structures both for the fixed and moving images, and with clini-

cally relevant movements, is required. To illustrate this situation, Table E in S4 Appendix

shows a comparison between manual and automatic segmentations of the parenchyma and
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the vascular structures on the Oslo-CoMet test set images. Both DSC and HD95 are reported.

A good concordance between the automatic and manual parenchyma segmentations can be

observed. However, vascular segmentation poses a more challenging problem for automatic

methods to tackle. In future work, assessment of the impact of vascular segmentations of

diverse quality could be considered. This investigation would require the delineation of the

entire training set, which itself is extremely challenging and was thus deemed outside the

scope of this study. Nevertheless, such investigation is of definite value and should be part of

future works, additionally including human qualitative evaluation of the clinical relevance.

The sole focus on mono-modal registration can be considered as a limitation from our

work. Especially when selecting the loss functions. For instance, in multi-modal registration it

is common to use mutual information. Hence, investigating the translation between mono

and multi-modal designs is of value to assess applicability over various registration tasks. The

recent introduction of the new Learn2Reg challenge dataset [24] represents an adequate alley

for further investigation over this aspect. While the U-Net architecture, used in this study, is

not recent, a substantial number of publications have favoured it for image registration, as

shown to outperform vision transformers on smaller datasets [34]. Alternatively, generative

adversarial models should be tested, as these networks have shown to produce more realistic

looking images [35]. Self-attention [36] for encoding anatomical information, or graph-based

neural networks [37] for improved vascular segmentation-guided registration, are concepts

that also should be considered in future work.

Conclusion

In the presented study, we demonstrated that registration models can be improved through

transfer learning and adaptive loss weighting even with minimal data without manual annota-

tions. The proposed framework DDMR also enables on-the-fly generation of artificial moving

images, without the need to store copies on disk. In future work, DDMR should be validated

on data of other anatomies and imaging modalities to further assess its benefit.

Supporting information

S1 Appendix. Additional data details. Additional details about the segmentations produced

for the IXI dataset.

(PDF)

S2 Appendix. Resources impact of the augmentation layer. Details on the GPU resources

usage by the proposed augmentation layer.

(PDF)

S3 Appendix. Training curves. Figures of the training curves, as well as the adaptive loss

weighting.

(PDF)

S4 Appendix. Statistical analysis. Results of the statistical tests described in the manuscript,

and additional comparison between manually and automatically generated segmentations.

(PDF)

S5 Appendix. Qualitative results. Examples of predictions on the IXI and Oslo-CoMet test

datasets.

(PDF)
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S1 File. Evaluation metrics. Collection of the evaluation metrics of the proposed models

when tested on both the IXI and the Oslo-CoMet test datasets.
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11. Survarachakan S, Prasad PJR, Naseem R, Pérez de Frutos J, Kumar RP, Langø T, et al. Deep learning

for image-based liver analysis—A comprehensive review focusing on malignant lesions. Artificial Intelli-

gence in Medicine. 2022; 130:102331. https://doi.org/10.1016/j.artmed.2022.102331 PMID: 35809970

12. Maurer CR, Fitzpatrick JM, Wang MY, Galloway RL, Maciunas RJ, Allen GS. Registration of head vol-

ume images using implantable fiducial markers. IEEE Transactions on Medical Imaging. 1997; 16

(4):447–462. https://doi.org/10.1109/42.611354 PMID: 9263002

13. Wu G, Kim M, Wang Q, Gao Y, Liao S, Shen D. Unsupervised Deep Feature Learning for Deformable

Registration of MR Brain Images. In: Medical Image Computing and Computer Assisted Intervention.

vol. 16; 2013. p. 649–656.

14. Jaderberg M, Simonyan K, Zisserman A, kavukcuoglu k. Spatial Transformer Networks. In: Advances

in Neural Information Processing Systems. vol. 28; 2015. Available from: https://proceedings.neurips.

cc/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf.

15. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation.

In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing and Computer-

Assisted Intervention—MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234–241.

16. Yang X, Kwitt R, Styner M, Niethammer M. Quicksilver: Fast predictive image registration—A deep

learning approach. NeuroImage. 2017; 158:378–396. https://doi.org/10.1016/j.neuroimage.2017.07.

008 PMID: 28705497
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