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A B S T R A C T   

Electric vehicles (EVs) are part of the solution to achieve global carbon emissions reduction targets, and the 
number of EVs is increasing worldwide. Increased demand for EV charging can challenge the grid capacity of 
power distribution systems. Smart charging is therefore becoming an increasingly important topic, and avail-
ability of high-grade EV charging data is needed for analysing and modelling of EV charging and related energy 
flexibility. This study provides a set of methodologies for transforming real-world and commonly available EV 
charging data into easy-to-use EV charging datasets necessary for conducting a range of different EV studies. 
More than 35,000 residential charging sessions are analysed. The datasets include realistic predictions of battery 
capacities, charging power, and plug-in State-of-Charge (SoC) for each of the EVs, along with plug-in/plug-out 
times, and energy charged. Finally, we analyse how residential charging behaviour is affected by EV battery 
capacity and charging power. The results show a considerable potential for shifting residential EV charging in 
time, especially from afternoon/evenings to night-time. Such shifting of charging loads can reduce the grid 
burden resulting from residential EV charging. The potential for a single EV user to shift EV charging in time 
increases with higher EV charging power, more frequent connections, and longer connection times. The proposed 
methods provide the basis for assessing current and future EV charging behaviour, data-driven energy flexibility 
characterization, analysis, and modelling of EV charging loads and EV integration into power grids.   

1. Introduction 

1.1. Background 

1.1.1. Electric Vehicles as important players to providing flexibility in the 
future energy market 

Electric vehicles (EVs) are part of the solution to achieve carbon 
emissions reduction targets set under the Paris Climate Change Agree-
ment [1]. This has led to policy support for EVs in several countries and 
substantial increase in EV sales in e.g., China, Europe, and the United 
States. In 2022, the number of different types of EV models available on 
the market had increased to around 500 [2]. On a global level, the 
market share of EVs was 14% in 2022, with Norway being the leading 
country with an 88% market share [2]. The EV market in Norway has 
passed the early adopter stage, and EVs are becoming the dominant car 
choice of the population. EV charging at home and at the workplace are 
dominating, with charge points (CPs) generally being below 22 kW [2]. 

Even though EVs are expected to account for a minor share of global 
electricity consumption also in the future, the EV fleet can challenge the 
grid capacity of power distribution systems [2,3]. Furthermore, EV 
charging is expected to have a high impact on residential and com-
mercial energy load curves [3]. Smart charging is therefore becoming an 
increasingly important topic [4], and because EV charging loads can be 
shifted in time, smart charging can provide energy flexibility [5]. The 
energy flexibility of a building can be defined as "the ability to manage 
its demand and generation according to local climate conditions, user 
needs and grid requirements" [6]. Flexible energy use is becoming 
increasingly important in the energy system, since a growing share of 
the energy supply is variable and non-flexible renewable energy 
generation. 

Fischer et al. [7] analysed electric load profiles for household ap-
pliances, electric heating systems, and EVs in the residential sector, and 
found that EVs have the highest flexibility potential among all the en-
ergy uses. For large scale utilization of energy flexibility in buildings, 
new solutions need to be developed, addressing technological, social, 
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commercial, and regulatory aspects [8]. Li et al. [8] emphasized the 
advantages of utilizing flexibility sources from a cluster of buildings to 
increase the impact and role of energy flexibility. For EV charging, 
Charge Point Operators (CPOs) can have a role as aggregators of energy 
flexibility by facilitating the shifting of charging loads. In Norway, for 
example, several CPOs (such as the companies Tibber, Current, Kople, 
and ZapTec) provide CP management services for EV fleets, where e.g., 
aggregated charging loads in parking facilities are kept below the 
available distribution capacity, or charging loads are shifted to hours 
during the day when the energy spot prices are the lowest. In the future, 
such CP management systems may provide opportunities for residential 
and commercial users to engage in the flexibility market. However, more 
knowledge about charging habits is necessary to optimally utilize the EV 
charging flexibility, such as the number of cars that are connected to the 
CPs, daily charging demand, plug-in state of charge (SoC) of the EV 
batteries, and CP plug-out times. 

The objective of this study is to provide realistic and high-grade EV 
charging data, and analyses of related EV charging behaviour, based on 
real-world data from more than 35,000 charging sessions in Norway. 
The results are useful as input for a range of energy studies, e.g., for load 
forecasting, for assessment of energy flexibility potentials in neigh-
bourhoods, and for sizing of grid connection capacities. 

1.1.2. The need and availability of high-quality datasets for optimizing the 
flexibility potential of EVs 

For analysing energy flexibility in terms of load shifting and load 
shaving, data with hourly resolution is usually used [9]. If there is need 
for a faster response to flexibility requests, such as in frequency regu-
lation, sub-hourly resolution is normally needed. Salim et al. [10] 
emphasized the importance of publicly available input data for model-
ling of occupant behaviour and energy in buildings at urban scale. 
Amayri et al. [11] concluded that there is a need for more publicly 
available datasets on EV charging in residential buildings to improve 
load forecasting and flexibility forecasting. Calearo et al. [12] stated that 
published EV data is limited, and describes how five parameters ideally 
should be available for EV studies in the smart grid context: 1) Battery 
capacity, 2) charging power, 3) plug-in SoC, 4) plug-in/plug-out time, 
and 5) charged energy. They refer to such data as ideal, "because it is the 
highest level of data availability one can have when conducting EV 
studies in the power system context". To sum up, there is a lack of 
complete datasets related to charging sessions and CPs. 

Due to the fact that Norway has been a frontrunner in EV use, EV 
charging reports from CPOs are becoming commonly available, 
including CPs in private residential and commercial parking spaces. 
Such CPO reports include data for the parameters 4) and 5) mentioned 

above, i.e. plug-in/plug-out times and charged energy for the charging 
sessions [13,14]. However, the CPO reports do not include the param-
eters for 1), 2), and 3, i.e. battery capacity and charging power for each 
EV, or plug-in SoC for charging sessions. Our work provides a set of 
methodologies which complements the data in the CPO reports, 
providing a complete ideal dataset for EV charging based on an empirical 
residential case study in Norway. 

1.2. State of the art: Prediction of EV charging power, battery capacity, 
and plug-in SoC, and their impact on residential charging behaviour 

To complement the data in the CPO reports, values are needed for the 
parameters 1) charging power, 2) battery capacity, and 3) plug-in SoC. 
Sections 1.2.1 and 1.2.2 introduce these parameters, the availability of 
real-world data, and how the parameters typically are predicted in 
literature. Section 1.2.3 describes literature focussing on how EV 
charging behaviour is related to battery capacity and SoC values. 

1.2.1. EV charging parameters 
The energy demand during a charging session depends on the battery 

SoC at plug-in time, the final SoC, the battery capacity, and the charging 
efficiency. The time needed for charging depends on the charging 
power, which can be limited by the CP or the EV characteristics. The 
actual charging power is the lowest value of the AC power available at 
the location (Fig. 1, marked A) and the onboard charger capacity in the 
EV (Fig. 1, marked B). 

When the connection time is longer than the charging time, there is a 
period of non-charging idle time which reflects the flexibility potential 
for the charging session. The energy which could potentially have been 
charged during the idle time, is called idle energy capacity. The idle 
energy capacity depends on the battery’s SoC, the maximal charging 
power, and the availability of connected EVs [15]. When energy loads 

Nomenclature 

BEV Battery Electric Vehicle. 
CP Charge Point. 
CPO Charge Point Operator. 
CPO reports EV charging reports from CPOs. 
DST Daylight Saving Time. 
EV Electric Vehicle. 
IT230V 230 Volt IT system (distribution grid). 
LV Low Voltage. 
PHEV Plug-in Hybrid Electric Vehicle. 
SoC State of Charge of the EV battery. 
V2G Vehicle to grid. 
# Number of. 

Subscript 
Ebattery Energy stored in the EV battery. 

Ebattery-size EV battery capacity prediction per user ID. 
Echarged Energy charged per charging session. 
Econnected(i) Connected energy capacity in hour i. 
Eidle(i) Idle energy capacity in hour i. 
Eload (i) Energy charging load in hour i. 
ɳ Charging efficiency. 
Pcharging Average charging power. 
Ppreliminary Preliminary EV charging power prediction per user ID. 
Puser Charging power prediction per user ID. 
SoCdiff(i) SoC difference for hour i. 
SoCrange Range from a minimum SoC-level to a maximum SoC-level. 
tcharging Charging time for an EV session. 
tconnection CP connection time for an EV session. 
tidle Non-charging idle time for an EV session. 
tplug-in CP plug-in time. 
tplug-out CP plug-out time.  

Fig. 1. Charging power is limited by available AC power in the CP (A) and EV 
onboard charger capacity (B). 
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for several EVs are aggregated, several studies have found that both the 
charging power peaks and the flexibility potential increases with higher 
charging power [13,15]. 

1.2.2. Prediction of EV charging power, battery capacity, and plug-in SoC 
Fig. 2 shows an illustration of charging characteristics for EVs on the 

market, with onboard charger capacities on the horizontal axis and net 
battery capacities on the vertical axis, based on [13,16,17]. In a garage, 
different EVs typically have a mix of different charging power levels and 
battery capacities. Due to lack of data availability, EV characteristics 
such as charging power and battery capacity for each EV are often 
determined based on assumptions. Table 1 shows examples of AC 
charging power assumptions from literature. In references [13,15, 
18–23] different scenarios with ‘low’ or ‘high’ charging powers were 
presented, where all the EVs have the same charging power level. In 
[24–26] a mix of charging power capacities were assumed for EV fleets 
in Germany, New Zealand and Norway, based on onboard charger ca-
pacities of typical EV models. As shown in Table 1, most studies either 
assume charging power levels based on typical power levels available at 
CPs (A in Fig. 1), or based on typical onboard charger capacities (B in 
Fig. 1). In [27], EV charging measurements from a shopping centre were 
analysed, and both the CP power and a mix of onboard charger capac-
ities were addressed. The studied CPs had a power level of 22 kW, which 
means that most of the EVs were limited by their onboard charger ca-
pacities. The study found that most charging sessions had a peak 
charging power of around 4 kW, while some clusters had 7.5 kW and 
11 kW. Simolin et al. [27] stated that there is a need for more studies 
taking into account the combination of the two CP power levels and the 
onboard charger capacity, including various power levels and charging 
sites, such as homes and workplaces. In our study, realistic databased 
charging power predictions are provided per EV user, taking both the CP 
power and the onboard charger capacity into account. 

In general, real-world data that describe EV battery capacity and 
charging session SoC values are seldom available for AC charging, 
except in EV trials such as [29,30], where trial participants contribute 
with data. However EV trial data are often limited in size, geography and 
time, and, as stated by [20], usually represent a particular set of tech-
nologies and/or individuals. Accordingly, there is a need for more EV 
data from everyday users of CPs. 

1.2.3. EV charging behaviour related to battery capacity and SoC values 
Vermeulen et al. [31] acknowledged that there is limited research on 

the influence of battery capacity on EV charging behaviour. In [31], the 
research group predicted the battery capacities for EVs using public CPs 
in the Netherlands, based on information about energy charged from 
CPO reports. They assumed that all users would have at least one 
charging session where they charged their battery from 0% to 100%. 
Since several EVs could use the same user ID, for example if the user had 
a hired car or guests were using the chargers, the 98 percentile of the 
charging sessions was used. The EVs were split into plug-in hybrid EVs 

(PHEVs), and two groups of battery EVs (BEVs): low BEVs (up to 33 kWh 
battery capacity) and high BEVs (above 33 kWh). Due to the fact that 
only a few charging sessions involves charging the battery from 0% to 
100%, the method underestimated the battery capacities, especially for 
BEVs with large batteries. Another research [32] also used CPO reports 
from public CPs in the Netherlands to predict battery capacities and start 
SoC of EVs. The researchers divided the users into 9 clusters and 
retrieved mean predicted battery capacities between 12.7 and 24.6 kWh. 
The study found a weak relationship between user types and battery 
capacities, and recommended further research to explore behavioural 
changes over time, with various EV types. Wolbertus et al. [33,34] 
presented charging data from a public dataset as well as private CPs in 
the Netherlands. The study predicted the users’ battery sizes according 
to the maximum energy charged per user. The charging power was 
predicted to 3.7 kW (if single phase CP) or 11 kW (if three phase CP). In 
[33], the researchers found that users with battery sizes above 70 kWh 
charged 2.8 times a week, with about 25 kWh energy per charging 
session. Users with smaller battery capacities between 16 and 30 kWh 
charged 4 times a week, with about 10 kWh energy per charging session. 

The optimal SoC range for operating EV batteries is commonly sug-
gested to be 20–80% [35]. SoC values from AC charging are not usually 
available for CPOs, since most EVs do not yet support communication 
standards such as ISO15118 [36]. In a 6-month field trial with 40 EVs, 
[29,37] found that most EV users were comfortable with utilizing 

Fig. 2.. Onboard charger capacities and net battery capacities for EVs, based on market data from [16] and [17] (updated from [13]).  

Table 1 
Examples of AC charging power assumptions found in literature.  

Ref. Charging power (kW) Basis for power 
levels 

Zade et al.[15] 3.7 / 11 / 22 (three scenarios) CP 
Sørensen et al. 

[13] 3.6 / 7.2 (two scenarios) Onboard charger 

Fischer et al. 
[18] 3.7 / 11 / 22 (three scenarios) CP 

Marra et al.[19] 3.7 CP 
Dixon et al.[20] 3.7 / 7.4 (two scenarios) CP 
Shepero et al. 

[21] 
3.7 / 6.9 / 22 kW (three scenarios) CP 

Calearo et al. 
[22] 3.7 / 11 (two scenarios) CP 

Bollerslev et al. 
[23] 3.7 / 11 / 22 kW (three scenarios + mix) CP 

Welzel et al. 
[24] 

3.3 / 7.2 / 22 (mix of three levels) Onboard charger 

Su et al.[25] 6.6 / 11 (mix of two levels) Onboard charger 
Degefa et al. 

[26] 3.7 – 17 (mix of ten levels) Onboard charger 

Mobarak et al. 
[28] 6.6 Onboard charger 

Simolin et al. 
[27] 

3.7 / 7.4 / 11 / 22.1 (mix), CP 22 kW 
Onboard charger 
or CP 

Our study Databased charging power predictions for 
all EV users individually 

Onboard charger 
or CP  
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approximately 80% of their available battery capacity. SoC values at 
plug-in and plug-out times were presented by [38], which analysed SoC 
data from trials with in total 29,262 charging sessions. Most of the EVs 
were part of company car fleets. Schäuble et al. [38] found that most of 
the charging sessions had a high start-SoC (median value of nearly 70%) 
and an end-SoC of more than 90%, which resulted in small SoC differ-
ences (less than 10% for 37% of the charging operations). Siddique et al. 
[39] calculated start SoC for 117,339 EV charging sessions in the US, 
based on information about energy charged per session and battery 
capacities. They found that the location category "single family resi-
dential" (about 17.7% of the sessions), which represented households 
with a dedicated CP, had a higher start SOC compared to other locations. 
This indicated that users with access to dedicated CPs typically will 
charge their EVs more regularly than users using public or shared CPs. 
Our findings in [13] supported this assumption, comparing charging 
behaviour of residential users with shared and private CPs. Residents 
with CPs on their private parking space had on average about 4.4 
charging sessions per week, while residents using shared CPs charged 
about 1.2 times per week. The study also found that residents with a 
private CP had longer average connection times (12.8 h), than users 
with a shared CP (6.5 h). 

1.3. Novelty and scientific contribution 

The literature review showed that there is a general lack of EV 
charging data needed for data-driven analyses and modelling of EV 
charging and flexibility. Due to lack of data availability, EV character-
istics are often based on rough assumptions. This paper presents a 
methodological framework that can be used to provide complete EV 
charging data. The methodological framework fulfils the requirements 
for an ‘ideal’ dataset for EV studies as specified by Calearo et al. [12]. 
The simple and practical set of methodologies that are proposed, were 
developed by combining and further developing existing methodologies 
from literature, and was based on a large empirical dataset obtained 
from a Norwegian case study with more than 35,000 charging sessions. 
Realistic predictions of battery capacities, charging power, and plug-in 
SoC for each EV and charging session were added to datasets with 
plug-in/plug-out times and energy charged, to provide complete EV 
datasets. Table 2 shows an overview of all the input and output data 
presented in this article. The needed input data are commonly available 
in CPO reports, which lays the ground for a wide-scale use of the 
methodology, covering different user groups, building categories, and 
geographic locations. The CPO reports represent data from everyday 
users of CPs. 

Charging habits are related to EV characteristics such as battery 
capacity and charging power, which again will affect the load profiles 
and flexibility potential of EV charging. Table 3 includes a comparison of 
our study with the literature described in Section 1.2, focussing on EV 
charging behaviour related to EV charging power, battery capacity, and 
SoC values. The added value of our study is that the charging behaviour 
analyses were based on a large number of residential charging sessions 

in a mature EV market, where most of the EV users have private CPs. 
Charging behaviour was analysed for users with different battery sizes 
and charging power. Since the EV charging dataset was comprehensive, 
the analyses covered a wide range of EV charging behaviour, such as the 
energy charged, the idle times and related idle energy capacities, start 
SoC of the charging sessions, frequency and timing of EV charging ses-
sions, etc. Such information can be employed as valuable inputs in 
various energy-related research studies, such as load forecasting, or 
when evaluating energy flexibility potentials within neighbourhoods. 

The main contributions of our study are:  

1. A set of methodologies for transforming readily available real-world 
EV charging data into high-quality and user-friendly EV charging 
datasets. These datasets are essential for conducting a range of 
different EV studies, including load forecasting and energy flexibility 
assessments. The methodologies are developed by combining and 
further developing existing approaches found in the literature, and 

Table 2 
Overview of input data and predicted output data in the article.  

Input data from 
35,000 
CPO reports 
(residential) 

Predicted output data 

Per user Per session Hourly values  

• User ID  
• Session ID  
• Plug-in time  
• Plug-out time  
• Connection 

time [h]  
• Energy 

charged [kWh]  

• Charging 
power [kW]  

• Battery 
capacity 
[kWh]  

• Charging time 
[h]  

• Idle time [h]  
• SoC difference  
• Idle energy 

capacity [kWh]  

• Energy charged 
[kWh]  

• Idle energy 
capacity [kWh]  

• Connected energy 
capacity [kWh]  

• SoC difference  
• SoC from  
• SoC to  

Table 3 
Summary of literature describing EV charging behaviour related to battery ca-
pacity and SoC values.  

Ref. Description 

CP ownership / 
Sector 
/ Geographic 
location 

EV share 
2022 
[40] 

Vermeulen 
et al. 
[31] 

Charging behaviour for users 
with different battery sizes. 
Battery capacity prediction was 
based on charging session data. 

Public / 
Netherlands 

Sales 
share: 
35% 
Stoch 
share: 
6% 

Helmus et al. 
[32] 

Charging behaviour for user 
clusters with daytime and 
overnight sessions. Battery 
capacity and start SoC 
predictions were based on 
charging session data. 

Public / 
Netherlands 

Sales 
share: 
35% 
Stoch 
share: 
6% 

Wolbertus 
et al. 
[33] 

Charging behaviour for users 
with different EV technologies, 
and the impact of access to 
home charging. Battery 
capacity and charging power 
predictions were based on 
charging session data. 

Public and private 
/ Netherlands 

Sales 
share: 
35% 
Stoch 
share: 
6% 

Schäuble 
et al. 
[38] 

SoC analysis, based on trial 
data. Start SoC and end SoC 
values were either available 
from the trial, or SoC difference 
was calculated based on 
available EV battery size. 

Company cars / 
Germany (trials) 

Sales 
share: 
31% 
Stoch 
share: 
4% 

Siddique 
et al. 
[39] 

Charging behaviour for users 
with different charger type, EV 
type and location category. 
Start SoC predictions were 
based on energy charged per 
session and battery capacities. 
Dataset contained station-, 
session- and vehicle- 
characteristics. 

CP network (home, 
workplace, public) 
/ USA 

Sales 
share: 
8% 
Stoch 
share: 
1% 

Sørensen 
et al.[13] 

Charging behaviour for 
residents using private or 
shared CPs. Analyses were 
based on charging session data. 

Private / 
Residential / 
Norway 

Sales 
share: 
88% 
Stoch 
share: 
27% 

Our study 

Charging behaviour and start 
SoC values for users with 
different battery sizes and 
charging power. Predictions 
were based on charging session 
data. Residential users (mainly 
with private CPs), in a mature 
EV market. 

Private / 
Residential / 
Norway 

Sales 
share: 
88% 
Stoch 
share: 
27%  
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on data from a case study that includes more than 35,000 charging 
sessions from residential buildings in Norway.  

2. A statistical analysis of the EV charging dataset that presents how 
residential charging behaviour and load shifting potential are 
affected by EV battery capacity and charging power. Behaviour data, 
such as energy charged, start SoC values, idle energy capacity, and 
frequency of charging, are presented for users with small and large 
EVs. The analysis is based on the large case study dataset from point 
1, where CPs are mainly located on private residential parking 
spaces. 

1.4. Structure of the article 

The remainder of this paper is structured as follows: Section 2 in-
troduces the input data used in the analysis, while Section 3 describes 
the methodology. Section 4 presents the results and a discussion of the 
findings including predictions of EV charging powers, battery capacities, 
hourly charging loads and SoC, and idle energy capacities. Section 4.3 
provides an analysis of how EV battery and charging power capacities 
may affect charging habits. Finally, the conclusion of the paper is drawn 
in Section 5. 

2. Input data for the analysis 

The main data source for our analysis was CPO reports from apart-
ment buildings in 12 locations in Norway. In total, 267 user IDs and 
more than 35,000 charging sessions were analysed (after cleaning). The 
CPO reports include information on plug-in time, plug-out time, and 
energy charged for each charging session, in addition to identifiers for 
user ID and location. Data availability for each location is listed in  
Table 4, including the number of user IDs and charging sessions before 
and after cleaning the data. Most of the CPs were located at private 
parking spaces for the residents and some locations also have shared CPs 
available for all residents. The CP ownership was not separated in this 
work, since it is not known for all the locations. The data and analysis for 

location TRO_R are further described in [13,14]. 
Most of the locations had an increasing number of user IDs during the 

period of data collection. The collection period for the locations varied, 
spanning from February 2018 to August 2021. During this period, 
Norway was affected by COVID-19, mainly from March 2020. COVID-19 
rules and recommendations that were introduced from this time, might 
have affected the charging habits for the locations with data also from 
this period (BAR_2, KRO and OSL_T), e.g., due to increased use of home 
office and changes in travel activities. Consequently, only the period 
before March 2020 was included for prediction of hourly energy, idle 
energy capacity, and SoC (Sections 3.4 and 4.2), as well as for the 
comparison of charging habits (Sections 3.5 and 4.3). However, the 
whole data period was included for the prediction of EV charging power 
and net battery capacity (Sections 3.1, 3.2, and 4.1), since these are 
technical parameters related to the EV, i.e. not affected by user behav-
iour. Most of the input data were from before the COVID-19 period, and 
more than 80% of all the charging sessions were completed before 
March 2020. 

The LV distribution system in most of the locations is of type 230 Volt 
IT system, which is typically the case for residential customers in Nor-
way. For most EV users, the CP charging power (A in Fig. 1) is limited to 
a maximum of 7.4 kW (32 A). The users have the possibility to manually 
activate IT 3-phase charging on their CP, which provides up to 11 kW, 
but only some EV models support this. For the location OSL_T, a 
charging power of 7.4 kW is available at private parking spaces, while 
22 kW is available at 16 shared CPs. Since 11 kW charging power is the 
limitation in most of our locations, this is the focus of the study. 

Data cleaning removed 76 User IDs (22%) and about 3000 charging 
sessions (7.6%) from the original dataset, including the following:  

• Sessions with no energy charged (≤0.5 kWh) (n = 2289) (assumed 
faulty sessions).  

• Sessions with too high energy charged (>150 kWh) (n = 2) (assumed 
faulty sessions, since the maximum battery capacity for EVs on the 
market is 100 kWh). 

Table 4 
Residential locations with EV data analysed.  

Location 
Data collection 
period Months 

Before cleaning Used in analysis 

# User 
IDs 

# Charg. 
sessions 

# User 
IDs 

# Charg. 
sessions 

ASK 
Asker Sub-urban 

2018–11–15 to 
2020–02–03  14.5  23 6780  21 6372 

BAR 
Bærum Sub-urban 

2018–09–07 to 
2020–02–03  17  10 2108  8 1969 

BAR_2 
Bærum 

Sub-urban 2020–02–04 to 
2021–08–06  

18  7 1116  6 1028 

BER 
Bergen sør-vest 

Urban 2019–10–31 to 
2020–02–03  

3  10 395  8 308 

BOD 
Bodø 

Urban 
2018–10–24 to 
2020–02–02  15  8 548  6 508 

KRO 
Krokkleiva 

Rural 
2021–01–15 to 
2021–05–06  

3.5  18 598  9 492 

OSL_1 
Oslo 

Urban 2019–10–08 to 
2020–02–02  

4  25 534  15 464 

OSL_2 
Oslo 

Urban 2019–11–25 to 
2020–02–02  

2  8 167  4 127 

OSL_S 
Oslo sør-øst Urban 

2018–02–06 to 
2020–02–03  24  29 10,570  28 9757 

OSL_T 
Oslo Tveita 

Urban 
2019–11–15 to 
2021–03–29  

16.5  80 6147  62 5478 

TRO 
Trondheim 

Urban 2019–03–08 to 
2020–02–03  

11  31 2379  23 2168 

TRO_R 
Trondheim Risvollan Urban 

2018–12–21 to 
2020–01–31  13  97 7245  77 6706 

Total for the 
12 locations  

2018–02–06 to 
2021–08–06    346 38,587  267 35,377 

Total 
pre-COVID-19  

2018–02–06 to 
2020–02–28       

224 28,639  
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• Sessions with connection time of less than 2 min (n = 131) (assumed 
faulty sessions). 

• Sessions with connection time of more than 5 days (n = 155) (ses-
sions affect average connection and idle time).  

• A preliminary value for average power was calculated based on the 
energy charged divided by the connection time. For sessions with an 
average power higher than the available charging power 
(≥11.5 kW), plug-out times were removed (set to NA), since this 
indicated that the value was incorrect (n = 40). With removed plug- 
out times, the sessions were excluded for most of the analysis in this 
work.  

• Plug-out times were also removed for OSL_T for average power 
≥ 11.5 kW (n sessions= 22), even though 22 kW is available at their 
shared CPs. Two user IDs were removed (including all their 338 
sessions), since they had more than one session (n = 12 + 6) with 
average power higher than 11.5 kW. It was therefore assumed that 
they normally used the shared CPs, charging with higher charging 
power, and that removing plug-out times for some sessions could 
provide misleading results.  

• User IDs with less than 10 charging sessions were removed (n = 268 
sessions, 72 user IDs). 

Finally, corrections for time zones/daylight saving time (DST) were 
performed, before adding calendar data such as weekdays. 

Fig. 3 shows plug-in times, plug-out times, connection times, and 
energy charged in the EV data locations. For all locations, the share of 
plug-in times increases in the evenings, with a peak in the afternoon (for 
most locations 16:00–17:00) when the working day typically ends in 
Norway. For the plug-out times, there is a peak in the morning (for most 
locations 7:00–8:00), corresponding to the start of a typical working 
day. OSL_1 stands out with an additional plug-in peak at 09:00 and plug- 
out peak at 14:00, but most of these charging sessions (plug-in: 91%, 
plug-out: 70%) are related to a single user. Both the morning and af-
ternoon peaks are higher for some of the locations (BAR and KRO), 
which may be explained by a higher share of commuters in these areas. 
For the whole data period (n sessions = 35,377), the connection time is 

in average 12.7 h for the sessions, and 90% of the charging sessions last 
for less than 22.1 h. Average energy charged per charging session is 12.7 
kWh. On average, each user starts 3.9 charging sessions per week. 

3. Methodology 

Based on the data available in the CPO reports, a set of simple-to-use 
methodologies are proposed for assessing complete and ideal EV data-
sets. The methodologies can be used for locations such as residential 
buildings and workplaces, where user IDs are unique. Flow charts for the 
methodologies are shown in Fig. 4, where values for EV charging power, 
EV battery capacity, and hourly battery SoC for charging sessions are 
assessed for each user ID individually. Firstly, charging power and 
battery capacity are predicted for each user ID, as described in Sections 
3.1 and 3.2. The charging power and battery capacity predictions are 
then used to develop hourly SoC predictions, as described in Section 3.4. 
Section 3.5 describes a methodology for analysing how residential 
charging behaviour is affected by EV battery capacity and charging 
power. To do this, the 224 residential EV users were divided into four 
user groups, according to their battery capacity and charging power, and 
their charging habits were compared. All data analyses and predictions 
have been performed using the statistical computing environment R 
[41]. 

3.1. The EV charging power prediction method 

The aim of the charging power prediction method is to provide 
predictions for the EV charging power per user ID. The EV charging 
power can be limited by the onboard charger in the EV or by the 
available AC power at the location. For each user ID, the predicted 
charging power value will be the lowest value of the two limitations. 

When predicting the EV charging power, it is assumed that all user 
IDs have at least one charging session where they plug-out the charger 
while the battery is still charging. If this is the case, the available 
connection time (tconnection) equals the charging time (tcharging), and it is 
possible to calculate the average charging power (Pcharging) using Eqs. 1 

Fig. 3. Plug-in times, plug-out times, connection times, and energy charged in the EV data locations.  
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to 3. The values for plug-out time (tplug-out), plug-in time (tplug-in), and 
energy charged (Echarged) are available from the CPO reports. 

CP connection time for an EV session : tconnection = tplug− out − tplug− in (1)  

When plugout during charging : tcharging = tconnection (2)  

Average EV charging power : Pcharging = Echarged

/
tcharging (3) 

To identify the interrupted charging sessions with plug-out during 
charging, the highest charging power values are of interest. For each 
user ID, the maximum value for Pcharging is therefore selected as the 
preliminary EV charging power prediction (Ppreliminary). Our method is 
similar to the method proposed by [42], but while [42] used the pre-
dicted values to sort the users into two charging power levels, our 
method predicts all the charging power levels individually, reflecting 
the fact that actual charging power varies with the EV. When predicting 
realistic charging power values per user, also the results for hourly 
charging loads and idle energy capacities will become closer to reality. 
In addition, a second step is included to filter out errors and outliers, as 
explained in the following. Since charging power is predicted per user 
ID, the values are not necessarily connected to a specific EV. Some users 
may drive several EVs, or they may invite others/guests to use their user 
IDs. To improve the predictions, the Ppreliminary value for each user ID is 
therefore compared to typical levels for onboard charger capacities for 
EVs on the market (ref. Fig. 2). The charger capacities are grouped into 
three levels: Level 1 (mainly PHEVs and earlier models of BEVs): 
< 4 kW, Level 2 (mainly BEVs with onboard charger capacities around 
7 kW): 4 < 8 kW, Level 3 (mainly larger / newer BEVs with onboard 
charger capacity from 11 kW and above): 8–11.5 kW. For each user ID, 
the Ppreliminary value is categorised into one of the three charger capacity 
categories. If the same user has at least two charging sessions with 
Pcharging in the same charger capacity category, the Ppreliminary value is 
considered to be the final charging power prediction (Puser). Otherwise, 
the charging session with the preliminary prediction is filtered as an 
outlier, and a new Ppreliminary value is calculated. The recalculation is 
repeated, until all user IDs have a final charging power prediction. For 
the 267 user IDs that we analysed, Puser was predicted directly for 93% 
(249) of the user IDs (Puser = Ppreliminary, no filtering needed). Puser was 
predicted for 6% (17) of the user IDs after filtering one outlier, and 1 

user ID after filtering two outliers. Finally, user IDs with Puser values of 
less than 2 kW were removed (6 user IDs), since no EVs with less than 
3 kW charging power were identified on the market, thus it was assumed 
that the predictions were too low. Due to the assumption that all user IDs 
have at least one interrupted charging session, Puser prediction for user 
IDs with no interrupted charging sessions will be too low. The as-
sumptions and justifications applied in the method are summarized in  
Table 5. 

Assump�on: 
All user IDs have at 

least one interrupted 
charging session with 

plug-out during 
charging

Assump�on: 
All user IDs charge 

from min-SoC to max-
SoC for at least one 

charging session

Filtering outliers: 
Charger capacity for EVs 

on the market are 
grouped in 3 levels. 

Values for P charging are 
categorized (level 1-3). 
For each user ID, the 

session with  Ppreliminary is 
filtered if it is the only 
session within a level

For each user ID: 
P charging calculated for all 

sessions (eq. 1-3). 
Values are sorted by size.
max (P charging) = Ppreliminary

For each user, max. 
energy charged is 

mul�plied with efficiency, 
to get max. energy to 

ba�ery (E ba�ery) (eq. 4).

Ba�ery capacity 
predic�on for each 

user ID (eq. 5):
E ba�ery-size

Input to 
hourly SoC

Input to hourly 
SoC

Charging power

Ba�ery capacity

Hourly charging loads 
Eload (i) calculated for all 

charging sessions (eq. 6)

Charging power 
predic�on for 
each user ID: 

Puser = Ppreliminary

Hourly SoC

max E ba�ery < 28 kWh: 
SoC 10-100%

max E ba�ery > 28 kWh: 
SoC 20-100%

Idle �me >1h:
End SoC 

80, 95 or 100%

Hourly SoC diff .  SoC diff (i)
predicted for each session 

(eq. 7)

Idle �me <1h: 
No final SoC

Charging power Puser
for each user ID

Ba�ery capacity E ba�ery-size
for each user ID

Hourly SoC 
values predicted 
for each session

If outlier filtered: Recalcula�on

User ID
Connec�on �me [h]
Energy charged [kWh]

CPO reports 
User ID
Session ID
Plug-in �me
Plug-out �me
Connec�on �me [h]
Energy charged [kWh]

User ID
Energy charged [kWh]

User ID
Session ID
Plug-in �me
Plug-out �me
Energy charged [kWh]

User ID
Charging power
Ba�ery capacity

Fig. 4. Flow charts for predicting charging power, battery capacities, and hourly SoC, based on CPO reports.  

Table 5 
EV charging power prediction method: Assumptions and justifications.  

Assumptions Justifications 

The average charging power for each EV 
user is constant 

Actual charging power varies with EV, 
CP, SoC, temperatures etc. Charging 
power for single charging sessions is 
presented by e.g.[13,43–45]. For a large 
dataset it is necessary to apply a constant 
charging power, since the actual charging 
power is not known. The assumption of a 
constant charging power is generally used 
in literature (ref. examples in Table 1). 

All user IDs have at least one 
interrupted charging session with 
plug-out during charging 

The method provides charging power 
values per user, while studies in the 
literature generally assume the same 
charging power values for the complete 
EV fleet (ref. Table 1). The assumption 
may result in too low charging power 
values if no charging sessions are 
interrupted. To reduce this risk, user IDs 
with charging power values of less than 
2 kW were removed (no such EVs on the 
market). The assumption may result in 
too high values if several EVs are 
connected to one user ID. The step of 
filtering outliers is therefore included, but 
with the risk of filtering real charging 
power values. Despite the risks, this is a 
transparent simplification, which is 
assumed to give satisfactory charging 
power levels when aggregated. The 
method is validated with EV data, as 
described in Sections 3.3 and 4.1.  
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3.2. The net EV battery capacity prediction method 

The aim of the net EV battery capacity prediction method is to pro-
vide predictions for the net EV battery capacity per user ID. When doing 
this, it is assumed that all user IDs have at least one charging session 
where they charge their EV battery a certain SoC range; from a defined 
minimum SoC-level to a defined maximum SoC-level. Initially, the 
charging session with the highest value for energy charged for each user 
is selected. No large values or outliers are filtered in this process, since it 
is expected that some users seldom charge the full SoC range of their EV 
batteries [29,37]. A filtering process may therefore remove valuable 
data. The selected maximum values are multiplied by an efficiency for 
one-way AC/DC conversion to calculate the approximate amount of 
energy stored in the battery (Ebattery), as shown in Eq. 4. For EV charging, 
[46] and [47] have found energy losses between 12% and 40%. Marra 
et al. [19] considered 88% charging efficiency, based on empirical 
studies. Thus, in our work, a charging efficiency (ɳ) of 88% is assumed. 

Maximum energy stored in battery : max(Ebattery) = max
(
Echarged

)
× ɳ (4)  

Battery capacity prediction : Ebattery− size = max
(
Echarged

)/
SoCrange (5) 

The calculated values for maximum energy stored in the batteries 
(Eq. 4) are divided by an assumed SoC range for the charging session 
(Eq. 5) to get a prediction of the battery capacities. Two different SoC 
ranges are assumed for the EV users, dependent on the EV battery 
classification, i.e., small/medium (EV-SM) or large (EV-L). This is based 
on the hypothesis that users with large batteries are less likely to charge 
their EVs from nearly empty to completely full. As found by [29,37], 
most EV users prefer charging their EV batteries before reaching about 
20% SoC. EV users with smaller batteries are expected to more 
frequently charge for a larger SoC range, based on the occasionally need 
for longer driving ranges. The findings by [31] support this theory, as 
they found few EVs with large batteries when assuming that all users 
charged their battery from 0% to 100%. Two different levels are 
therefore set for the minimum SoC-level: 10% for EV-SM and 20% for 
EV-L. The defined maximum SoC-level is set to 100% for all EV users. 
This gives a SoC range of 90% for EV-SM and 80% for EV-L. 

The threshold value that is used to categorize the EVs into two bat-
tery capacity groups are based on Eq. 4, which represent the net battery 
capacity within the defined SoC-range only. When using different SoC 
ranges to predict the battery capacities (Eq. 5), a gap between the net 
battery capacity groups appears. The EV-SM group has battery capac-
ities up to 31.1 kWh and the EV-SM group has battery capacities above 
35 kWh. The threshold value is chosen based on the net battery capacity 
of typical EVs on the marked (ref. Fig. 2), and is comparable to the 33 
kWh value used by [31]. There is no distinction between the BEV and the 
PHEV in our study, and PHEV is included in the EV-SM group. Table 6 
shows a summary of the assumptions and justifications for prediction of 

EV battery capacity. 

3.3. Method for validation of the EV charging power and battery capacity 
predictions 

To validate the suggested methods, the EV charging power and 
battery capacity predictions in Section 4.1 were compared to informa-
tion from 15 users in location TRO_R and BAR_2, including data on their 
nominal onboard charger capacities (kW AC) and net battery capacities 
(kWh). For the remaining locations, the CPO reports were anonymized, 
with no information about the users and their EVs. In addition, the re-
sults were compared to typical charging characteristic for models of EVs 
on the market [13,16,17], as shown in Fig. 2. The market data includes 
102 models of BEVs and PHEVs described by [16] and [17]. Since some 
car manufacturers publish gross battery capacities only, the presented 
net battery capacity for these manufacturers is set equal to the capacity 
predicted by [16,17]. 

3.4. Hourly battery SoC prediction method 

As a basis for predicting the hourly SoC values, energy charged 
during charging sessions were distributed hourly on the timeline, using 
the methodology presented in [13]. For calculating the hourly charging 
loads (Eload (i)), the EV charging power predictions per user ID (Puser) are 
multiplied with the hourly charging time (Eq. 6). It is assumed that the 
charging starts immediately after plug-in, and that the charging power is 
fixed over the whole charging time. 

Charging load for hour i : Eload(i) = Puser × tcharging(i) where
∑

Eload(i)

= Echarged (6) 

For every charging session hour, the SoC difference for each EV is 
calculated as the hourly energy stored in the battery (energy load 
multiplied with efficiency) divided by the battery capacity prediction for 
each user (Euser-battery) (Eq. 7). Assuming a final SoC value, the SoC value 
every hour can be calculated, starting with the last hour of every session 
and then proceed reverse in time, hour-by-hour until the first session 
hour. We assumed that all uninterrupted charging sessions continued 
charging until the battery was nearly full, i.e., with final SoCs of 80%, 
95% or 100%. This assumption is justified by [38], which found median 
values above 95% for final SoCs. No final SoC values were assumed for 
charging sessions where the predicted non-charging idle time was less 
than an hour, since these charging sessions may have been stopped by 
the user. 

SoC difference for hour i : SoCdiff (i) = Eload(i) × ɳ
/

Euser− battery (7)  

Table 6 
EV battery capacity prediction method: Assumptions and justifications.  

Assumptions Justifications 

All user IDs have at least one charging 
session where they charge their EV 
battery at a certain SoC range 

For a large dataset it is necessary to apply this simplification, since the actual battery capacity is not known. A similar assumption is 
made by [31]. The assumption may result in too low or too high EV battery capacity predictions if the maximum SoC range is smaller or 
larger than assumed. The method is validated with EV data, as described in Sections 3.3 and 4.1 

Some users seldom charge the full SoC 
range of their EV batteries 

Based on findings in [28,33]. No large values or outliers are therefore filtered in this process. The method may result in too high values if 
several EVs are connected to one user ID.  

EV-SM EV-L  
ɳ 0.88 0.88 Based on [19], supported by [46,47]. 

SoCrange 
0.9 
(10–100%) 

0.8 
(20–100%) 

Most EV users prefer charging their EV batteries before reaching about 20% SoC [29,37]. EV users with smaller batteries are expected to 
more frequently charge a larger SoC range. This is strengthened by the findings of [31]. To improve the results, two different SoC-ranges 
are therefore assumed for EV-SM and EV-L. 

max 
(Ebattery) 

< 28 kWh > 28 kWh Calculated using Eq. 4. 

Ebattery-size 
< 31.1 
kWh 

> 35 kWh 
Calculated using Eq. 5. 
The threshold value for EV-SM and EV-L is chosen based on the net battery capacity of typical EVs on the marked (ref. Fig. 2), and is in 
the range of the value used by [31] of 33 kWh.  
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3.5. Comparing charging habits for EV users with different battery and 
charging power capacities 

In this work, we investigate how residential charging behaviour is 
affected by the EV battery capacity and charging power. To do this, 
energy charged, SoC-values, idle energy capacities, and time related 
data are compared for EV users with different battery and charging 
power capacities. Hourly values for idle energy capacities are predicted 
by using the methodology presented in [13], where hourly idle times for 
a session are multiplied by the assumed charging power for the user ID. 
The session idle time is calculated according to Eq. 8. The sum of the 
charging loads and idle energy capacities is referred to as the connected 
energy capacity (Eq. 9). The hourly time series include all hours, also 
hours with no connected EVs. 

Idle time per session : tidle = tconnection − tcharging (8)  

Connected energy capacity for houri : Econnected(i) = Eload(i) +Eidle(i) (9) 

The hourly energy loads and idle energy capacities in Section 4.3 are 
presented normalized per user. Each user ID is classified as ‘active’ after 
their first charging session and ‘inactive’ after their last charging session. 
For the first and last 30 days in the measurement period of a given 
location, users are classified as ‘active’ if having at least one charging 
session during the 30-days period. This is done to prevent faulty clas-
sification of active users that are not charging frequently. 

The hypothesis that EV battery and charging power capacity influ-
ence the charging behaviour is tested by organising the user IDs into four 
user groups according to their predicted net battery capacity (below/ 
above 33 kWh) and AC charging power (below/above 4 kW). Then, 
charging habits for the four user groups are presented and compared, 
with particular focus on the two main user groups SM_Low and L_High, 
which represent the largest differences in EV technology. For example, 
we want to compare if energy charged per session for SM_Low is 
significantly different than for L_High. The comparison is done by using 
a two-sample Mann-Whitney U Test [48,49], performed with the wilcox. 
test function in R [50]. The Mann-Whitney test is rank-based, and does 
not rely on distribution assumptions, such as the two-sample t-test does. 
It tests the null hypothesis (H0): That the two independent groups have 
the same distribution, against the alternative hypothesis (H1): That the 
distribution of the first group differs from the second group. The result is 
evaluated as significant if the calculated p-value is less or equal to 0.05. 
This suggests that the values for the two groups are different, and it is 
likely that an observation in one group is greater (or smaller) than the 
observation in the other group. Mean charging habit values are calcu-
lated for the two groups, such as average load profiles, charging energy 
and frequencies, charging duration, and start SoC values. Distributions 
are shown in graphs, with data for SM_Low, L_High, and all users. The 
case study values are compared with values from relevant studies in the 
literature. 

4. Results and discussion 

4.1. EV charging power and net battery capacity prediction 

Fig. 5 shows the EV charging powers predicted for all the EV users. 
The grey lines in the figure represent onboard charging capacity levels 
for EVs on the market (ref Fig. 2). Black stars represent charging power 
for 15 of the EVs for which information was received about the onboard 
charger capacities (manufacturer data from [16,17]) as well as the 
available AC power at the location. For these 15 EVs, the predicted 
charging power values are close to the real values (difference of up to 
0.5 kW). 

The user IDs are grouped into three charging power levels, where 
46% of the user IDs are predicted to be within charging power level 1 
(<4 kW), 38% are within level 2 (4 <8 kW), and 16% are within level 3 
(8–11.5 kW). The charging power levels per location are further 

described in Table 7. For most locations there are users within all the 
three charging power levels. As stated above, the charging power is 
limited by the onboard charging capacity of the EV or the power 
available from the CP (typically 7.4 or 11.0 kW in Norway). For users 
with onboard charging capacities below 7.4 kW, the power is most likely 
limited by the onboard charging capacity of the EV. For two of the lo-
cations (BER, and OSL_S), all the user IDs were predicted to be within 
power level 1. This is most probably due to local power limitations for 
the charging power, which for example can be caused by limited grid 
connection power capacity of the building. For users with onboard 
charging capacities above 7.4 kW, the charging power is mostly limited 
by the CP. The exception is EVs that have activated three-phase 
charging, where the charging power may be up to 11.0 kW for some 
EV models. 

Fig. 6 shows net EV battery capacity predictions for all the EV users. 
55% of the user IDs are predicted with EV-SM (below 33 kWh) and 45% 
with EV-L (above 33 kWh). Comparing the predicted battery capacities 
with known net battery capacities for the 15 EVs, it was found that the 
predicted values are close to the real values for the five users with EV- 
SM. The differences are up to 3.5 kWh, and all the predictions are 
lower than the real values. For the ten users with EV-L, the differences 
between the predictions and the real values are larger. One user was 
found to have charged 78.6 kWh, even though the net battery capacity 
was 52 kWh. Assuming that the values are correct, the charging losses 
must be larger than predicted (the EV in question used an external 
transformer during charging). For the remaining nine EVs, the differ-
ences were up to 15 kWh, some higher and some lower than the real 
values. These differences may be explained by a variance between the 
real values and the assumptions for charging efficiencies or SoC ranges 
in Table 6. However, even though there are some differences between 
the predictions and the real data, the methods provide a fairly accurate 
indication of the net battery capacities. 

All the predictions of EV charging power and EV battery capacities 
are combined in Fig. 7, together with charging characteristics for EVs on 
the market (ref. Fig. 2). Four user groups are marked in the figure 
(SM_Low, SM_High, L_Low, L_High), forming a basis for the analysis in 
Section 4.3. Fig. 7 shows that the predictions provided by the methods in 
this paper are in the range of typical EVs on the market. Since the 
charging power method also takes the local power capacity into account, 
and not only the onboard charger capacity, EVs with onboard charger 
capacities above 11.0 kW are not represented in the results. 

32 users are grouped as L_Low, even though there are no such EVs 
identified on the market. This may be explained by local power 

Fig. 5. EV charging power predictions for all EV users. Grey lines: Nominal 
onboard charger capacity for EVs on the market. Black stars: Validation of 
charging power for 15 EVs. 
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limitations. Such possible power limitations were discussed earlier in 
Section 4.1 for two of the locations (BER, OSL_S). The possible power 
limitation is supported by Fig. 7, where 23 user predictions for the two 
locations are grouped as L_Low (red tringles in the figure). Local power 
limitations may also be the case for the remaining 9 users, or these users 
may not have disconnected their EVs during charging. There are also EV 
models which does not charge optimally on the IT grid (e.g. the Zoe 
transformer provides 3.6 kW [51]), which may explain some differences 
between the predicted low charging power and the actual onboard 
charging power of the EVs. 

4.2. Hourly battery SoC predictions 

Hourly battery SoC values are predicted for all the charging sessions.  
Table 8 shows an example of input data and predictions for one of the 
charging sessions (TRO_20989). In the example, an end SoC of 95% is 
assumed. 

The distribution of start SoC values are shown in Fig. 8. The figure 
illustrates situations with assumed end SoCs of 80%, 95% and 100%. In 
our study, 59% of the residential EVs are plugged-in when SoC is above 
50%, assuming an end-SoC of 95%. The values are in the range of the 
findings by [52], which discovered that a high share (65%) of the EV 
drivers plug in their company cars when the SoC is above 50%. The 
distribution of start SoC values can also be compared with results pre-
sented by [39], which analysed SoC values for EV drivers with a dedi-
cated home charger available. They found that the start SoC values for 
these drivers were distributed between approximately 20% and 90%, 
and with a rise towards the higher start SoC values. A high start SoC 
provides opportunities for Vehicle to grid (V2G) in the future, since the 
EVs can deliver energy to the building or grid during peak periods. 

Fig. 9 shows median values for the predicted start SoCs and how the 
SoC values differ in the course of a day. Assuming an end SoC of 
80–100%, the median start SoC values of the dataset are 42–62%, close 
to the mean values of 40–60%. The predictions can be compared to 
hourly median values from [38], where start SoC values were available 
from 9566 charging sessions. Due to the low number of observed ses-
sions at night in [38], the values were aggregated from 11 pm to 6 am 
(n = 321). The study also found that the start SoC values differed over 
the day. This can also be found from the data in our study, but to a 
smaller degree than in [38]. This may have several explanations; The 
users may behave differently (private EVs in our study compared to 
mainly company EVs in [38]), or the predicted values may not be fully 
accurate. Still, the predicted start SoC values are in the same range as the 
measured values found in [38]. 

Daily average SoC values for connected EVs are shown in Fig. 10, 
along with the number of connected EVs and new connections each 
hour. The figure shows how the average SoC-values for all the connected 
EVs are at the lowest in the afternoon, when most new EVs are being 
connected. During the night-time, the average SoC-values are getting 
close to the end SoC-values since most of the EVs have finished charging 
and there are few new connections. 

4.3. Comparing charging habits for EV users with different battery and 
charging power capacities 

This section analyses how residential charging behaviour is affected 
by EV battery capacity and charging power. For the aggregated EV 

Table 7 
Charging power levels in the 12 case locations: Share of users within each level.  

Location (n) 
Level 

ASK 
(21) 

BAR 
(8) 

BAR_2 
(6) 

BER 
(8) 

BOD 
(6) 

KRO 
(8) 

OSL_1 
(14) 

OSL_2 
(4) 

OSL_S 
(27) 

OSL_T 
(60) 

TRO 
(23) 

TRO_R 
(76) 

All 
(261) 

1 (<4 kW)  0.52  0.88  0.17  1.00  0.17  0.13  0.36  0.25  1.00  0.23  0.33  0.47  0.46 
2 (4 <8 kW)  0.29  0.12  0.66    0.33  0.50  0.07      0.54  0.42  0.53  0.38 
3 (8–11.5 kW)  0.19    0.17    0.50  0.37  0.57  0.75    0.23  0.25    0.16  

Fig. 6. Net EV battery capacity predictions for all EV users. Grey lines: Max/ 
min battery capacities for EV-SM and EV-L. Black stars: Validation of net bat-
tery capacity for 15 EVs. 

Fig. 7. User predictions: EV charging power and battery capacities (n users = 261). EV market information: Nominal onboard charger capacity and net battery 
capacity. Four user groups are defined: SM_Low, SM_High, L_Low, and L_High. 
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charging, Fig. 11 shows how the average load profiles have an increased 
energy use in the afternoons and evenings, with the highest load 
occurring between 16:00 and midnight. The average load is at the lowest 
during night/early morning and during daytime. The average load 
profiles for the 12 locations in our study are similar to the profiles found 
in a previous analysis of the location TRO_R in [13], which were verified 
with hourly smart meter data. For charging sessions with idle times less 
than 1 h, the charging loads are marked as non-flexible. Most of this 
non-flexible charging occurs during the afternoon/evening. Fig. 11 also 
shows average connected energy capacities, where the difference be-
tween energy charged and connected energy capacity is the average idle 
energy capacity. The connected energy capacities illustrate how the EVs 
typically stay plugged-in during night-time. During workdays, the daily 
connected energy capacity is on average more than four times as high as 
the energy charged during the day. Even though this is based on average 
values, it reflects a considerable potential for shifting the EV charging in 
time, especially from afternoon/evenings to night-time. Other 
data-based EV studies confirm this flexibility potential in the residential 
sector, e.g. [13,53–56]. 

When analysing grid-capacity, the maximum load profile may be 
more important than the average load profile. Load profiles per user is 
shown in Fig. 12, including the maximum energy charged, the 99th 
percentile, the 90th percentile, and the average and 25th percentiles of 
hourly energy charged. The maximum load profiles have two afternoon/ 

evening peaks during workdays, around 17:00 and 21:00, and one af-
ternoon peak on Saturdays. In Fig. 12, only periods with 30 or more 
users are included, since the aggregated peak power per user is reduced 
with increasing number of users [13]. 

In the future, charging habits may change due to increasing battery 
capacities and available charging power, which again will affect the load 
profiles and flexibility potential of EV charging. In Fig. 13, daily average 
load profiles are shown for four user groups (SM_Low, SM_High, L_Low, 
L_High), based on net battery capacity (below/above 33 kWh) and 
charging power capacity (below/above 4 kW). In Table 9, the charging 
habits of the two user groups SM_Low and L_High are further described 
and compared. Mann-Whitney p-values are included in the table, to test 
if SM_Low and L_High are significantly different. SM_Low and L_High 
were chosen, since these are main user groups which also represent the 

Table 8 
Data for example session (TRO_20989).  

User and session data 

CPO report data Predicted user data Predicted session data 

Session 
ID tplug-in tplug-out 

tconnection 

[h] 
Echarged 

[kWh] 
Pcharging 

[kW] 
Ebattery-size 

[kWh] 
tcharging 

[h] 
tidle 

[h] SoCdiff 
Eidle 

[kWh] 

TRO_ 
20989 

2020–01–16 
19:12:00 

2020–01–17 
08:08:00  12.9  12.5  7.1  55.6  1.8  11.2  19.8%  79.4  

Hourly data 

Date from E load [kWh] E idle [kWh] E connected [kWh] SoC diff SoC from SoC to 
2020–01–16 19:00 5.7 0 5.7 9.0% 75.2% 84.2% 
2020–01–16 20:00 6.8 0.3 7.1 10.8% 84.2% 95.0% 
2020–01–16 21:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–16 22:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–16 23:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 00:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 01:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 02:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 03:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 04:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 05:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 06:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 07:00 0 7.1 7.1 0 95.0% 95.0% 
2020–01–17 08:00 0 0.9 0.9 0 95.0% 95.0%  

Fig. 8. Distribution of start SoC for the charging sessions, with assumed end 
SoCs of 80%, 95% og 100%. 

Fig. 9. Hourly distribution of predicted start SoC (median line) (n = 28,681). 
Median predictions are compared with measured values in [38]. Lower fig.: 
Number of charging sessions starting each hour. 
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largest differences in EV technology. The market data found in [16] and 
[17], including technical data from 102 models of EVs, show that 78% of 
the EVs have net battery capacities and onboard charger capacities 
within the SM_Low (25 EVs) or L_High (55 EVs) groups, while the 
remaining models are SM_High (22 EVs). 

Fig. 13 shows that the average energy charged every day is about 1.5 
times higher for the users with EV-L than for the users with EV-SM. The 
energy consumption of an EV is influenced by vehicle-, environment-, 
and driver-related factors [57], and in general, EVs with large batteries 
are heavier than EVs with small/ medium sized batteries. Still, the re-
sults indicate that users with larger battery capacities also drive more 
than the users with smaller batteries. This corresponds to interview re-
sults found by [58], where drivers with a battery capacity of more than 
55 kWh used their car more frequently for long trips, compared to 

drivers with smaller battery capacities. It is also in line with a ques-
tionnaire amongst Dutch EV drivers [59], where only 23% of the Tesla 
Model S drivers (L_High) answered that they regularly or often used 
other transportation than the EV due to long distances, while 95% of 
Nissan Leaf drivers (SM_Low) indicated the same. Another reason for the 
difference may be due to the charging location, since [39] found that 
owners of EVs with large battery capacities were more likely to charge at 
home. Fig. 13 shows that it is especially in the afternoons/evenings that 
the users with EV-L have a higher hourly energy demand than the users 
with EV-SM, while the day-time charging is low and more similar for all 
the four user groups. For the two user groups with low charging power, 
SM_Low is finished charging around midnight, while L_Low requires 
more night-hours to finalize the charging. 

A histogram of energy charged per charging session is included in 

Fig. 10. Upper figure: Daily average SoC values for connected EVs. Lower figure: Number of connected EVs (n connected hours = 373,989) and new connections 
each hour (n sessions = 28,681). 

Fig. 11. Daily load profiles per user: Energy charged, non-flexible energy charged (idle time < 1 h), and connected energy capacity. (n users = 224, n sessions 
= 28,682). 

Fig. 12. Daily load profiles per user: Maximum, 99th percentile, 90th percentile, average, and 25th percentile energy charged (n users = 30 < 224).  
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Table 9-C, where the vertical line represents the max/min battery ca-
pacity for EV-SM and EV-L. The mean value for all charging sessions is 
12.4 kWh (SD 11.2 kWh), where L_High charges nearly three times as 
much energy during each session compared to SM_Low. The results are 
in line with results from the Netherlands reported in [33], where session 
energy was 25 kWh for EVs with battery capacities > 70 kWh, and 10 
kWh for EVs with battery capacities of 16–30 kWh. The results indicate 
that most EV users with larger batteries seldom utilize the full battery 
capacity. Only 16% of all EV-L sessions (n = 2291) charge more than 33 
kWh. This is confirmed by the histogram of predicted SoC values per 
charging session, illustrated in Table 9-D. Looking at all users together, 
charged energy is less than half of the net battery capacity for 65% of the 
charging sessions. For SM_Low, the average SoC difference is 42% while 
it is 34% for L_High. It should be noted that these average SoC difference 
values are affected by the choice of using different SoC ranges when 
predicting battery capacities for SM_Low and L_High. If battery capac-
ities for L_High were predicted with the same SoC range as for SM_Low 
(90%), the average SoC difference becomes more similar: 41% for 
SM_Low and 37% for L_High. However, also [39] found a relationship 
between battery capacity and start SoC, where EVs with larger batteries 
are charged at higher start SoC. 

Idle energy capacities represent the flexibility potential of EV 
charging, since the EV charging can be shifted in time. Comparing idle 
energy capacities for SM_Low and L_High in Table 9-E, the average daily 
idle energy capacity is 1.3 times higher for L_High. As shown in Fig. 13, 
the idle energy capacity is higher for SM_Low than for L_Low, which can 
be explained by the fact that the L_Low group has less idle time due to 
less average connection time (SM_Low: 8.1 h, L_Low: 6.2 h), and that the 

L-Low need more time for charging a larger energy amount. A similar 
relationship can be found between SM_High and L_High. 

Users with small and large weekly charging demands are compared, 
corresponding to 25th and 75th percentiles of the demands. For users 
with lower weekly charging demand (25th percentile), the average 
values are 25 kWh of energy charged per week and 24 kWh of idle en-
ergy capacity per week. For users with higher weekly charging demand 
(75th percentile), the average values are 61 kWh of energy charged per 
week and 42 kWh of idle energy capacity per week. The data indicates 
that users with lower weekly charging demand have a longer idle time 
per charging session (average 14.3 h of idle time per session) compared 
to users with a higher weekly charging demand (average 7.9 h of idle 
time per session). 

The charging sessions are distributed fairly evenly throughout the 
week, as shown in Table 9-K. Users with larger batteries charge less 
frequently than users with smaller batteries: 2.6 times per week for 
L_High, compared to 4.7 times per week for SM_Low. The results are 
supported by [58], where about 40% of the interviewed Norwegian 
Tesla drivers (L_High) charged their EVs less than 3 times per week, 
while 30% of other EV drivers stated the same. Similar results were 
found amongst Dutch EV drivers [59], where 62% of the Tesla Model S 
drivers (L_High) stated that they charged their EVs 3 times a week or 
less, while 80% of Nissan Leaf drivers (SM_Low) stated that they charged 
their EVs more than 3 times per week. Also the charging frequencies 
reported in [33] were similar, where EV drivers with large battery ca-
pacities (>70 kWh) in the Netherlands charged their EVs 2.8 times per 
week, and small battery capacities owners (16–30 kWh) charged 4 times 
per week. 

Fig. 13. Daily load profiles per user during workdays, for four different EV categories. The figure shows energy charged, non-flexible energy charged (idle time <
1 h), and connected energy capacity. 
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Table 9 
Charging data for all users, SM_Low and L_High. N users = 224 (SM_Low 86, L_High 71), n sessions = 28,681 (SM_Low 13,461, L_High 4437).  

Mean values (standard deviation) Distribution  

A. Battery capacity (calculated according to the net EV battery capacity prediction 
method, described inSection 3.2) 

All users SM_Low L_High  

[kWh per user] 37.2 (24.0) 16.4 (6.2) 61.7 (18.2)  

B. Charging power (calculated according to the EV charging power prediction 
method, described in Section 3.1) 

All users SM_Low L_High  

[kW per user] 5.6 (2.6) 3.4 (0.4) 8.3 (1.8)  

C. Energy charged (from CPO reports) 
All users SM_Low L_High  

[kWh per user/day] 6.2 4.8 7.8  
[kWh per session] 12.4 (11.2) 7.9 (4.9) 23.4 (16.9)  

Mann-Whitney p-value: Significant (< 2.2e-16)  

(continued on next page) 
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Table 9 (continued ) 

Mean values (standard deviation) Distribution  

D. SoC (calculated according to the hourly battery SoC prediction method, described 
in Section 3.4) 

SoC-diff per session 36% (23%) 42% (23%) 34% (21%)  
Mann-Whitney p-value: Significant (< 2.2e-16)  

Start SoC per session, 
given 95% end SoC 

59% (23%) 53% (23%) 61% (21%)  

Mann-Whitney p-value: Significant (< 2.2e-16)  

E. Idle energy capacity (predicted according to methodology presented in [13], as 
described in Section 3.5) 

All users SM_Low L_High  
[kWh per user/day] 20.5 20.6 27.1  
[kWh per session] 44.8 (66.8) 34.7 (43.0) 82.5 (112.2)  

Mann-Whitney p-value: Significant (< 2.2e-16)  

F. Weekly charging sessions (from CPO reports) 
All users SM_Low L_High  

[# per user] 3.7 (2.6) 4.7 (2.9) 2.6 (1.9)  

Mann-Whitney p-value: Significant (1.47e-06)  

(continued on next page) 
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Table 9 (continued ) 

Mean values (standard deviation) Distribution  

G. Charging time (predicted, based on Eq. 3 in Section 3.1: tcharging = Echarged / 
Pcharging) 

All users SM_Low L_High  
[hours per session] 2.7 (2.3) 2.3 (1.5) 2.8 (2.0)  

Mann-Whitney p-value: Significant (< 2.2e-16)  

H. Connection time (from CPO reports) 
All users SM_Low L_High  

[hours per session] 12.0 (12.2) 12.5 (13.3) 12.4 (12.9)  

Mann-Whitney p-value: Not significant (0.070)  

I. Idle time (predicted, based on Eq. 8 in Section 3.5) 
All users SM_Low L_High  

[hours per session] 9.3 (12.0) 10.2 (13.1) 9.6 (12.7)  

Mann-Whitney p-value: Significant (0.00030)  

(continued on next page) 

Å
.L. Sørensen et al.                                                                                                                                                                                                                             



SustainableEnergy,GridsandNetworks36(2023)101195

17

Table 9 (continued ) 

Mean values (standard deviation) Distribution  

J. Time between charging sessions (from CPO reports) 
All users SM_Low L_High  

[hours] 31.0 (58.9) 23.4 (47.7) 50.9 (81.0)  

Mann-Whitney p-value: Significant (< 2.2e-16)  

K. Sessions per day of the week 
(from CPO reports)   

L. Distribution of plug-in times 
(from CPO reports)   

M. Distribution of plug-out times 
(from CPO reports)   
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The connection times are not significantly different for the user 
groups SM_High and L_High, and there is a twin peak in the density 
distribution, where users either charge for a few hours during daytime or 
for a longer overnight period. Similar charging durations were found by 
[34], for EV drivers in the Netherlands. For both groups in our dataset, 
about 23% of the sessions last for less than 3 h, while about 45% of the 
sessions last for more than 12 h. This confirms that the main rationale 
behind the connection times is the daily habits of people and not their 
type of EV. The predicted charging times and idle times are quite similar 
for the two user groups. Even though energy charged per charging ses-
sion is higher for L_High, this is compensated by the higher charging 
power. The average time between charging sessions is about 23 h for 
SM_Low and 51 h for L_High (after removing situations with more than 1 
month between charging sessions). 

The magnitude of the available charging power has impacts for the 
car users, and for the electricity loads and flexibility potential. For the 
users, a higher charging power provides the possibility of charging the 
EV faster. However, this may come with a cost, e.g., related to higher 
power tariffs or a need to upgrade the electricity distribution and fuse 
sizes for the building. For many users, however, the charging time is 
normally not an issue even with lower charging powers, since their daily 
driving distances are limited. In this study, the energy charged was 
below 19 kWh for 80% of the EV sessions, which can be charged in about 
5.5 h even with a low charging power of 3.6 kW. When the charging 
power is high, there is a risk that also the peak power will be higher, i.e. 
if the EV charging coincides with the peak domestic demand [20]. When 
comparing two charging power levels for apartment buildings in [13], 
the hourly aggregated charging peaks increased with a factor of 1.2, 
going from 3.6 to 7.2 kW charging power, assuming immediate charging 
after plug-in. Bollerslev et al. [23] found that the peak power demand 
was reduced by about 40% and 60%, respectively, when going from a 
charging power of 3.7 kW to 11 or 22 kW. However, a high charging 
power also provides a better opportunity for smart charging. In [13], the 
average idle energy capacity during weekdays was 2.3 times higher with 
a charging power of 7.2 kW compared to a charging power of 3.6 kW. 
Such smart charging strategies can save costs for the users and provide 
benefits for the electricity grid. 

5. Conclusions 

With an increasing number of EVs worldwide, there is a need for 
more data and research on EV characteristics and related EV charging 
behaviour. This paper proposes a set of methodologies for generating 
complete EV charging datasets, from data commonly available in CPO 
reports. The case study includes more than 35,000 charging sessions 
from 267 users in 12 residential locations in Norway. Residential 
charging behaviour is analysed, and it is described how these are 
affected by EV battery capacity and charging power.  

• A set of simple methods are proposed for more accurate predictions 
of battery capacities, charging power, and plug-in SoC for all EVs and 
charging sessions. In our study, 46% of the users were found to have 
a charging power below 4 kW, while the remainder had a charging 
power between 4 and 11 kW. Also, we found that 55% of the users 
could be assumed to have battery capacities below 33 kWh, while 
45% of the users had battery capacities between 33 and 100 kWh.  

• Our work presents a statistical analysis on how residential charging 
behaviour is affected by EV battery capacity and charging power. On 
average, users in the residential case study charged around 6.2 kWh 
per day, having an average of 3.7 weekly charging sessions. The 
average energy charged every day was found to be 1.6 times higher 
for users with large batteries and high charging power (L_High) 
compared to users with small/medium batteries and low charging 
power (SM_Low). 

• The results indicate that most EV users seldom utilize their full bat-
tery capacity, and especially EV users with larger batteries. For 65% 

of the charging sessions, the charged energy was found to be less than 
half of the predicted net battery capacity.  

• The daily load profiles suggest that there is a considerable potential 
for shifting residential EV charging in time, especially from after-
noon/evenings to night-time. Such utilization of energy flexibility 
can reduce the grid burden of residential EV charging. While the 
average charging time was less than 3 h, the EVs were in average 
connected to the CPs for 12 h. Comparing SM_Low and L_High, the 
average daily idle energy capacity was 1.3 times higher for L_High. 

For high idle energy capacities, it is advantageous with high charging 
power, frequent connections, and long connection times. If users start 
charging less frequently in the future, this will affect the idle times and 
most likely reduce the flexibility potential. Other publicly available 
charging infrastructure and end-user costs may also impact the resi-
dential charging behaviour. For example, the use of public fast charging 
or EV charging in workplaces may reduce the need for home charging. In 
a future perspective, the use of V2G may increase the flexibility potential 
of EV charging, since the EV batteries can deliver electricity to the 
building or grid during the idle periods. 

To generate the EV charging dataset in this work, it was necessary to 
make some assumptions, e.g., for charging efficiency and for maximum 
SoC range charged per EV user. However, the results were compared to 
results from the literature, which reinforced the validity of our findings. 
Further studies could be extended with larger datasets, and include also 
commercial buildings. In 2022, there were about 600.000 million EVs in 
Norway (8 million in Europe), and CPO reports are often available for 
energy management and invoice purposes. Having more such studies 
will make it possible to analyse how EV charging behaviour differs 
depending on building categories and user groups. EV charging related 
to office buildings will, for example, have different load profiles and 
flexibility potential compared to EV charging for company fleets such as 
healthcare services. If more real-world values for charging power, bat-
tery capacity, and session start SoC are made available, the validity of 
our results may be further increased. 

The proposed set of methodologies aims to provide a complete EV 
dataset with EVs and charging sessions, where realistic predictions for 
battery capacities, charging power, and plug-in SoC are added to data-
sets with plug-in/plug-out times, and energy charged. Such datasets 
provide the basis for assessing current and future EV charging behav-
iour, data-driven energy flexibility characterization, and modelling of 
EV charging loads and EV integration with power grids. 
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[56] A. Märtz, U. Langenmayr, S. Ried, K. Seddig, P. Jochem, Charging behavior of 
electric vehicles: temporal clustering based on real-world data, Energies 15 (2022) 
1–26, https://doi.org/10.3390/en15186575. 

[57] J. Zhang, Z. Wang, P. Liu, Z. Zhang, Energy consumption analysis and prediction of 
electric vehicles based on real-world driving data, Appl. Energy 275 (2020), 
115408, https://doi.org/10.1016/J.APENERGY.2020.115408. 

[58] I.M. Ydersbond, A.H. Amundsen, Hurtiglading og langkjøring med elbil i innlands- 
Norge, Transp. Inst. (2020), https://doi.org/10.13140/RG.2.2.33123.99367. 

[59] A. Hoekstra, N. Refa, Characteristics of Dutch EV drivers, EVS 2017 - 30th Int. 
Electr. Veh. Symp. Exhib. (2017). 

Å.L. Sørensen et al.                                                                                                                                                                                                                             

https://renault.no/admin/wp-content/uploads/2019/10/Prisliste-ZOE-ZE50-08-2021v2.pdf
https://renault.no/admin/wp-content/uploads/2019/10/Prisliste-ZOE-ZE50-08-2021v2.pdf
https://doi.org/10.1016/J.TRD.2019.102206
https://doi.org/10.1016/j.ijepes.2017.09.007
https://doi.org/10.3390/wevj10010014
https://doi.org/10.3390/wevj10010014
http://10.1109/SmartGridComm.2016.7778827
http://10.1109/SmartGridComm.2016.7778827
https://doi.org/10.3390/en15186575
https://doi.org/10.1016/J.APENERGY.2020.115408
https://doi.org/10.13140/RG.2.2.33123.99367

	A method for generating complete EV charging datasets and analysis of residential charging behaviour in a large Norwegian c ...
	1 Introduction
	1.1 Background
	1.1.1 Electric Vehicles as important players to providing flexibility in the future energy market
	1.1.2 The need and availability of high-quality datasets for optimizing the flexibility potential of EVs

	1.2 State of the art: Prediction of EV charging power, battery capacity, and plug-in SoC, and their impact on residential c ...
	1.2.1 EV charging parameters
	1.2.2 Prediction of EV charging power, battery capacity, and plug-in SoC
	1.2.3 EV charging behaviour related to battery capacity and SoC values

	1.3 Novelty and scientific contribution
	1.4 Structure of the article

	2 Input data for the analysis
	3 Methodology
	3.1 The EV charging power prediction method
	3.2 The net EV battery capacity prediction method
	3.3 Method for validation of the EV charging power and battery capacity predictions
	3.4 Hourly battery SoC prediction method
	3.5 Comparing charging habits for EV users with different battery and charging power capacities

	4 Results and discussion
	4.1 EV charging power and net battery capacity prediction
	4.2 Hourly battery SoC predictions
	4.3 Comparing charging habits for EV users with different battery and charging power capacities

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	Acknowledgements
	References


