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Abstract

Estimating feature importance, which is the contribution of a prediction or several predic-

tions due to a feature, is an essential aspect of explaining data-based models. Besides

explaining the model itself, an equally relevant question is which features are important in

the underlying data generating process. We present a Shapley-value-based framework for

inferring the importance of individual features, including uncertainty in the estimator. We

build upon the recently published model-agnostic feature importance score of SAGE (Shap-

ley additive global importance) and introduce Sub-SAGE. For tree-based models, it has the

advantage that it can be estimated without computationally expensive resampling. We

argue that for all model types the uncertainties in our Sub-SAGE estimator can be estimated

using bootstrapping and demonstrate the approach for tree ensemble methods. The frame-

work is exemplified on synthetic data as well as large genotype data for predicting feature

importance with respect to obesity.

Author summary

Artificial intelligence and machine learning have been increasingly popular tools for

modelling complex relationships in medicine and genomics. For example a machine

learning model for predicting the likelihood of a particular person developing some dis-

ease. The prediction model can for instance be based on genomics data, which consists of

a large number of features for each single person. Such prediction models can be very

complex and difficult to interpret, hence they are often denoted black-box models. How-

ever, to exploit the knowledge the prediction model has gained, we must be able to

interpret it, and explain which features are important for the model, but also for the

underlying data. We investigate a theoretical approach for extracting feature importance,

even when the model input consists of many features. Lastly, we emphasize the need for
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estimating the uncertainty of the individual feature importance, and provide a bootstrap

procedure for doing so.

Introduction

With the strong improvement of black-box machine learning models such as gradient boost-

ing models and deep neural networks, the question of how to infer feature importance,

including uncertainty estimates, in these types of models has become increasingly important.

This is particularly important if the results from the model can be trustfully investigated fur-

ther within medicine or genomics such as when applied to drug discovery [1]. The Shapley

decomposition, a solution concept from cooperative game theory [2], has enjoyed a surge of

interest in the literature on explainable artificial intelligence in recent years, (cf. [3–16]). A

widely used Shapley-based framework for deriving feature importance in machine learning

models post-training is Shapley additive explanations (SHAP) [4, 6], which explains individ-

ual predictions’ deviations from the average model prediction. As such, SHAP attributes fea-

ture importance as they are perceived by the model. The more recently introduced Shapley

additive global importance (SAGE) is also based on the Shapley decomposition, but attri-

butes feature importance by a global decomposition of the model loss across a whole data set

[17]. The SAGE framework thus provides an explanation of the influence of the features tak-

ing into account not only the model, but also implicitly the data via the loss function, thus

encapsulating that the model might not be—and most likely is not—a perfect description of

the data [18].

The SAGE value needs to be estimated, and the SAGE estimator is itself a random variable

as the corresponding SAGE estimate is based on data of finite size generated from some

unknown probability distribution. As is the case for any feature importance score, we argue

that the uncertainty in the estimate is equally important as the estimate itself for drawing

conclusions. However, computation of the SAGE-estimate is infeasible even for moderate-

sized data, and thus further approximations are needed [17]. To this end, we introduce Sub-

SAGE, which is motivated by SAGE but can be estimated exactly for tree-ensemble models,

by using a reduced subset of coalitions. Additionally, we describe how to estimate a confi-

dence interval for the Sub-SAGE value. No calculation of such uncertainty exists in the

SAGE package or the literature. We estimate the confidence interval using paired bootstrap-

ping, and demonstrate its calculation for tree ensemble models on simulated as well as geno-

type data. We argue that this procedure provides a way to infer the true feature importance

in the underlying data. The remainder of this paper is structured as follows. In Materials and

methods we introduce the particular genotype data set to be used, as well as background con-

cepts such as the Shapley value, SHAP and SAGE, before moving on to Sub-SAGE, and its

uncertainty. The method is exemplified using synthetic data. In the Results section, the

method is applied on the genotype data before we discuss the results in Discussion and

conclusion.

Materials and methods

Data and use case

In order to evaluate the Sub-SAGE feature importance score, we will apply it using collected

genotype data from the UK Biobank [19, 20]. UK Biobank is a large prospective cohort study

in the United Kingdom that began in 2006 consisting of about 500000 participants. As use

PLOS COMPUTATIONAL BIOLOGY Inferring feature importance with uncertainties

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010963 March 14, 2023 2 / 22

ukbiobank.ac.uk/enable-your-research/apply-for-

access Source code, including numerical values

and scripts for providing the figures in this paper

can be found online at: https://github.com/palVJ/

subSAGE.

Funding: This research was funded by The

Research Council of Norway (https://www.

forskningsradet.no/en/), Grant 272402, Ph.D.

Scholarship at SINTEF, including funding for a

research stay abroad at Yale School of Public

Health to PVJ. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors declare that they

have no competing interests.

https://doi.org/10.1371/journal.pcbi.1010963
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
https://github.com/palVJ/subSAGE
https://github.com/palVJ/subSAGE
https://www.forskningsradet.no/en/
https://www.forskningsradet.no/en/


case, we considered the aim of inferring the feature importance of single nucleotide polymor-

phisms (SNPs) with respect to a logistic regression model for predicting the susceptibility of

obesity (BMI� 30). The model includes a large number of SNPs as features, as well as account-

ing for non-linear effects. Obesity was selected since this particular trait has been extensively

researched in previous genome-wide association studies (GWAS) providing a meaningful way

to evaluate our method [21].

Ethics statement

Ethical approval was obtained by the UK Biobank from the North West Multicentre Research

Ethics Committee, the National Information Governance Board for Health and Social Care in

England and Wales, and the Community Health Index Advisory Group in Scotland. All partic-

ipants provided written informed consent. The research in this paper has been conducted

using the UK Biobank Resource under Application Number 32285. The application for access

to the UK Biobank Resource was approved on October 10, 2018.

Shapley-based explanation methods

We provide a brief introduction to the Shapley decomposition-based SHAP and SAGE

frameworks to quantify feature importance in machine learning models. An advantage of

such Shapley-based frameworks is that they in principle can be applied on any input-output

model, parametric or non-parametric, including non-linear machine learning models such

as neural networks or tree ensemble models. Consequently, non-linear effects can also be

captured using these frameworks. The Shapley decomposition is a solution concept from

cooperative game theory [2]. It provides a decomposition of any value function vðSÞ that

characterises the game, and produces a single real number, or payoff, per set of players in the

game (coalitions). The resulting decomposition satisfies the three properties of efficiency,

monotonicity and symmetry, and is provably the only method to satisfy all three [22, 23,

Thm. 2]. For details see S1 File.

Consider a supervised learning task characterised by a set of M features xi and correspond-

ing univariate responses yi, for i = 1, . . ., N, and a fitted model that is a mapping from feature

values to response values, i.e. xi ! ŷðxiÞ. As usual, uppercase letters denote random variables

while lowercase letters denote observed data values. In this work, we assume independent fea-

tures, implying E[Xj|Xk = xk] = E[Xj] 8 j 6¼ k. This assumption is further discussed in Discus-

sion and conclusion section.

The SHAP value. Definition 1. Let S �M nfkg, with M ¼ f1; . . . ;Mg, denote a subset

of all features not including feature k. S denote the corresponding complement subset of

excluded features (S [ S ¼M). The SHAP value, �
SHAP

k ðx; ŷÞ, for a feature with index k with

respect to feature values x and a corresponding fitted model ŷ, is defined as [6]

�
SHAP
k ðx; ŷÞ ¼

X

S�Mnfkg

jSj!ðM � jSj � 1Þ!

M!
vx;ŷðS [ fkgÞ � vx;ŷðSÞ
h i

: ð1Þ

Here, the value function vx;ŷðSÞ is defined as the expected output of a prediction model con-

ditioned that only a subset S of all features are included in the model,

vx;ŷðSÞ ¼ EX
S
½ŷðXjXS ¼ xSÞ� : ð2Þ

For instance, if XS is a continuous random vector and we assume all features to be mutually
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independent, we have

EX
S
½ŷðXjXS ¼ xSÞ� ¼

Z

x
S

ŷðXS ¼ xS;XS ¼ xS ÞpðXS ¼ xS jXS ¼ xSÞdxS

¼

Z

x
S

ŷðXS ¼ xS;XS ¼ xS ÞpðXS ¼ xS ÞdxS :

ð3Þ

The stochastic behaviour in ŷðXjXS ¼ xSÞ is due to the random vector XS of unknown feature

values. We can think of the difference vx;ŷðS [ fkgÞ � vx;ŷðSÞ as the mean difference in a single

model prediction when using feature k in the model compared to when the value of feature k is

absent. The larger absolute SHAP value a feature k has in a single prediction, the more influ-

ence the feature is regarded to have on this particular prediction.

The SAGE value. Define a loss function ‘ðyi; ŷðxiÞÞ as a measure of how well the fitted

model ŷðxiÞmaps the features to a response, compared to the true response value yi. As defined

in [17], we take the SAGE value function wðSÞ as the expected difference in the observed value

of the loss function when the features in S are included in the model compared to excluding

all features.

Definition 2. Given a data generating process (X, Y), a function ŷ to model the relationship

between X and Y, and a loss function ‘ðyi; ŷðxiÞÞ, we define wX;Y;ŷðSÞ as:

wX;Y;ŷðSÞ ¼ EX;Y ½‘ðY;VX;ŷð;ÞÞ� � EX;Y ½‘ðY;VX;ŷðSÞÞ� : ð4Þ

Here, ; denotes the empty set, while VX;ŷðSÞ is the stochastic version of Eq (2). Specifically,

VX;ŷðSÞ is a random variable since its observed value varies depending on the random vector

XS . vx;ŷðSÞ is a constant as we condition on the observed vector xS . For the case where x and y
are continuous, the expected value of the loss function when only a subset S of feature values

are known is given by

EX;Y ½‘ðY;VX;ŷðSÞÞ� ¼
Z

y

Z

xS

‘ðyðxÞ;EX
S
½ŷðXjXS ¼ xSÞ�ÞpðyjxSÞpðxSÞdxSdy : ð5Þ

Notice that the computation of vx;ŷðSÞ ¼ EX
S

ŷ XjXS ¼ xSð Þ½ � happens inside the loss function,

which is usually non-linear. Also note that in Eq (5), we integrate over all possible values of XS .

Definition 3. The SAGE value for a feature k is defined as [17]

�
SAGE
k ðX;Y; ŷÞ ¼

X

S�Mnfkg

jSj!ðM � jSj � 1Þ!

M!
½wX;Y;ŷðS [ fkgÞ � wX;Y;ŷðSÞ� : ð6Þ

We can think of the difference wX;Y;ŷðS [ fkgÞ � wX;Y;ŷðSÞ as the expected difference in the

loss function when including feature k in the model compared to excluding feature k with

respect to the subset S of known feature values. SAGE is therefore a global feature importance

score (as opposed to the local SHAP value) as it does not evaluate a single prediction, but

rather the impact feature k has across all predictions. The use of the loss function in the SAGE

definition also ensures that the feature importance is not only based on the model, as for the

SHAP value, but also on the data itself.

An interpretation of SAGE is that a positive SAGE value for a feature implies that including

this feature in the model reduces the expected model loss compared to when not including the

feature.
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The features and response can be continuous or discrete. In the discrete case, integrals must

be replaced by sums in Eqs (3) and (5). The expressions in Eqs. (2) and (4) are in general

unknown and need to be estimated for each choice of model and loss function. Consequently,

the SHAP and SAGE values become estimates as well.

Tree ensemble models. Consider a tree ensemble model consisting of several regression

trees fτ(xi) with predicted response ŷðxiÞ, such that ŷðxiÞ ¼
PT

t¼1
ftðxiÞ for T trees. By the lin-

earity property of the expected value, we have

vx;ŷðSÞ ¼ EX
S

�
XT

t¼1

ftðXjXS ¼ xSÞ

�

¼
XT

t¼1

EX
S
½ftðXjXS ¼ xSÞ� : ð7Þ

The computation of EX
S
½ftðXjXS ¼ xSÞ� can be understood through a simple example: The

regression tree illustrated in Fig 1 has depth two and splits on the two features indexed 1 and 2,

which are continuous and mutually independent. The regression tree has parameters such as

splitting points, tj, for branch nodes, and leaf values vj, for leaf nodes. For an observed value of

x2 = 3 we have

EX
S
½ftðXjXS ¼ xSÞ� ¼ EX1

½ftðX1jX2 ¼ 3Þ�

¼ PðX1 � 20Þv3 þ PðX1 < 20Þv2 :

ð8Þ

Fig 1. A regression tree including two features X1 and X2.

https://doi.org/10.1371/journal.pcbi.1010963.g001
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In general, we do not know the value of P(X1� 20), and need to estimate it. Consider N
data instances with recorded feature values from feature k. An unbiased estimate of P(Xk� t)
is then

P̂ðXk � tÞ ¼
1

N

XN

i¼1

Iðxi;k � tÞ ; ð9Þ

where xi,k is the observed value of feature k for data instance i, and I(�) is the indicator function.

Using this estimate, we can also get an unbiased estimate for Eq (8). An unbiased estimate of

EX
S
½ftðXjXS ¼ xSÞ� for any regression tree can be achieved by a recursive algorithm [4] with

running time O(L2M), where L is the number of leaves, see Algorithm 1. This requires the esti-

mated probabilities of ending at a particular node j given previous information from the ances-

tor nodes. If the feature used for splitting at a particular node j is not used in any of the

ancestor nodes of node j, an estimate such as in Eq (9) can be used. If the feature is used for

splitting in any of the ancestor nodes, this must be accounted for by restricting to the interval

of possible values the particular feature can take at node j.
Algorithm 1. Recursive algorithm for computation of EX

S
½ftðXjXS ¼ xSÞ�.

1: Input: Tree fτ with depth d, leaf values v ¼ ðv1; . . . ; v2dÞ, feature used
for splitting f ¼ ðf1; . . . ; f2d � 1Þ and corresponding splitting points
t ¼ ðt1; . . . ; t2d � 1Þ. Estimated probabilities of ending at a node j given pre-
vious information, for all nodes in the tree, p ¼ ðp1; . . . ; p2d � 1Þ, by using
some data (x1, y1), . . ., (xN, yN) of size N. The subset of features S
with corresponding known values xS. The left and right descendant node
for each internal node l ¼ ðl1; . . . ; l2d � 1Þ and r ¼ ðr1; . . . ; r2d � 1Þ. The index of a
node j in the tree fτ.
2: Function CondExpTree(j, fτ, v, t, f, l, r, p)
3: if IsLeaf(j) then
4: return vj
5: else
6: if fj 2 S then
7: if xj � tj then
8: return CondExpTree(lj, fτ, v, t, f, l, r, p)
9: else
10: return CondExpTree(rj, fτ, v, t, f, l, r, p)
11: end if
12: else
13: return CondExpTree(lj, fτ, v, t, f, l, r, p) plj

+

14: CondExpTree(rj, fτ, v, t, f, l, r, p) prj

15: end if
16: end if
17: End Function
18: CondExpTree(1, fτ, v, t, f, l, r, p) . Start at root node.

SAGE in practice. As the expressions in Eqs (2) and (4) must be estimated, in practice we

get a SAGE estimator rather than a SAGE value. However, since the SAGE estimator requires

summing over all 2M−1 subsets S �Mnfkg, for each feature, computing the SAGE estimator

for observed data with many features becomes infeasible. In [17], the SAGE estimate is approxi-

mated through a Monte Carlo simulation process. Specifically, instead of iterating over all 2M−1

subsets, a subset S is randomly sampled with replacement in each iteration out of I iterations in

total. The differences wX;Y;ŷðS [ fkgÞ � wX;Y;ŷðSÞ for each S are estimated by sampling data

instances with replacement and computing sample means (see [17], S1 File for details). For an

arbitrarily large data set, the authors show convergence to the true SAGE estimate as I!1.

Among other things, both the accuracy and convergence speed of the algorithm naturally
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depend on the number of features in the prediction model. Notice that [17] provides the degree

of convergence of the approximation of the estimate, not the uncertainty in the estimate.

Keeping in mind that the SAGE estimator is a random variable, we argue that its uncer-

tainty is equally important as the estimate itself. No calculation of this inherent uncertainty

exists in the SAGE package nor the literature. To this end, we introduce Sub-SAGE, which is

inspired by the SAGE framework, but consists of a reduced number of subsets S 2 Q. While

applicable to any number of features, it is best suited for interpreting a small number of fea-

tures, or a small subset of features in a large feature set.

Sub-SAGE. Given hundreds or thousands of features in a model, the computation time

required to get a satisfactory accurate estimate of SAGE [17] for each feature, quickly becomes

unacceptable. A hybrid approach is to select a reduced subset of features of particular interest

to investigate. For instance in a GWAS, such a filtering process can be achieved via a general-

ized linear mixed model [24], and rank importance based on the computed p-values. An alter-

native filtering procedure that also accounts for non-linear effects is described in [25]. The

association between the reduced subset of promising features, and the response can then be

more thoroughly investigated via a non-linear machine learning model together with SHAP

values. See [25], Figure 10 for an example. To infer whether the model-based importance of

the features investigated via SHAP values is also reflected in the underlying data generating

process, one can compute SAGE values. However, we typically want the reduced subset of fea-

tures to be sufficiently large in order to reduce the chance of missing out on important fea-

tures. Even in this case, computation of SAGE values may be impractical or even infeasible.

For this purpose, we introduce Sub-SAGE, where only a selection of the in total 2M−1 subsets

are involved in the computation for each feature.

If we want to measure the importance of a feature k based on its marginal effect, as well as

potential pairwise interactions it may be involved in, computing S ¼ f;g and S ¼ fmg for

m = 1, . . ., k − 1, k + 1, . . ., M is sufficient. In addition, by including

S ¼ f1; . . . ; k � 1; kþ 1; . . . ;Mg, the set of all features except feature k, can be used to mea-

sure the importance of feature k in the presence of all features at the same time.

Definition 4. Let Qk denote the set of subsets including S ¼ f;g, S ¼ fmg for m = 1, . . .,

k − 1, k + 1, . . ., M, and S ¼ f1; . . . ; k � 1; kþ 1; . . . ;Mg. We define the Sub-SAGE value, ψk,

for feature k as

ckðX;Y; ŷÞ ¼
X

S2Qk

jSj!ðM � jSj � 1Þ!

3ðM � 1Þ!
½wX;Y;ŷðS [ fkgÞ � wX;Y;ŷðSÞ� ; ð10Þ

Each subset is weighted such that the sum of the weights of all subsets with equal size is the

same for each subset size. In addition, the sum of all weights is equal to one. Hence, the con-

struction is similar to the weights defined for Shapley values. See S1 File for details. In this par-

ticular case, there are three possible subset sizes, and so the sum of the weights for each subset

size is 1

3
. Shapley properties such as symmetry, dummy property and monotonicity still hold

for Sub-SAGE. However, as the sum is not over all possible subsets, the Sub-SAGE values do

no longer satisfy the efficiency axiom of the Shapley decomposition, which SHAP and SAGE

do (see S1 File). However, we still consider the Sub-SAGE to be informative with respect to

feature importance via the computed differences wX;Y;ŷðS [ fkgÞ � wX;Y;ŷðSÞ. In addition, the

purpose is only to evaluate a small fraction of all features, not all of them. By only considering

a reduced number of subsets S, compared to SAGE, and only considering a reduced number

of features to evaluate, both computing the Sub-SAGE estimate as well as the uncertainty in

the corresponding Sub-SAGE estimator become feasible for black-box models, such as tree

ensemble models and neural networks.
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Using Sub-SAGE to infer true relationships in the data. As the goal is to infer feature

importance from a black-box model using Sub-SAGE values, similar to calculating p-values

without taking into account the effect of model selection, we must be extra careful. Any model

selection procedure using training data is likely to overfit, resulting in a model consisting of

possibly false relationships that are not a general property of the population from which the

data was sampled. It is therefore essential that the Sub-SAGE value is calculated using indepen-

dent data the model was not fitted on. We denote such independent data as test data,

ðX0

1
;Y0

1
Þ; . . . ; ðX0

NI
;Y0

NI
Þ, with NI samples in total. The following observation is proven S1 File.

Observation: Sub-SAGE value in multiple linear regression. Consider a fitted linear

regression model ŷi ¼ β̂Txi. By using test data independent of the data used for constructing

the linear regression model, and using the squared error loss, one can show that for a feature k,

and any S 2 Qk:

wX;Y;ŷðS [ fkgÞ � wX;Y;ŷðSÞ ¼ 2b̂kCovðY;XkÞ � b̂
2
kVarðXkÞ: ð11Þ

As the expression is independent of the subset S, this is also equal to the Sub-SAGE value of

feature k.

The first term in Eq (11) can be interpreted as the extent to which the influence of feature k
based on the model constructed using training data, is reflected in the independent test data. If

the signs of b̂k and Cov(Y, Xk) are identical, the first term is positive. If they differ, the Sub-

SAGE value will be negative since the second term in Eq (11) is always negative. The second

term b̂k
2VarðXkÞ is equal to the increased variance in the model by including feature k. If the

model regards the feature as important (resulting in non-zero b̂k), and even if the covariance

between Xk and Y has the same sign as b̂k, the benefit of including feature k in the model will

depend on the increased variance of the model. This is by construction in line with the bias-

variance trade-off [26].

Sub-SAGE applied on tree ensemble models. SHAP values can be estimated efficiently

for tree ensemble models, even with hundreds of thousands of features [25], by improving

Algorithm 1 to get a significantly reduced running time of O(TLD2), for T trees each of tree

depth D [4]. Unfortunately, there is no similar way to reduce the running time for estimation

of SAGE values, as well as Sub-SAGE values, for tree ensemble models with non-linear choices

of loss functions [4].

We consider a tree ensemble model consisting of T trees. Consider a particular feature k to

compute the Sub-SAGE value as well as a subset S 2 Qk. We separate the trees in the model

into two groups τk and the complement group (tk) where τk is the set of trees including feature

k used at least once for splitting.

Regression with squared error loss. For regression a common loss function is the

squared error between the response and prediction per sample, i.e. ‘ ¼ ðyðxÞ � ŷðxÞÞ2. Then

one can show that (see S1 File for the derivation),

wX;Y;ŷðS [ fkgÞ � wX;Y;ŷðSÞ

¼ EX;Y

�

ðYðXÞ � VX;ŷðSÞÞ
2
� � EX;Y ½ðYðXÞ � VX;ŷðS [ fkgÞÞ

2

�

¼ EX;Y

�

2YðXÞ
�
X

j2tk

VX;fj
ðS [ fkg

�

� VX;fj
ðSÞÞ þ

�
X

j2tk

VX;fj
ðSÞ
�2

�

�
X

j2tk

VX;fj
ðS [ fkgÞ

�2

þ 2

�
X

j=2tk

VX;fj
ðSÞ
��
X

j2tk

VX;fj
ðS [ fkgÞ � VX;fj

ðSÞ
��

:

ð12Þ
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Classification with binary cross-entropy loss. A commonly used loss function for binary

classification problems is binary cross-entropy, ‘ ¼ � yðxÞ log ŷðxÞ � ð1 � yðxÞÞ log ð1 �

ŷðxÞÞ ¼ ð1 � yðxÞÞ
PT

j¼1
fjðxÞ þ log 1þ e�

PT

j¼1
fjðxÞ

� �

. For this loss function, one can show

that (see S1 File)

wX;Y;ŷðS [ fkgÞ � wX;Y;ŷðSÞ ð13Þ

¼ EX;Y

�

ð1 � YðXÞÞ
XT

j¼1

VX;fj
ðSÞ þ log

�

1þ exp
�

�
XT

j¼1

VX;fj
ðSÞ
���

ð14Þ

� EX;Y

�

ð1 � YðXÞÞ
XT

j¼1

VX;fj
ðS [ fkgÞ þ log

�

1þ exp
�

�
XT

j¼1

VX;fj
ðS [ fkgÞ

���

ð15Þ

¼ EX;Y

�

ð1 � YðXÞÞ
�
X

j2tk

VX;fj
ðSÞ � VX;fj

ðS [ fkgÞ
�

ð16Þ

þ log
1þ exp

�
�
P

j2tk
VX;fj
ðSÞ �

P
j =2 tk

VX;fj
ðSÞ
�

1þ exp
�
�
P

j2 tk
VX;fj
ðS [ fkgÞ �

P
j =2 tk

VX;fj
ðS [ fkgÞ

�

0

@

1

A

#

: ð17Þ

Plug-in estimates. As discussed earlier, the expression wX;Y;ŷðS [ fkgÞ � wX;Y;ŷðSÞ needs

to be estimated for each S 2 Qk, and based on data, ðx0
1
; y0

1
Þ; . . . ; ðx0

NI
; y0

NI
Þ, never used during

training of the model. Let v̂x0 ;y0 ;ft
ðSÞ for a particular observation (x0, y0) and regression tree fτ

denote the estimate of vx0 ;ft
ðSÞ ¼ EX

S
½ftðX

0jX0

S ¼ x0
SÞ� as described in Algorithm 1. A plug-in

estimate of ψk, denoted ĉk, for a regression problem with continuous response for a tree

ensemble model using the squared error loss is given by

ĉk ¼
X

S2Q

jSj!ðM � jSj � 1Þ!

3ðM � 1Þ!

"
2

NI

XNI

i¼1

y0

i

X

j2tk

v̂x0
i ;fj
ðS [ fkgÞ � v̂x0

i ;fj
ðSÞ

 !

þ
1

NI

XNI

i¼1

ð
X

j2tk

v̂x0
i ;fj
ðSÞÞ2 �

1

NI

XNI

i¼1

ð
X

j2tk

v̂x0
i ;fj
ðS [ fkgÞÞ2

þ
2

NI

XNI

i¼1

X

j =2 tk

v̂x0
i ;fj
ðSÞ

 !
X

j2 tk

v̂x0
i ;fj
ðS [ fkgÞ � v̂x0

i ;fj
ðSÞ

 !#

:

ð18Þ

The corresponding plug-in estimate for the binary cross-entropy loss given in Eq (17) can

be found in a similar fashion, basically by estimating expected values as their corresponding

sample means. For tree ensemble models with tree stumps (maximum depth of one for each

tree), the estimate in (18) is further reduced and can be expressed as sample variance and

covariance terms, see S1 File.

Inference of Sub-SAGE via bootstrapping. The importance of any feature may be evalu-

ated by estimating Sub-SAGE values. Similar to SAGE, a positive Sub-SAGE value for a feature

k indicates that including the feature in the model is expected, based on the subsets S 2 Qk, to

PLOS COMPUTATIONAL BIOLOGY Inferring feature importance with uncertainties

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010963 March 14, 2023 9 / 22

https://doi.org/10.1371/journal.pcbi.1010963


reduce the loss function. However, the corresponding Sub-SAGE plug-in estimator given the

data generating process ðX0

1
;Y0

1
Þ; . . . ; ðX0

NI
;Y0

NI
Þ from some unknown probability distribution

includes uncertainty, and this should be evaluated before making any assumptions about fea-

ture importance. The complexity of the Sub-SAGE plug-in estimators makes nonparametric

bootstrapping a tempting approach. One possible procedure is to iteratively, given indepen-

dent data points ðx0
1
; y0

1
Þ; . . . ; ðx0

NI
; y0

NI
Þ, resample the data points with replacement to get a

bootstrapped sample ðx�
1
; y�

1
Þ; . . . ; ðx�NI

; y�NI
Þ, and train a model for each bootstrapped sample

(with potential hyperparameters fixed). For each such generated model, a corresponding plug-

in estimate, ĉ�b, can be computed, and after B iterations, the sample ðĉ�
1
; . . . ; ĉ�BÞ can approxi-

mate B realizations arising from the true distribution of the plug-in estimator. However, in a

high-dimensional setting, generating even one model may be time-consuming, and there may

be circumstances where only one particular model is available for the user together with a test

data sample of insufficient size to train additional models. Another option is to leave the

model fixed, and only bootstrap the data repeatedly to get the sample ðĉ�
1
; . . . ; ĉ�BÞ. In this

paper, we focus on the latter procedure. A (1 − 2α)100% confidence interval can be approxi-

mated by the percentile interval given by ½ĉ�ðaÞ; ĉ�ð1� aÞ�, where ĉ�ðaÞ is the 100α empirical per-

centile, meaning the B � αth least value in the ordered list of the samples ðĉ�
1
; . . . ; ĉ�BÞ. The

accuracy in the percentile interval increases for larger number of bootstrap samples. The algo-

rithm of the paired bootstrap applied specifically to tree ensemble models is given in Algo-

rithm 2. Notice that for each bootstrap sample, the probability estimates in the trees need to be

updated according to Eq (9). In situations where the plug-in estimator is biased, or there is

skewness in the corresponding distribution, the bias-corrected and accelerated bootstrap

[27], may give even more accurate confidence intervals at the cost of considerable increase in

computational efforts.

Algorithm 2 Paired bootstrap of Sub-SAGE value with percentile interval

1: Given independent test data ðx0
1
; y0

1
Þ; . . . ; ðx0

NI
; y0

NI
Þ, model ŷðxÞ ¼

PT
t¼1

ftðxÞ,
feature k, a loss function and α to estimate (1 − 2α)100% confidence
interval:
2: Pre-allocate vector BootVec of length B, the total number of boot-
strap samples.
3: for b = 1, 2, . . ., B do
4: Resample data NI times with replacement to get
5: ðx�

1
; y�

1
Þ; . . . ; ðx�NI

; y�NI
Þ

6: Update probabilities estimates in all the trees in ŷðxÞ to get p�

7: BootVec[b] = ĉ�k
8: end for
9: Percentile interval given by ½ĉ�ðaÞ; ĉ�ð1� aÞ�

Proof of concept—With known underlying data generating process

In this section, we exemplify the Sub-SAGE method on synthetic data with a known relation-

ship defined as

f ðXiÞ ¼ a0 þ a1Xi;1 þ a2Xi;2 þ a21Xi;1eXi;2 þ a3X2
i;3 þ a4sinðXi;4Þ

þa5 logð1þ Xi;5Þ � Xi;5IðXi;6 > 7Þ þ �i ;
ð19Þ

with a0 = −0.5, a1 = 0.03, a2 = −0.05, a21 = 0.3, a3 = 0.02, a4 = 0.35, a5 = −0.2, and where the
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features are sampled from the following distributions

X1 � Binomðsize ¼ 2; p ¼ 0:4Þ

X2 � Binomðsize ¼ 2; p ¼ 0:04Þ

X3 � Gðshape ¼ 10; rate ¼ 2Þ

X4 � Unifð0; pÞ

X5 � Poissonðl ¼ 15Þ

X6 � Nðm ¼ 0; s ¼ 10Þ

� � Nðm ¼ 0; s ¼ 2Þ :

ð20Þ

In addition, we generate 94 noise variables: j = 7, . . ., 47 with a normal distribution Xj* N(μj,

σj) and j = 48, . . ., 100 with a binomial distribution Xj* Binom(2, pj) where μj, σj and pj are

sampled from a uniform distribution. In realistic applications, the data distributions and rela-

tions are unknown and the purpose of model fitting is to estimate the relations between vari-

ables. Data is generated to give a total of 16000 samples, and then separated randomly in three

disjoint subsets: Data for training (50%), data for evaluation during training (30%) and inde-

pendent test data (20%) used for estimating Sub-SAGE values. We fit an ensemble tree model

using XGBoost [28] to the true influential features 1, . . ., 6 together with the noise variables 7,

. . ., 100.

The hyperparameters are fixed to max_depth = 2, learning rate η = 0.05, subsample = 0.7,

regularization parameters λ = 1, γ = 0 and colsample_bytree = 0.8 with early_stoppin-

g_rounds = 20 using training data (n = 8000) and validation data (n = 4800), and a squared

error loss. See [28] for details about the hyperparameters. This results in a final model includ-

ing a total of 230 trees and 62 unique features out of the 100 input-features.

From the trained model, each feature is given a score to evaluate its feature importance

based on the model. We apply the expected relative feature contribution (ERFC) [25], given

data of size N, which is basically a summary score from the corresponding SHAP values for

each feature and individual data point,

kk ¼
XN

i¼1

j�
SHAP
i;k ðxi; ŷÞj

j�
SHAP
0
j þ
PK

j¼1
j�

SHAP
i;j ðxi; ŷÞj

; ð21Þ

with �
SHAP

0
¼ vx;ŷð;Þ. The ERFCs scores can be computed based on the data used to construct

the model, as we only need to measure what the model considers important. The features with

the largest ERFC-values are then considered the most promising ones based on the model.
Depending on your hypothesis of interest, one can evaluate the uncertainty in the feature

importance by computing Sub-SAGE estimates with corresponding bootstrap-derived percen-

tile intervals. However, it is important that the Sub-SAGE estimates are calculated based on

independent test data never used during training.

From the trained model, we compute the ERFC based on the training data and validation

data together (n = 12800), and Table 1 shows the top 10 features with the largest ERFC-values.

We see that the XGBoost model has accurately ranked the most influential features

among the top 10 list, for this rather simple relationship. These scores, based on SHAP val-

ues, are only with respect to what the model considers important. The Sub-SAGE can now be

applied to infer whether feature importance from the model is also reflected in the data. As

an example, let us consider features 6, 1, 2 and 12 where feature 6 has a strong influence,
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feature 1 has a weaker influence, and feature 2 has the weakest influence, while feature 12 has

no influence with respect to f(xi) in Eq (19). Their Sub-SAGE estimate along with histograms

to estimate the corresponding distribution of the Sub-SAGE estimators, using B = 1000 boot-

strap samples, are shown in Fig 2 for training plus validation data as well as for independent

test data.

We see that Sub-SAGE values inferred using training data overestimate the false influence

of feature 12, while using the test data correctly indicates that feature 12 has a weak or no influ-

ence. We also see from the other histograms that using the training data underestimates the

uncertainty in the Sub-SAGE estimate. By using the test data for computation of the Sub-

SAGE estimates, the estimated 95% percentile intervals of the Sub-SAGE values for each fea-

ture are 6 : (39.45, 44.15), 1 : (−0.038, 0.14), 2 : (−0.043, 0.040) and 12 : (−0.030, 0.0050). These

ranges allow us to conclude that feature 6, correctly, is highly influential, while feature 12 is

highly unlikely to have any influence. Moreover, feature 1 is likely to be influential, while the

influence of feature 2 is very uncertain.

To correct for a potential bias in the plug-in estimator of the Sub-SAGE as well as poten-

tial changes in the standard deviation of the estimator at different levels, the bias-corrected

and accelerated bootstrap confidence interval may give more accurate bootstrap confidence

intervals [27]. This results in the intervals 6 : (39.45, 44.13), 1 : (−0.034, 0.14), 2 : (−0.047,

0.037) and 12 : (−0.031, 0.0040), with only negligible changes from the percentile confidence

intervals.As the data generating process is known, we can compare the true SHAP value at

each point with the corresponding SHAP value from the fitted model. Fig 3 shows that the

influence of feature 6 is quite accurately modelled, while the effect of feature 1 and particu-

larly feature 2 is highly underestimated when x1 = 1 and x2 = 2. Since there is an interaction

effect involving features 1 and 2, the SHAP value of feature 1 depends on the value of feature

2. It also becomes clear that feature 12, according to the model, has a negative trend in the

SHAP value, but the true SHAP value is equal to zero (no importance), regardless of the

value of feature 12. See S1 File for derivations. This shows an example where feature 12 is

erroneously attributed high predictive importance by SHAP, while the corresponding Sub-

SAGE value correctly indicates it has no importance.

We can explore the results even further by comparing the estimated Sub-SAGE values from

the tree ensemble model with the exact Sub-SAGE value from the true model in (19), as well as

by comparing with the exact SAGE value. The results are given in Table 2 and the details of the

computations in S1 File.

Table 1. The resulting ranking based on the expected relative feature contribution (ERFC) after having trained an

XGBoost model consisting of six influential features (x1 − x6) and 94 noise features (x7 − x100).

Feature ERFC

x6 0.48

x5 0.060

x3 0.026

x1 0.022

x4 0.0036

x2 0.0030

x12 0.0028

x30 0.0022

x40 0.0019

https://doi.org/10.1371/journal.pcbi.1010963.t001
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The comparison shows that the XGBoost model has captured almost all of the relationship

between the response and feature 6, while the influence of feature 1, and particularly feature 2

has been underestimated. It also shows the small difference between the true Sub-SAGE and

SAGE value with respect to the model in (19), and therefore the small gain of computing the

SAGE value in this particular case. However, as the true relationship in this case is restricted to

pairwise interactions, the insignificant difference between SAGE and Sub-SAGE cannot

in general be anticipated for instance when the true relationship includes higher-order

interactions.

Fig 2. The estimate of the Sub-SAGE, and the corresponding bootstrap distribution for the synthetic data for features x6, x2, x1 and x12, when

applying data used during training (orange), and independent test data (blue).

https://doi.org/10.1371/journal.pcbi.1010963.g002
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Fig 3. Comparison of true SHAP value for each data point with the estimated SHAP value from the model fitted on the synthetic data, Eq (19).

The deviations explain the reasons behind under- and overestimation of feature importance using SHAP values.

https://doi.org/10.1371/journal.pcbi.1010963.g003

Table 2. Exact Sub-SAGE and SAGE value for features 1, 2, 6 and 12 using true model in (19), denoted TM,

together with estimated Sub-SAGE value using the trained XGBoost model, denoted XGB, based on syntetic data

based on (19).

Feature Sub-SAGE (TM) Sub-SAGE, (XGB) SAGE (TM)

6 42.37 41.83 42.64

1 0.071 0.057 0.072

2 0.017 0.00073 0.018

12 0 -0.0133 0

https://doi.org/10.1371/journal.pcbi.1010963.t002
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Results

Application on genetic data using the UK Biobank resource

To demonstrate the ability of Sub-SAGE on observed data, we consider a realistic machine

learning problem using both genetic and non-genetic data of moderate size from UK Biobank.

The aim is to infer the influence of specific features with respect to obesity (BMI� 30), by

training an XGBoost model and computing Sub-SAGE values. We treat this as a classification

problem between the categories obese and non-obese (see [25] for details). Of particular inter-

est is whether any genetic markers are important. The most used method in this setting is a so-

called genome-wide association study (GWAS), where each genetic variant is tested individu-

ally in a general linear (mixed-effects) regression model [24, 29]. A corresponding p-value of

less than 5 × 10−8 is often considered statistically significant. This tiny significance level is cho-

sen due to the multiple comparison problem [30]. When the same association is replicated in

an independent data set, the association is considered to be robust.

We study a particular XGBoost model constructed in [25]. The model was trained to pre-

dict the probability of an individual being obese, p(Yi = 1|xi), given genetic and non-genetic

data, xi, such that

logitðpðYi ¼ 1jxiÞÞ ¼
XT

t¼1

ftðxiÞ;

consisting of T regression trees. The genetic data consists of so-called minor allele counts or

genotype values from single nucleotide polymorphisms (SNPs) filtered to limit dependence

between the SNPs without significant loss of information [25]. In detail, the particular

XGBoost model mentioned above was constructed after the so-called ranking process

explained in [25], which ranks features by importance and filter for correlation. Using a sam-

ple of 207 015 individuals, a total of 529 024 SNPs were split into 50 randomly selected subsets,

each consisting of SNPs with mutually small correlation (Pearson’s correlation r2 < 0.2) and

unrelated individuals, with the purpose of limiting the correlation between features due to

linkage disequilibrium [31], as well as reducing the effect of population stratification and cryp-

tic relatedness [32]. For each such subset, XGBoost models in combination with cross-valida-

tion were fitted, and the importance of each SNP, taking into account all the generated

models, was measured according to the model-agnostic ERFC score introduced in [25] based

on SHAP values. The ranked list of features by importance was again filtered for correlation

(Pearson’s correlation r2 < 0.2), and used during the so-called model fitting process based on

data not used during the ranking process (see Figure 3 in [25]). The aim in the model fitting

process is to find how large the portion of top-ranked features in the training data must be to

get the strongest prediction model, using the PR-AUC metric [33], restricted to an ensemble

model consisting of XGBoost models constructed via cross-validation (see Figure 9 in [25]).

From the best-performing ensemble model, and for simplicity restricted to regression trees of

maximum depth equal to two, we picked one of the XGBoost models from this ensemble

model as the particular model to investigate further in this paper. Non-genetic features

included during the process are sex, age, physical activity frequency, intake of saturated fate,

sleep duration, stress and alcohol consumption. Not surprisingly, these non-genetic features

are considered most important, and therefore also included in our particular XGBoost model

to investigate. During the model fitting process, the hyperparameters were optimized within a

restricted region of the hyperparameter space (given in Table 4 in [25]). When restricting to

regression trees of maximum depth equal to two, the best performing ensemble model resulted

in the following hyperparameter values: Learning rate η = 0.05, colsample = subsample =
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colsample_by_tree = 0.8, max_depth = 2, λ = 1, γ = 1, early_stopping_rounds = 20, with binary

cross-entropy loss. The particular XGBoost model to be investigated is constructed based on

64 000 individuals from UK Biobank, and includes 532 features spread along a total of 607

trees. Computing SAGE values for all features would be very time-consuming, if not infeasible.

Other feature importance scores that are faster to compute, yet less trustworthy, such as SHAP

or ERFC must typically be used instead when pre-evaluating the importance of each feature.

The features with the largest ERFC-scores based on the training data are given in Table 3. We

consider those to be the most relevant for further investigation.

Before we compute the Sub-SAGE values, we check each feature in the context of domain

knowledge. While the non-genetic features are considered the most important, the most

important SNP according to the model is rs17817449. This SNP is connected to the FTO gene

at chromosome 16, and has previously been (statistically significant) associated with obesity in

a large number of genome-wide association studies including different independent data sets

[21]. The SNP rs13393304 at chromosome 2 has previously been associated with obesity using

UK Biobank data [34]. From the PheWeb platform [35], a generalized linear mixed model

[24], based on TopMed imputation on each individual [36], was constructed separately on

each trait out of a total of 1419 traits in UK Biobank. In this case, the SNP rs489693 is second

most associated with obesity, yet not statistically significant with p-value = 2.3 × 10−7. Likewise,

for the SNPs rs1488830, rs10913469 and rs2820312 the computed p-values are 2.2 × 10−3,

7.1 × 10−5 and 1.1 × 10−2 respectively, and therefore not declared statistically significant with

respect to obesity. However, the association between the SNP rs2820312 and hypertension is

in fact statistically significant (2.5 × 10−9) in the PheWeb platform, and obesity is known to be

a risk factor for hypertension [37].

The uncertainty of the feature importance of the SNPs rs17817449, rs13393304 and

rs2820312 in Table 3 are explored more thoroughly by computing Sub-SAGE estimates includ-

ing paired bootstrap-derived percentile intervals, with B = 1000 bootstrap samples, by using

20000 (unrelated White-British) participants from UK Biobank not used while training the

model. We also compute Sub-SAGE for the randomly selected SNP rs7318381, which has

never been associated with obesity, and with a small ERFC in the XGBoost model (0.0016).

The results are given in Fig 4.

Table 3. The resulting ranking based on the expected relative feature contribution (ERFC) for the particular

XGBoost model investigated based on training data consisting of 64 000 individuals from UK Biobank.

Feature ERFC

Alcohol intake frequency 0.088

Genetic sex 0.086

Physical activity frequency 0.073

Intake of saturated fat 0.044

Sleep duration 0.036

Stress 0.034

Age at recruitment 0.033

rs17817449 0.017

rs489693 0.012

rs1488830 0.011

rs13393304 0.010

rs10913469 0.01

rs2820312 0.0086

https://doi.org/10.1371/journal.pcbi.1010963.t003
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The Sub-SAGE values do indicate that both rs17817449 and rs13393304 are highly likely to

be associated with obesity. The 95% percentile interval of the Sub-SAGE value for rs17817449

is (0.0006, 0.0016), and (0.00014, 0.00073) for rs13393304. The SNPs rs2820312 and rs7318381

are less likely to be associated with obesity, and if they are true associations, the uncertainties

in the estimates indicate that the effects are microscopic. The 95% percentile intervals for

rs2820312 is (−7.08 × 10−5, 2.95 × 10−4), and (−1.13 × 10−5, 6.32 × 10−5) for rs7318381.

When dealing with relatively large data sizes such as for the genetic example above, the

bias-corrected and accelerated bootstrap interval can become infeasible due to the estimation

Fig 4. The estimates and corresponding uncertainties in the Sub-SAGE values for the four SNPs agree with previous studies (GWAS) regarding SNP-

association with obesity.

https://doi.org/10.1371/journal.pcbi.1010963.g004
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of the acceleration parameter. However, as the acceleration parameter is proportional to the

skewness of the bootstrap distribution, and if the bootstrap distribution indeed has a small

skewness, as is the case here, it is often sufficient to set the acceleration parameter equal to

zero. This gives no change in the percentile intervals of rs17817449 and rs13393304, but the

bias-corrected 95% bootstrap intervals of rs2820312 and rs7318381 become (−6.10 × 10−5,

3.0 × 10−4) and (−1.18 × 10−5, 6.19 × 10−5) respectively. These are negligible changes, indicat-

ing that the plug-in estimates are low-biased.

With the number of individuals and size of the model explained above the provided R and

Rcpp code performs a single Sub-SAGE estimate in around 15–20 minutes using CPUs avail-

able at the Farnam Cluster from Yale Center for Research Computing. The bootstrap samples

were accomplished using job arrays in a high-performance computing environment, and were

completed within around 1.5 hours for each feature.

Discussion and conclusion

We present a Shapley-value-based framework for inferring the importance of individual fea-

tures, including uncertainty in the estimator. We argue that SAGE values, or Sub-SAGE values,

are more appropriate for quantifying global feature importance than SHAP values, as SHAP val-

ues only depend on the fitted model itself, good or bad, while SAGE and Sub-SAGE values addi-

tionally account for the performance with respect to the true data generating process via the loss

function. Effectively, using SAGE and Sub-SAGE for inferring feature importance reduces the

false positive rate compared to when using SHAP. As the computation of SAGE values quickly

becomes challenging for increasing number of features, we introduce the Sub-SAGE value as an

appropriate alternative. We demonstrate how to infer feature influence for a tree ensemble

model with high-dimensional data using Sub-SAGE and paired bootstrapping. As an example,

we use XGBoost, a gradient tree-boosting model, applied to both a known data generating pro-

cess, as well as realistic high-dimensional data. We emphasize the importance of using test data,

independent of data used to construct the model, to compute Sub-SAGE estimates.

The particular choice of Qk in the definition of Sub-SAGE was based on the fact that mar-

ginal effects and pairwise interaction effects are accounted for. An alternative is to include all

subsets with cardinality restricted to some value. Yet another approach is to sample a restricted

number of subsets S following the same probability distribution as for the Kernel SHAP

method, see [3] for details. The main idea is that the Shapley consistency property is not a

necessity if the question is whether a feature k is regarded as important with respect to a partic-

ular prediction model.

It is important to notice that the percentile intervals, constructed to evaluate the uncertainty

in the Sub-SAGE estimate, themselves include uncertainty. The uncertainty of the percentile

intervals depends on the number of bootstraps, B, as well as the size n of data samples. How-

ever, in addition, the uncertainty also depends on the ratio p/n, where p is the total number of

features used in the model (not necessarily the number of input features for constructing the

model). This fact is particularly important in high-dimensional problems, and it has been dis-

cussed for instance in [38]. When applied to linear models, one observation from a simulation

is for instance that the paired bootstrap becomes more conservative (loss of power) the larger

the ratio p/n is. Observe that for the simulation example above, p/n = 62/3200 = 0.019, while

for the genetic data, the ratio is p/n = 533/20000 = 0.027, deliberately chosen to be small in

order to account for the problems arising when p/n becomes too large. For the genetic data, a

filtering process is first needed as the data from UK Biobank originally includes around

530000 SNPs and 207000 individuals (p/n = 2.56). The applied filtering method and potential

pitfalls are described in [25].
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It seems reasonable to apply the same loss function in the Sub-SAGE estimate as the loss

function that was used to construct the model. However, there may be situations where it is

meaningful to compute the Sub-SAGE values for a different loss function than the loss func-

tion used during training in order to make more objective interpretations. This may for

instance be the case when the model is provided ‘as is’, and you do not know the training loss

function, or when using adapted loss functions, e.g. weighted binary cross-entropy, but the

interpretation is relevant for a standard cross-entropy.

If we use Sub-SAGE to infer importance of a feature, let the null hypothesis be that the cor-

responding Sub-SAGE value is less than or equal to zero. A simple procedure to investigate

this is to construct a one-sided (1 − α)100% percentile interval, and reject the null hypothesis if

the corresponding lower bound is greater than zero. However, the use of a bootstrap confi-

dence interval to construct a hypothesis test often has a low statistical power [39]. If in addition

several features are tested simultaneously, a multiple testing procedure would be necessary in

order to control the false positive rate [30]. We leave it to future research as to how to construct

a more powerful hypothesis testing procedure, and how to control the false positive rate in a

multiple testing procedure.

The statistical power when inferring feature importance based on Sub-SAGE will rely on

the model uncertainty, the degree to which the prediction model has captured the true rela-

tionship between a particular feature and the response.

In this work we have assumed all features to be mutually statistically independent, an unre-

alistic scenario in most cases. If many features are statistically dependent, one is required to

estimate conditional expected values (see [3] for details). Even for medium-size data sets this

often becomes very tedious and even infeasible in most cases. One possibility is to use principal

component analysis for dimensionality reduction, but this is not straightforward if we need

the features of the model to be meaningful, and thereby explainable. In addition, principal

component analysis is based on variance in the features and not explanatory power. An impor-

tant line of future research to allow for evaluation of feature importance in a high-dimensional

setting is dimensionality reduction that preserves interpretability.

The estimates provided by Sub-SAGE, as for SHAP values, will be more reliable the better

the overall predictions from the model. Recent research has shown the strong benefit of

including individual polygenic risk scores [40] as a covariate in the XGBoost model for greater

performance in predictions of susceptibility for several phenotypes [41]. Computation of Sub-

SAGE values in this case would depend on the correlation between PRS and individuals SNPs

used in the XGBoost model, and if so the need for estimating conditional expected values.

In this paper, we have focused on the marginal effect of each feature, which is the total effect

of the feature including the isolated effect of the feature as well as possible interaction effects

the feature may be involved in. In principle, the construction of SHAP interaction values to

quantify pairwise interaction effects, as introduced in [4] and applied in [25], could be

extended to also include SAGE or Sub-SAGE interaction values. In this setting, the running

time is even more computationally demanding. In that respect, the idea of reducing the num-

ber of subsets to include in the Shapley-based computations can be one approach to reduce the

computation time. Interesting future research would be how to apply the idea of Sub-SAGE to

search for interaction effects.
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34. Karlsson T, Rask-Andersen M, Pan G, Höglund J, Wadelius C, Ek WE, et al. Contribution of genetics to

visceral adiposity and its relation to cardiovascular and metabolic disease. Nature medicine. 2019; 25

(9):1390–1395. https://doi.org/10.1038/s41591-019-0563-7 PMID: 31501611

35. Gagliano Taliun SA, VandeHaar P, Boughton AP, Welch RP, Taliun D, Schmidt EM, et al. Exploring

and visualizing large-scale genetic associations by using PheWeb. Nature Genetics. 2020; 52(6).

https://doi.org/10.1038/s41588-020-0622-5 PMID: 32504056

36. Taliun D, Harris DN, Kessler MD, et al. Sequencing of 53,831 diverse genomes from the NHLBI

TOPMed Program. Nature. 2021; 590(7845):290–299. https://doi.org/10.1038/s41586-021-03205-y

PMID: 33568819

37. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-Induced Hypertension. Circulation

Research. 2015; 116(6):991–1006.

38. Karoui NE, Purdom E. Can We Trust the Bootstrap in High-dimensions? The Case of Linear Models.

Journal of Machine Learning Research. 2018; 19:66.

39. Givens GH, Hoeting JA. Bootstrapping. In: Computational Statistics. John Wiley & Sons, Ltd; 2012. p.

287–321.

40. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nature

Reviews Genetics. 2018; 19(9):581–590. https://doi.org/10.1038/s41576-018-0018-x PMID: 29789686

41. Elgart M, Lyons G, Romero-Brufau S, Kurniansyah N, Brody JA, Guo X, et al. Non-linear machine learn-

ing models incorporating SNPs and PRS improve polygenic prediction in diverse human populations.

Communications Biology. 2022; 5(1):1–12. https://doi.org/10.1038/s42003-022-03812-z PMID:

35995843

PLOS COMPUTATIONAL BIOLOGY Inferring feature importance with uncertainties

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010963 March 14, 2023 22 / 22

https://doi.org/10.1038/s41591-019-0563-7
http://www.ncbi.nlm.nih.gov/pubmed/31501611
https://doi.org/10.1038/s41588-020-0622-5
http://www.ncbi.nlm.nih.gov/pubmed/32504056
https://doi.org/10.1038/s41586-021-03205-y
http://www.ncbi.nlm.nih.gov/pubmed/33568819
https://doi.org/10.1038/s41576-018-0018-x
http://www.ncbi.nlm.nih.gov/pubmed/29789686
https://doi.org/10.1038/s42003-022-03812-z
http://www.ncbi.nlm.nih.gov/pubmed/35995843
https://doi.org/10.1371/journal.pcbi.1010963

