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a b s t r a c t

Many ocean structures located offshore are supported by large vertical concrete columns.
High and steep storm waves – in the process of breaking – may induce large local
slamming loads on these columns. The present work is related to the fundamental
physics of the local hydroelastic shell response due to slamming.

The concrete columns supporting typical offshore structures are large. The size means
that full scale tests of a segment of the column is impractical and expensive. Model-scale
testing in a wave tank is also challenging. Firstly, the scaling of structural properties
need to adhere to the scaling laws of hydrodynamics. Secondly, the manufacturing of
realistic Froude scaled elastic shell models is hard since curved shells carries loads by a
combination of bending and membrane action. The challenge is to scale both the bending
and membrane action properly. One part of this study shows how realistic Froude scaled
elastic shells representing concrete shells can be designed.

The second part of this study presents results from experimental and numerical
analysis of drop tests. Numerical hydroelastic analyses of both the elastic model shells
and the real concrete shells are presented. The results show that even large and thick
concrete shells experience significant hydroelastic effects during slamming.

The hydroelastic response of the concrete shells is dominated by only a few structural
eigenmodes. This means that the calculated dynamic amplification factors, DAF, resemble
those of one-degree-of-freedom mass–spring systems exposed to loads of finite duration.

The structural responses are seen to significantly modify the hydrodynamic loads.
This hydrodynamic load modification consists of the well-known added mass term but
also a time dependent slam damping term which reduce the structural response when
properly accounted for. Both terms are necessary to calculate the concrete shell response
accurately.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Many ocean structures are supported by large, surface piercing, cylindrical, concrete columns. These columns may be
ubjected to large and design critical wave slamming loads during their lifetime.
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The industry often carries out scaled wave tank or ocean basin model tests to check both local and global structural
ntegrity. The local shell response, which is the concern of the present paper, is often estimated using finite element
nalysis (FEA). A relevant way to carry out this type of analysis is to apply wave slamming pressure time series directly
nto the finite elements. These pressure time series may come from Froude scaled model tests or class guidelines
ike (DNV, 2019). It is an open question how this response calculations should be carried out and uncertainties concern;
1) accuracy of the slamming force measurements, (2) scaling of pressures from the model to the full-scale structure,
3) statistical variation of measured wave slamming forces and (4) hydroelastic response. The latter uncertainty being the
ain subject covered by this paper.
The uncertainties of the slamming force measurement (1) and scaling of slamming loads (2) are both connected to the

omplexity of the hydrodynamic flow of wave slamming. The measured pressures during slamming may be very local in
ime and space, which complicates measurements, and the flow can be complicated and involve, for instance, air cavities,
ir bubbles, acoustic water flow, non-viscous flow separation, ventilation, and cavitation which complicates scaling of
ressures from the model to the full-scale structure (Faltinsen, 2006; Faltinsen and Timokha, 2009). The uncertainty
elated to statistical variation (3) of the measured slamming forces means that stochastic analysis is needed in design.
lamming is a strongly nonlinear phenomenon and probability functions of the amplitudes of relevant response variables
ust be based on fitting data to a proper stochastic distribution obtained from time-domain numerical simulations or

rom model tests involving enough realizations of relevant sea states (Næss and Moan, 2012). The uncertainty related to
ydroelasticity (4), concerns to what extent the response of the concrete shell affects the hydrodynamic loads, or to what
egree the concrete shell responds dynamically. Concerning previous research on marine steel and aluminium structures
how that slamming load and response must be analysed as a combination of hydrodynamics and structural mechanics
n many cases. In this case the analysis of the hydrodynamic flow and structural reaction, in terms of deflections and
tresses, cannot be separated. Hence, there is a mutual interaction between the fluid and the structure where the structural
ibrations cause hydrodynamic loads and vice-versa (Faltinsen and Timokha, 2009). Faltinsen and Timokha (2009) shows
hat the hydrodynamic analysis may be considerably simplified when considering structural responses instead of local
ydrodynamic pressures. However, concrete columns are very different than marine steel and aluminium structures and
t is an open research question to what extent concrete columns exposed to wave slamming requires thorough hydroelastic
nalysis.
Knowledge of the local structural response of concrete shells during wave slamming or more idealized slamming

vents, such as the impact on calm water, is scarce. The present work investigates the local structural response of concrete
hells, when dropped from a height and impacting on an undisturbed free surface. This is referred to as a drop test in the
following text. In this way the fundamental response of concrete shells due to slamming impact is studied under nearly
repeatable conditions. The understanding of the fundamentals of the hydroelastic response during drop tests can then be
used to motivate simplified and effective analysis procedures for hydroelastic analysis of wave impacts.

A drop test experiment is carried out on a geometrically scaled model, constructed as close as possible to a specific
offshore structure, according to Froude scaling laws. This enables the study of how large concrete shells responds to
slamming at a practical scale. Furthermore, since Froude scaling laws are applied in the design of the model shells, the
same shells can be installed in an ocean basin to study their response due to wave slamming. This latter topic of concrete
shell response due to wave slamming is the subject of a follow-up paper.

The hydrodynamic toolbox for slamming contains potential-flow methods, experiments and CFD (Computational Fluid
Dynamics) solvers. All these methods can be used in combination with analytical or finite element structural models to
analyze the hydroelastic response of concrete shells during calm water impact. In the present work, a simplified method
based on a potential flow strip theory and a modal method for the structure is applied to obtain a formulation which is
simple and accurate and shows the most important hydrodynamic interaction terms.

The numerical method is inspired by the work by Ionina and Korobkin (1999) who published a 2D mathematical
model of a cylinder impacting calm water. The cylinder was modelled using analytical shell theory, and the deflection
of the shell was expressed as a sum of dry eigen modes. The hydrodynamics was solved analytically assuming; (1)
incompressible, potential flow theory, (2) slamming free surface condition accounting for water uprise, and (3) body
boundary conditions enforced at the mean free surface. This means that the flat plate approximation was applied. The
validity of this approximations depends on the penetration depth of the cylinder at the time of maximum structural
response (strains). The wetted length of the cylinder was solved as part of the coupled mathematical problem. Ionina and
Korobkin compared their results to the experimental works of Shibue et al. (1994) and Arai and Miyauchi (1998). These
experimental studies were carried out with cylinders with different wet natural periods, meaning that the penetration
depth at the time of maximum response was larger in Arai and Miyauchi (1998) than in Shibue et al. (1994) for the same
impact velocity. Ionina and Korobkin (1999) shows good agreement between their mathematical method and the stiff
cylinder in Shibue et al. (1994) and less accurate agreement with the softer cylinder in Arai and Miyauchi (1998). This
is consistent with the fact that the flat plate approximation is expected to be less accurate for larger penetration depths.
Sun and Faltinsen (2006) solved the cylinder impact problem using a theory similar to Ionina and Korobkin (1999), and
also with a more accurate hydrodynamic model maintaining nonlinear boundary conditions and was not able to explain
the difference between Ionina and Korobkin’s (1999) method and the experiments in the case of the soft cylinder (Arai
and Miyauchi, 1998) by the simplifications introduced in the hydrodynamical model. The works in Ionina and Korobkin
(1999) and Sun and Faltinsen (2006) suggest that the hydrodynamic problem can be significantly simplified and may still
provide accurate results.
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Other research on steel and aluminium structures provides important hypotheses for the present work. Faltinsen (1999)
tudied theoretically the hydroelastic problem of a wedge consisting of a stiffened plate. Orthotropic plate theory was used
or the stiffened plates and strip theory based on Wagner’s theory (Wagner, 1932) was used to model the flow of water.
he hydro-elastic effect was defined as the ratio between the magnitude of strain when hydroelasticity was accounted
or, divided by the magnitude of strain when the structure was loaded statically. This fraction is often referred to as
he dynamic amplification factor, DAF. The resulting plot, (see (Faltinsen, 1999) Fig. 17) shows similarities with that of
ynamic amplification of a single degree of freedom system exposed to transient loads (See e.g. Clough and Penzien, 1975
94). The structural response (strain maxima) is governed by the load duration compared to the wet natural period. When
he duration of the load is short compared to the natural period (impulse response) the strain maxima are proportional
o the impact velocity. In the limit as the load duration goes to zero, the analysis in Faltinsen (1999) is equivalent to
he response of a horizontal beam undergoing free vibrations, at the wet natural frequency. In this case, Faltinsen (1997)
howed that the proper initial condition for the beam was that the spatially averaged initial beam deflection velocity was
qual to the impact velocity. Only one structural mode was considered, and the maximum strain occurred at one quarter
f the wet natural structural period. The theoretical results by Faltinsen (1997) were experimentally validated.
The overall objective of this work is to improve the understanding of the local response of large concrete columns when

xposed to both wave and drop test impacts. To study these problems experimentally in full-scale is both expensive and
mpractical. To enable both model tests in ocean basins, and drop tests at a practical scale, we study slamming of concrete
hells at a scale of 1:55 assuming Froude scaling.
Hence, there is a need to create an approximate Froude scaled model shell, which allows for measuring the structural

esponse directly under Froude scaled conditions. To do so, the fundamental Froude scaling principles of thin elastic
hells needs to be established. Furthermore, a proper Froude scaled elastic shell needs to be constructed out of available
aterials and drop tested before tested in waves. Furthermore, there is a need to understand the role of hydroelasticity
f concrete shells in terms of dynamic amplification factors in a similar fashion as presented in Faltinsen (1999) for steel
nd aluminium structures. For engineers who estimates the structural response based on slamming force measurements,
hich are most often measured on nearly rigid surfaces, it is particularly relevant to understand how the hydrodynamic

oads are modified by the structural response. These load modifications, if important, needs to be accounted for in FEA
esponse calculations.

The following sections address the research tasks listed above. In Section 2, the fundamental Froude scaling principles
f thin elastic shells are elaborated, and simplifications of these principles are introduced to allow for construction
f approximate Froude scaled elastic shells from available materials. These Froude scaled elastic sections representing
oncrete are, to the authors knowledge, the first of its kind and enable the study of the fundamental concrete shell
esponse due to both calm water and wave impacts. The latter being the topic of a future paper.

The drop test experiment is described in Section 3. The numerical method is presented in Section 4 and compared
ith the experimental measurements in Sections 5 and 6. The numerical method is applied to both the model shells at
geometric scale of 1:55 and to the large concrete shells at prototype scale (1:1) in order to quantify how accurately

he response of the approximate Froude scaled model shells represents the response of full-scale concrete shells (See
ections 5–7). The effect of hydroelasticity is studied through dynamic amplification factors in Section 8. Finally, the
ydrodynamic load modifications due to structural response for concrete shells are presented in Section 9. Results
resented in this paper are relevant for full-scale concrete shells, and hence the data are presented in full-scale values.
n the parts of the paper where model scale data are relevant this is explicitly stated.

This research shows how realistic Froude scaled elastic shells representing concrete shells can be designed. Further-
ore, the results show that even large, thick and heavy concrete shells experience significant hydroelastic effects during
lamming. Hence, the structural responses are seen to significantly modify the hydrodynamic loads during impact. These
oad modifications should be properly accounted for when designing concrete shells exposed to slamming.

. Scaling strategy of concrete shells exposed to wave impact

Fig. 1(a) shows a monopile during model tests in an ocean basin at a geometric scale of 1:55 exposed to a steep and
igh wave. The full-scale monopile has a diameter of 31 m. The model test is carried out to study the local structural shell
esponse due to wave impact. Only a part of the cylinder which is facing the wave is considered elastic while the rest of
he cylinder is assumed rigid. The elastic section indicated in Fig. 1 is 24.6 m tall, with the lower edge at the mean free
urface. The concrete section spans a sector of 77.3 degrees of the cylinder.
The full-scale shell was constructed in reinforced and prestressed lightweight concrete. Fig. 2 shows the generalized

esign. The concrete wall was reinforced with an inner and outer reinforcement layer (dashed lines) consisting of 10 steel
ars with diameter of 25 mm per meter in both the hoop direction and vertical direction. The prestressing reinforcement
s in the centre of the cross-section (black line), made of steel wires. The concrete wall is prestressed with a membrane
orce of 4.0 mN/m in both the vertical and the hoop direction.

Concrete shells are often analysed as a homogeneous shell with a linear elastic material model. In the present work
n effective Young’s modulus of 30 GPa is assumed. Furthermore, the average density and Poisson’s ratio of the full-scale
oncrete is equal 2300 [kg/m3] and 0.20 [–], respectively.
The modelling of concrete is subject to standards like (NS3473, 2003; FIB, 2010). One uncertainty of the linear elastic

aterial model is that the Young’s modulus depends on the rate of strain (FIB, 2010). This effect depends on the type of
3
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Fig. 1. (a) Wave hitting a monopile during a scaled ocean basin model test at 1:55. (b) A local approximate Froude scaled model shell representing
oncrete covering a section of the column with a local elastic section.

Fig. 2. The cross section of the reinforced and prestressed lightweight concrete shell considered in this work.

oncrete considered. For relevant strain rates relevant for wave slamming the effective Young’s modulus may be increased
y up to 20% (FIB, 2010). For the present calculations, the Young’s modulus is increased by 10% to account for the effect
f strain rate. As the present work focus on the fluid structure interaction aspects of concrete response, a linear elastic
aterial model is sufficient.
The following text describes the general scaling principles for thin concrete shells when exposed to wave slamming

oads. To arrive at the elastic scaling principles for thin elastic shells, it is reasonable to consider an idealized impact
overned by hydrodynamic flow conditions which follow Froude scaling. Hence, the water is assumed incompressible,
nviscid and the flow is irrotational. Furthermore, free-surface tension is neglected. This means that potential flow theory
s valid. The scaling problem of the elastic shell is studied through nondimensionalization of a relevant set of equations
escribing the physics of the problem, which in turn leads to identification of nondimensional numbers. In order for the
ondimensional mathematical problem to be equal for two scales it requires that a set of nondimensional numbers are
qual at the two scales.
For the problem of the wave impacting the elastic shell section in Fig. 1, the time instant just before the wave touches

he elastic section of the cylinder is denoted t = 0. Important nondimensional parameters before t ≤ 0 and during t > 0
he impact are elaborated next.

The velocity potential of the water flow can be found through a boundary value problem consisting of the following
quations: (1) Laplace’s equation for the water domain, (2) Bernoulli’s equation for the pressure on the free surface,
3) The kinematic free surface condition and (4) kinematic boundary conditions at the wetted surface of the cylinder.
hen this boundary value problem is made nondimensional, it allows for identification of important non-dimensional
arameters which needs to be equal in model and full-scale for the scaling to be valid. Only Bernoulli’s equation provides
nondimensional number, which is the Froude number. This implies that the characteristic wave impact velocity U

ollows Froude scaling. In addition, the model and full-scale cylinder needs to be geometrically scaled, meaning that all
xternal dimensions of the structure, like height and radius, needs to be a factor 1/λ smaller in model scale. Here, λ is
he geometrical scaling factor, which in this work is 55.

When the wave touches the elastic shell (t > 0), the water and the structure start to interact. The hydrodynamic
pressure relates to the dynamic equilibrium equation of the elastic shell at its surface. Thin shell theory can be used to
describe the deformations of the full-scale concrete shell. Leissa (1973) presents the dynamic equilibrium equations for
a thin circular cylindrical shell. The equation of motion for the normal displacement of the shell is according to (Leissa,
1973 Eqs. (2)–(7)):

ρch
∂2w

+ D
∂4w

+
2D ∂4w

+
D ∂4w

+
K

w +
νK ∂u

+
K ∂v

= −p. (1)

∂t2 ∂x4 R2 ∂θ2∂x2 R4 ∂θ4 R2 R ∂x R2 ∂θ

4



B.C. Abrahamsen, F. Grytten, Ø. Hellan et al. Journal of Fluids and Structures 116 (2023) 103804

a
t
P

d

t
F
l
r
K
c
B
F
e
w
f
i
t
p
c

s
G
I
p
w

Here, u, v and w are the displacements of a point on the shell in the axial (x-direction), circumferential (θ-direction)
nd radial direction, respectively. The cylindrical coordinate system is indicated in Fig. 1(b). Furthermore, h is the shell
hickness, R is the shell radius, K = Eh/

(
1 − ν2

)
and D = Eh3/[12

(
1 − v2

)
]. Here E is Young’s modulus and ν is

oisson’s ratio. p is the hydrodynamic pressure on the cylinder surface and ρc is the density of the concrete shell. This
equation is made nondimensional using the impact velocity U and the radius of the column R in order to identify relevant
nondimensional parameters. The equation is divided by ρU2 where ρ is the water density. Furthermore, u, v, w are
made nondimensional with respect to R. Time, t , is made non-dimensional with the factor R/U . Then the following
nondimensional parameters are identified,

I1 =
ρch
ρR

, I2 = D/(ρU2R3), I3 =
K

ρU2R
and I4 = ν. (2)

Nondimensionalising the two other shell equilibrium equations for circumferencial (hoop) and axial displacements
(Leissa, 1973 Eqs. (2)–(7)) does not provide additional nondimensional numbers. The solution of the nondimensional
mathematical problem is equal when the nondimensional numbers 1–4 are equal for the model and the full-scale problem.
This can be achieved if; R = λR, E = řλE, h = λh, ρch = řλρch, ν = ν, ρ = řρ. Here, ř is the salt-water to fresh-water
ensity ratio, ř = ρ/ρ, and variables with a bar indicates model scale parameters.
Manufacturing a scaled model shell which satisfies these conditions depend on (1) what materials and manufacturing

techniques which are available, (2) the required geometrical scale factor λ, and (3) the dimensions and material properties
of the full-scale concrete shell. For a scaling factor of 1:55 the ideal material would have a correct scaled modulus
of elasticity equal to 30 GPa/55/1.024 = 0.53 GPa. A reliable material could not be identified with this low Young’s
modulus. Hence, it was impossible to obtain equal nondimensional numbers I1, I2, I3 and I4. To simplify the modelling,
he importance of the different non-dimensional numbers in Eq. (2) were studied to identify their relative importance.
or the impact on calm water the slamming load is largest initially and decays with time. This means that the slamming
oad acts in a relatively small area along the vertical centreline of the shell facing the wave. For this type of load, it is
elevant to study the analytical solution of a shell with a static point load presented by Timoshenko and Woinowsky-
rieger (1959) p 501 (originally proposed by Lord Rayleigh). For this theory to be valid, the boundaries of the circular
ylinder are free at both ends. The analytical solution depends on the plate bending stiffness D, and the Poisson ratio ν.
ased on this analytical solution, D (bending stiffness) is considered more important than K (membrane stiffness) and ν.
urthermore, since concrete shells are relatively heavy—with a structural mass comparable to the local added mass effect
xperienced during slamming, it was found important to maintain the correct mass per area of the shell. This assumption
as confirmed when studying the modal mass force and added mass force for three impact velocities V=10, 16 and 24 m/s

or the dominant mode of vibration. These modal forces are plotted in Fig. 26 and show that structural modal mass force
s roughly 50% of the added mass force for t > 0.6Td, where Td is the dominant dry natural period of the shell. This means
hat the structural mass is significant and must be modelled accurately. Based on these arguments the nondimensional
arameters I1 and I2, were found more important than I3 and I4 in Eq. (2). This assumption is studied in detail later through
omparisons of numerical simulations of the model shells and the full-scale shells in Sections 5–8.
To further minimize shell scaling errors, a material was selected with as low Young’s modulus as possible (but not

maller than 0.53 GPa). This material was polycarbonate (PC) which has a typical Youngs modulus ranging from 2.0 to 2.5
Pa. The mechanical properties of polycarbonate are not sensitive to small temperature variations, see Cao et al. (2014).
t is also easy to form, and it can sustain large deformations without permanent deformations. In the present experiment
olycarbonate plates with thicknesses of 6 mm and 9.5 mm were used. The corresponding full-scale concrete thicknesses
ere found through the equation:

D

D
= řλ4. (3)

The corresponding full-scale thickness following the scaling of the bending stiffness were 584 mm and 872 mm.
Dedicated tensile tests were carried out according to ISO 527-1 (ISO, 2019) to properly document the material properties
of polycarbonate. Dog bone test specimen were cut from the same flat plate as used for the model test in both the axial
and the circumferential direction. Six tensile tests were carried out for each of the two plate thicknesses and directions
to measure the Young’s modulus. The tensile tests showed small directional dependency (anisotropy) on the Young’s
modulus in the range of strains measured during the drop tests, which was up to 0.2%.

Fig. 3 shows the stress strain curves for both the 9.5 mm and the 6 mm polycarbonate. The average Young’s modulus
was estimated at 0.25% strain: 2.1 GPa for the thick polycarbonate and 2.5 GPa for the thin polycarbonate. The 12 measured
stress strain curves are plotted and shows that the test-to-test variability is larger for the thin 6 mm plate than for the
9.5 mm plate. Four separate tensile tests using digital image correlation (DIC) was used to derive the Poisson’s ratio of the
material. The contactless DIC technique were preferred over traditional transverse clip-on extensometers since the latter
tend to cause significant bending of soft polymer tensile samples. The Poisson’s ratio was estimated to be 0.43 for the
polycarbonate. The strain rate of the plate reached a maximum of about 3 [1/s] in the drop test experiments. The effect
of strain rate for polycarbonate was studied by Cao et al. (2012), who tested experimentally the strain rate effect for a
large range of strain rates. The results show that the effect of strain rate is not significant for the present work.

To shape the test specimen, the plates were dried, and shaped through drape-forming in an oven at approximately 160
degrees Celsius. Fig. 4(a) shows the measured difference between the actual radius r of the thin shell and the targeted
5
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Fig. 3. Nominal stress–strain curves from uniaxial tensile tests for the (a) 9.5 mm and the 6.0 mm polycarbonate plates used for the Froude scaled
elastic model shells.

Fig. 4. Plot (a) shows the measured radial shape of the thin polycarbonate shell, r − R, when scaled to full-scale dimensions. The maximum radial
mperfection is 90 mm/31000 mm=2.9‰. Photograph (b) shows the inside of the polycarbonate shell with revolver bullets used to ballast the
hell to the correct scaled mass. The accelerometers are blue and placed in a 3 x 3 matrix. The strain gauges measure the strain in the hoop and
ongitudinal directions in six different points on the plate. (For interpretation of the references to colour in this figure legend, the reader is referred
o the web version of this article.)

adius R (full-scale value). The production error shows a trough with a maximum depth of 90 mm (full-scale value) in the
iddle of the shell while the plate is distorted outwards on both the left and right side. The effect of the imperfection on

he calculated results are quantified later in this paper through hydroelastic calculations.
The polycarbonate shells needed to be ballasted to obtain the correct mass per square meter of the shell m according

o the following scaling law:
m
m

= řλ (4)

For this purpose, revolver bullets were glued to the inside of the plate. 8.1-g bullets with a diameter of 9.09 mm was
mounted on the inside of the thin 6 mm shell while 12.95-g bullets with diameter of 10.9 mm were glued on the inside of
the thick 9.5 mm plate. The distance between the bullets were 22.5 mm for both shells. Fig. 4(b) shows the configuration
of the bullets mounted on the inside of the shell. The equivalent material properties of the scaled elastic model shells are
compared to the material properties of the full-scale concrete shells in Table 1.
6
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Table 1
The material properties of reinforced lightweight concrete and the model scale ballasted polycarbonate shells. The full-scale thicknesses are calculated
based on Froude scaling the bending stiffness of the shell.
Scale: Units Thick shell Thin shell

55 Full-scale Full-scale Model scale Full-scale Full-scale Model scale
specification as modelled as modelled specification as modelled as modelled

Young’s mod. GPa 30 2.1 30 2.5
Poisson’s ratio [–] 0.20 0.43 0.43 0.20 0.43 0.43
Density kg/m3 2300 2391 1200 2300 2241 1200
Thickness mm 872 872 6.0 584 584 9.5
Mass per area kg/m2 2006 2085 36.98 1342 1308 23.2

Fig. 5. The Froude scaled elastic concrete section (yellow) bolted onto a stiff aluminium frame. H and b are measured from centre to centre of the
corner bolts of the shell. Model scale dimensions. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

The Froude scaled elastic concrete shells were mounted onto the stiff aluminium frame shown in Fig. 5. The elastic
shell was bolted to the frame using 12 bolts along each of the curved edges and 15 bolts along each of the straight edges.
The outer surface of the shell was part of a circular cylindrical surface with radius of 281.5 mm (model scale value). The
elastic shell was 380 mm wide and 448 mm tall measured from centre to centre of the corner bolts attaching the shell
to the frame (model scale values).

HBM Type 3/350 LY18 strain gauges with a measurement area of 3 × 1.6 mm2 were mounted on the elastic sections.
The strain gauges were mounted in pairs on the inside and outside surfaces, in the hoop and vertical direction of the
shell to document the bending moment and membrane force at six different measurement points. The locations of these
measurement points were selected based on experience from Wåsjøet al. (2017) which showed that; (1) the dominant
deflection shape have several half waves in the circumferential direction while only one half wave in the axial direction
of the shell, (2) the magnitude of bending moments and axial forces are expected to be larger in the circumferential
direction than in the axial direction and (3) the largest bending moments are located in the centre of the shell. From this
perspective, four measurement points were instrumented in the middle of the shell along the circumferential direction
and three points along the front of the shell in the vertical direction.

Fig. 6(a) shows the numbering system (1–6) and plot (b) shows the location of these measurement points as red
squares in mm (model scale values). Nine Meggitt 7264B-2000 accelerometers were also attached to the inside of the plate,
the numbering system and coordinates of these points are shown as blue squares in Fig. 6. These accelerometers were
designed for crash testing and has a resonance frequency of 28 kHz and a range of 2000 g. The mass of one accelerometer
was measured to 0.8 g, and the mass of the accelerometer cable between two ballast bullets (22 mm) was measured to
0.25 g. The mass of the accelerometers introduced a local mass error on the nine 22 × 22 mm2 areas on which they were
mounted. The mass of the polycarbonate plate and ballast bullets can be found in Table 1. Based on these data the mass
error on the nine 22 × 22 mm2 areas were estimated to 9.4% for the thin shell and 5.9% for the thick shell. This extra mass
was considered small and was neglected in all numerical calculations in this paper. The strain gauge and accelerometer
measurements were both sampled at a frequency of 19.2 kHz (model scale value). In addition, the signals were filtered
at a frequency of 2 kHz (model scale value).

The membrane forces and bending moments were derived from the strain measurements assuming thin shell theory
(Timoshenko and Woinowsky-Krieger, 1959). The moments and membrane forces are shown in full-scale values in this
7
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Fig. 6. Location of accelerometers (blue) and strain measurement points (red). (a) numbering. (b) location of measurement points in (s,z) coordinates
where the centre of the coordinate system is in the middle of the section (+) and s follows the surface of the shell in the horizontal direction. The
shell is seen from the outside (wet side). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

report since the results are most relevant for full-scale concrete shells. The full-scale hoop bending moment per unit width
is:

Mθ =
[
εin
θ − εout

θ + ν
(
εin
z − εout

z

)] Eh2

12
(
1 − ν2

) řλ3

109 . (5)

The hoop bending moment is positive when there is a positive strain (tension) inside the shell and a negative strain
(compression) on the outside of the shell. The bending moment per meter is in full-scale units; [kNm/m]. The membrane
force per meter in the hoop direction is:

Nθ = Npt +
[
εin
θ + εout

θ + ν
(
εin
z + εout

z

)] Eh
2
(
1 − ν2

) řλ2

1012 . (6)

The membrane force is positive when the plate is in tension, and negative when compressed. The membrane forces are
in full-scale units; [mN/m]. Both the bending moments and the membrane forces are calculated based on the measured
strains. Furthermore, the pretension Npt = −4.0 mN/m is added to the membrane force to account for pretension caused
by the taut cables in the shell (See Fig. 2). The corresponding formulas for the bending moments and membrane forces
in the z-direction is found by substituting z for θ in the above equations.

3. Set up of water impact experiment

Fig. 7(a) shows the set-up of the drop tests. A rotating arm was mounted on hinges on the left side. The arm was
rotated upwards and released to rotate freely until the elastic section hit the calm water surface. The set up with the
rotating arm was identical to the set-up of the tests by Abrahamsen et al. (2020). The impact velocity was defined as the
vertical component of the velocity at the front of the shell (point A) at the time of impact. The impact velocity was derived
from both energy conservation and by integration of accelerometers mounted on the frame, as explained by Abrahamsen
et al. (2020). Fig. 7(b) shows the impact velocity in full-scale as a function of drop height in model scale. The blue curve
shows the theoretical impact velocity derived from energy conservation. The red dots show the measured impact velocity
derived from accelerometers as a function of the measured drop height for the tests with the thick elastic shell. Table 2
lists the drop tests for the thin and the thick elastic shells.

Fig. 8(a) and (b) shows the measured hoop directional bending moment and hoop membrane force near the centre of
the shell at pt. 4. These drop tests were carried out with impact velocity of 12.2 m/s with the thick elastic model shell.
The plot shows that the elastic shell vibrates with a governing frequency of about 23 Hz. More of the physical aspects
of the impact are discussed together with numerical simulations in Section 5. The plots in Fig. 8 shows the test used for
comparison with the numerical method, test 9, together with three repetition tests 10, 11 and 12. To give an overview of
the repeatability for all 6 measurement points the extreme hoop bending moment max|M| and extreme hoop membrane
8
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Fig. 7. (a) The drop test set up showing the hinged arm and the frame holding the elastic model shells. (b) Estimated Impact velocities based on;
theoretical energy conservation (blue curve) and integration of accelerometer mounted on the drop rig (red dots). Drop heights are in model scale,
while impact velocities are given in full-scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 2
Test programme for the thick and thin Froude scaled elastic concrete shells. The impact velocity was estimated from
integration of acceleration measurements.
Test no: V (m/s) Shell Test no: V (m/s) Shell

1 6.23 Thick 25 5.90 Thin
2 6.44 Thick 26 5.92 Thin
3 6.50 Thick 27 5.98 Thin
4 6.15 Thick 28 8.68 Thin
5 8.63 Thick 29 8.97 Thin
6 8.67 Thick 30 8.71 Thin
7 10.52 Thick 31 10.70 Thin
8 10.48 Thick 32 10.64 Thin
9 12.19 Thick 33 10.67 Thin
10 12.34 Thick 34 12.14 Thin
11 12.27 Thick 35 12.12 Thin
12 12.22 Thick 36 8.57 Thin
21 11.76 Thin 37 8.34 Thin
22 12.21 Thin 38 6.02 Thin
23 8.65 Thin 39 6.12 Thin
24 8.73 Thin

force max|N| were calculated for the same four repetitions tests. These extremes are plotted as bars in Fig. 8(c) and (d).
The repetition error was estimated as the coefficient of variation COV defined as the standard deviation of the extremes
to the mean of the extremes. The COV was all less than 2.7% for the extreme hoop bending moments and 2.8% for the
extreme hoop membrane force for all six measurement points. These estimates of repeatability (COV) are uncertain due
to limited number of repetitions. However, the low COVs indicate that repeatability is not an important concern when
comparing results with numerical calculations.

The measurement errors of strain gauges originate from different sources like the strain gauge itself, amplifier and
acquisition set up and that the strain of the material is not fully transmitted to the strain gauge. From previous experience
error from strain gauges are in the order of 1 to 2%. Before the drop tests the straight edge of the test sections were
clamped to the edge of a table and loaded with a mass hanging from the other straight edge of the elastic section. From
these tests the largest strain errors were between 5%–10% compared to FEA. However, this test contained uncertainties
beyond that of the strain gauge itself, like for instance the level of clamping of the edge and uncertainty related to
the Young’s modulus of the polycarbonate entering the FEA. Furthermore, the calculated shell bending moments and
membrane forces, which were derived from the measured strains are proportional to the Young’s modulus of the
polycarbonate. The material tests reported in Fig. 3 shows that the uncertainty of the Young’s modulus is in the order of
±5%. This material uncertainty is larger for polycarbonate than for construction steel and aluminum. These measurement
and material errors should be considered when comparing the experimental measurements and numerical calculations.
9
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m

4

a

Fig. 8. Plot (a) and (b) shows the measured hoop bending moment and hoop membrane force at the centre of the shell (pt. 4) in the thick elastic
model shell. The four different drop tests, 9, 10, 11, 12 were carried out with an impact velocity of 12.2 m/s to document the repeatability of
the drop test measurements. Plot (c) and (d) shows the measured extreme bending moments and membrane forces, max|M| and max|N| for all 6
easurement points for the same tests.

. Hydroelastic theory for concrete shells

Fig. 9 shows a curved shell impacting a calm free surface during a drop test. The shell is fixed along all boundaries
nd the panel is curved with a radius of curvature equal to R before impact. The shell is discretized into finite elements.
10
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Fig. 9. Coordinate system of the shell (r, θ, z ′) and coordinate system for the hydrodynamic load (x, y, z).

he element nodes are defined in a cylindrical coordinate system (r, θ, z ′) which is defined relative to the coordinate
ystem (x′, y′, z ′), with the x′ axis pointing downwards. The displacement of the nodes (u, v, w) is the displacement in
he radial (r), hoop (θ ) and longitudinal (z ′) direction of the shell. The three corresponding rotations of each node of the
esh are defined according to the right-hand rule. The displacement and rotations of each node is collected in the nodal
isplacement column vector {D}. The equation of motion is written as:[

M
] {

D̈
}

+
[
K
]
{D} =

{
Rext} . (7)

Here,
[
M

]
is the mass matrix,

[
K
]
is the stiffness matrix and

{
Rext

}
is the load vector and dot mean time derivative.

he equation system is the reduced system after boundary conditions are accounted for. The dry eigenvalue problem is
olved using the finite element (FE) software (Nastran, 2019). The shell is discretized into rectangular four noded shell
lements (Nastran element formulation: quad4). The response is then expressed in terms of several dry natural modes

Di, which are collected in a matrix:

[Ψ ] =
[
D1D2 . . .Dn

]
. (8)

The nodal displacement column vector {D} is expressed in terms of these modes, with modal amplitudes stored in the
column vector {Z} in the following way,

{D} = [Ψ ] {Z} . (9)

The modal equations follow:

[M]
{
Z̈
}

+ [K ] {Z} = {R} . (10)

Here, {R} = [Ψ ]T
{
Rext

}
and [M] = [Ψ ]T [M] [Ψ ] and [K ] = [Ψ ]T [K ] [Ψ ] are diagonal mass and stiffness matrixes.

he nodes along the boundary of the shell, coincides with the location of the bolts for the reference FE mesh. By dividing
he sides of the elements by a mesh refinement factor (mrf ) equal to 2, 4 and 8, refined meshes are obtained. At the FE
odes corresponding to the location of the bolts, the nodes are fixed in all rotations and displacements. The nodes on
he boundary of the shell located between the bolts were fixed in the following way along the vertical straight edges:
ranslations (r, θ ,z): fixed, free, free and rotations (r, θ ,z): free, fixed, free; and for the curved edges: translations (r, θ ,z):
ixed, free, free and rotations (r, θ ,z): free, free, fixed.

The hydrodynamic problem is solved assuming incompressible potential flow theory. The velocity potential is ex-
pressed in the following way:

φ = ϕ0 (x, y, z; t) Ż0 (t) +

Nm∑
j=1

ϕj(x, y, z; t)Żj(t). (11)

Here, Ż0 (t) = V0 and Żj(t) are the unknown modal amplitude velocity of mode j and Ż0 (t) is the rigid body velocity
during the impact which was measured during the experiments.

The measured rigid body velocity of the frame during impact is shown in Fig. 10. The blue curves show the
nondimensional rigid body impact velocity, and the red curves show the nondimensional deflection velocity as a function
of time for the thick elastic shell for the impact velocity of ∼12.2 m/s. The rigid body velocity shows less than 3% reduction
11
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Fig. 10. Experimental nondimensional rigid body velocity (blue) and nondimensional deflection velocity near the centre of the shell at pt. 2–2 (red)
s a function of time. The plot shows the measurements of four different repetitions of the impact. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)

t the time of maximum deflection, which corresponds to the first zero up-crossing of the red curve. Based on this
rgument the rigid body velocity is assumed constant during the impact, meaning that Ż0 (t) = V for the calculations.
The coordinate system is fixed at the mean free surface, with z pointing downwards (see Fig. 9). The kinematic body

boundary conditions are, ∇φ0 · n = n3 and ∇φj · n = Ψ
(n)
j for j = 1, 2, . . . ,Nm, which should be imposed on the exact

wetted surface of the cylinder. Here n is the unit normal vector of the shell surface pointing into the water domain and
Ψ

(n)
j denotes the normal component of the deformation of mode j at the wetted surface of the cylinder. However, in this

work the body boundary conditions are imposed according to the flat plate approximation. This means that the body
boundary condition is written as ϕ0z = 1 and ϕjz = Ψ

(n)
j for j = 1, 2, . . . ,Nm and is imposed on z = 0. The pressure was

found through the linearized Bernoulli’s equation, p = −ρφt . The modal load was then:

Ri = −

∫∫
S
pΨ (n)

i dS. (12)

Here S means the wetted surface of the elastic shell. Since the velocity potential is zero on the mean free surface, we
can interchange the time derivative in the integrand with the time derivative of the integral. That means Ri is,

Ri = ρ
∂

∂t

∫∫
S

⎛⎝ϕ0 (x, y, z; t) Ż0 (t) +

Nm∑
j=1

ϕj (x, y, z; t) Żj (t)

⎞⎠Ψ
(n)
i dS for i = 1, . . . ,Nm. (13)

The added mass coefficients are identified as,

Ai0 = −ρ

∫∫
S
ϕ0 (x, y, z; t) Ψ

(n)
i dS, for i = 1, . . . ,Nm, (14)

and

Aij = −ρ

∫∫
S
ϕj (x, y, z; t) Ψ

(n)
i dS, for i = 1, . . . ,Nm, j = 1, . . . ,Nm. (15)

The hydrodynamic modal force is then written as,

Ri = −
∂

∂t

(
Ai0Ż0 (t)

)
−

Nm∑
j=1

∂

∂t

(
AijŻj (t)

)
. (16)

The modal force is then,

{R} = −
{
Ȧ0

}
V −

[
Ȧ
] {

Ż
}

− [A]
{
Z̈
}
. (17)

The first term is the modal slamming force for a rigid plate. The second term is proportional to the impact velocity and
the modal response velocity and is denoted the slam damping term. The third term is the time dependent added mass
term.
12
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Fig. 11. The hydrodynamic added mass is estimated on a set of water lines intersecting the finite element nodes.

The intersection line between the free surface and the shell during the impact is assumed to be rectangular and
ndependent of the deformation of the shell. The wetted area is defined by the parameter c(t) in Fig. 9. During the wetting
f the shell surface the wetted length c(t) is found from Wagner’s theory (Wagner, 1932), then when the shell is fully
etted c is assumed constant and equal to half the width of the section B. These conditions are written as:

c = 2
√
RVt, ċ = V

√
R
Vt

for c ≤ B/2

c = B/2, ċ = 0 for c > B/2.
(18)

The hydrodynamical boundary value problem is solved for many drafts as shown in Fig. 11. These drafts are chosen
uch that the water line coincides with the finite element nodes. When the FE mesh is refined by a factor 2 then the
umber of drafts in the calculation of the added masses increases by the same factor. This means that the load time
istory is refined when the mesh is refined.
Combining Eqs. (17) and (18) leads to the following coupled hydroelastic modal equation system:

([M] + [A])
{
Z̈
}

+ ([B] +
[
Ȧ
]
)
{
Ż
}

+ [K] {Z} = −
{
Ȧ0

}
V. (19)

To include experimentally observed structural and hydrodynamical damping, a diagonal Rayleigh damping term [B] is
included. The damping ratio ξi is ξi = Bi/(2

√
kimi), which means that Bi = 2ξimiωi. The damping ratio is expressed relative

o the dry mass of the shell. The hydroelastic modal equation system is integrated in time using the Newmark-beta time
ntegration procedure as defined by Cook et al. (2002) p. 418. This is an implicit method where the unknown at the new
ime step n + 1 is found by solving the following equation system,[

Keff]
{Z}n+1 = −

{
Ȧ3

}
n+1 V +

(
[M] + [A]n+1

) {
1

β∆t2
{Z}n +

1
β∆t

{
Ż
}
n +

(
1
2β

− 1
){

Z̈
}
n

}
+

[
B + Ȧ

]
n+1

{
γ

β∆t
{Z}n +

(
γ

β
− 1

){
Ż
}
n + ∆t

(
γ

2β
− 1

){
Z̈
}
n

}
.

(20)

The effective stiffness matrix contains contributions from added mass and damping:[
Keff]

=
1

β∆t2
(
[M] + [A]n+1

)
+

γ

β∆t

[
B + Ȧ

]
n+1 + [K] . (21)

The modal velocity and acceleration vectors are calculated from:{
Ż
}
n+1 =

γ

β∆t

(
{Z}n+1 − {Z}n

)
−

(
γ

β
− 1

){
Ż
}
n − ∆t

(
γ

2β
− 1

){
Z̈
}
n . (22)

{
Z̈
}
n+1 =

1
β∆t2

(
{Z}n+1 − {Z}n − ∆t

{
Ż
}
n

)
−

(
1
2β

− 1
){

Z̈
}
n . (23)

The time derivative of the added mass
[
Ȧ
]
in Eq. (17) is calculated numerically using the standard second order central

difference method Ȧ = (An+1 − An−1)/(2∆t). Furthermore, β and γ are the standard Newmark beta time integration
parameters.

Initial conditions are necessary for the integration of Eq. (19) in time. At t = 0 the added mass, modal amplitudes and
their time derivatives are zero.

{
Ȧi0

}
is harder to evaluate at t = 0 since the time derivative of c is infinite. This limit

needs to be treated carefully. For very small values of c, Ȧi0 can be written as:

Ȧi0 = ρ

∫ L/2

−L/2
Ψi(x, y = 0)dx

∂

∂t

∫ c

−c
ϕ0 (x, y, z; t) dy. (24)

The time derivative of the last integral is equal to 2πRV . The initial condition for Ȧi0 is then:

Ȧi0 = ρ2πRV
∫ L/2

−L/2
Ψi(x, y = 0)dx for , t = 0. (25)

The hydrodynamical boundary value problem is solved using a 2D strip theory. The strips are directed in the
circumferential direction of the shell, and the width of each strip are set equal to the distance between the nodes of
13
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Fig. 12. Convergence test of (a) total slamming force coefficient of the shell and (b) the added mass divided by the structural modal mass of
ode 2.

he FE mesh in the axial direction. The hydrodynamical boundary value problem of each strip is solved by using the 2D
oundary element method (BEM) described by Abrahamsen (2011). Boundary elements are distributed along the edge of
rectangular BEM domain. The velocity potential is set to zero along the free surface and equal to a wall condition on the
hree lower sides. Sufficient domain size and number of elements are identified through a dedicated convergence study.
he effect of 3D flow are accounted for by multiplying the velocity potential at every point along the strip with a factor
(y,k). This factor is the ratio of the added mass of the heaving strip on a plate with finite width, divided by the 2D added
ass of that strip. The function J(y,k) is taken from Fig. 9 of Meyerhoff (1970). This function is derived for a rigid heaving
late. In this work the same function is used on the potential flow calculation for all modes included in the solution. The
dded mass for each strip is calculated for each mode of motion for all the different submergences of the shell prior to
olving the coupled problem in Eq. (19). The validity of the 2D strip theory is studied numerically in Fig. 13 where shell
esponses are calculated based on both 2D strip theory and 3D potential flow theory.

Fig. 12 shows a convergence study of the 2D BEM solver. Plot (a) shows the slamming coefficient for different values
f nondimensional c and (b) shows the added mass coefficient of governing mode for the thick model elastic shell as a
unction of wetting, 2c/B. The convergence study was carried out with 6 boundary elements per structural shell element
o obtain reasonable convergence for the slamming coefficient.

To ensure that the time step also resolved the structural response a second parameter Ncrit is defined, which is the
number of timesteps per lowest dry natural period of the shell. All simulations carried out in the later sections of this
paper, except the plots discussing damping and convergence in Fig. 13, are carried out with the following standard
numerical settings: (1) The shell element mesh with 4 finite elements between each bolt (mrf = 4) is applied. (2) The
time step parameter Ncrit is set to Ncrit = 200 timesteps per lowest natural period of the modal expansion. (3) The number
of modes in the modal expansion are set to Nm = 27. (4) The Newmark time integration constants are set to; β = 0.25
and γ = 0.5. (5) The Rayleigh damping is set to 1.5% for all modes, which is a value discussed in the following text.

Fig. 13(a) shows time history of the hoop bending moment at pt 4 for the thick elastic shell for drop test 9 with impact
velocity of 12.19 m/s. The difference between the green and the blue curve shows the effect of a Rayleigh damping of 1.5%
on all modes. The very important first peak of the bending moment is not significantly affected by the damping, while
the later peaks are damped like the experimental curve.

To document the structural damping, the shell was hit with a hammer at the location of the centre accelerometer (pt.
2–2) while in air. Fig. 13(b) shows the free decay after the hit. The dry vibrations show a decay of about 0.7% for the
lowest mode of motion.

Fig. 13(c) shows the sensitivity of the number of elements between the bolts, the mesh refinement factor mrf, on the
ime history of the hoop bending moment at the centre of the shell, pt 4. From a practical engineering perspective, the
ost important time instant is that of maximum bending moment. The maximum hoop bending moment at pt. 4 for the 3
eshes, mrf 2, 4 and 8 reads: 11176, 12162, 12619 kNm/m. Ideally, the sensitivity of the mesh on the solution would be
ero. Here the maximum bending moment for mrf 2 is 11% lower than the finest mesh of mrf 8. The mrf 4 mesh, which is
he mesh used in all the latter simulations is 3.6% lower than the finest mesh of mrf 8. The indicated level of error should
e accounted for when comparing experimental and theoretical results in the following section. Furthermore, Fig. 13(d)
14
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Fig. 13. (a) Effect of Rayleigh damping of 1.5%, for all modes, on bending moment time series at the front of the shell (pt. 4). Plot (b) shows the
free vibrations of the shell and an estimate of the structural damping of 0.7%. Plot (c) shows a convergence study when refining the FEA and BE
meshes by a factor of 2, 4 and 8 and plot (d) shows a convergence study when refining the time step. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Comparison of measured and calculated deflection velocity for acceleration measurement points (1,2), (2,2), (3,2) from experiments and
rom numerical model of the Froude scaled elastic model shells and full-scale concrete shells. Plot (a) shows the results for the thick shells, while
b) shows the results for the thin shells. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
ersion of this article.)

hows the effect of refining the time step through the Ncrit parameter. The effect of temporal refinement is negligible
compared reported effect of spatial refinement in Fig. 13c.

Fig. 13(e) and (f) show hoop bending moment and membrane forces at pt. 4, using mrf equal to 4, using the
2D strip theory including the 3D corrections and full 3D potential flow theory using Wamit (Wamit, 2020) to solve
the hydrodynamic problem. This numerical calculations show that the extreme bending moment and membrane force
max|M|, max|N| are 8% higher when based on 3D Wamit calculations than when based on the 2D strip theory calculation
including 3D correction.

5. Comparison of experiments and theory

The results from the numerical method are compared to the experimental measurements. Fig. 14 shows the deflection
velocity at the locations of the 3 accelerometers along the front of the shell 1–2, 2–2 and 3–2. Plot (a) shows the results for
the thick elastic shell for test 9 with impact velocity of 12.19 m/s, while plot (b) shows the results for the thin elastic shell
for test 35 with impact velocity of 12.12 m/s. For both plot (a) and (b) the experimental results (black curve) are calculated
16
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Fig. 15. Comparison of measured and calculated bending moments in the hoop direction for the 6 measurement points on the thick elastic shell
or drop test 9 with impact velocity of 12.19 m/s.

y integration of the difference between the measured acceleration on the plate and on the test-rig frame just behind the
easurement point. For the thin shell in plot (b) there are two blue curves, the full blue line indicates the hydroelastic
olution with a perfectly circular shell, while the dashed blue curve shows the solution when the imperfection of the thin
lastic shell, shown in Fig. 4(a), is accounted for in the structural FEA modelling and 2D BEM calculations.
For the thick elastic shell in Fig. 14 plot (a) the accuracy of the hydroelastic method is assessed by studying the

ifference between the blue and the black lines. For the impact and the initial oscillation, amplitudes and oscillation
eriods agree well. In subsequent oscillations some amplitudes are slightly higher, and there is a tendency that the period
f oscillation is slightly larger for the hydroelastic calculations than for the measurements. For the thin elastic shell in
lot (b) the accuracy of the hydroelastic method can be assessed by studying the difference between the dotted blue
urve, which accounts for the imperfection of the shell, and the black curve. For the impact and the initial oscillation,
mplitudes and oscillation periods agree well. In subsequent oscillations the comparison shows that both the amplitudes
nd the period of oscillation are slightly more accurate for the thin than for the thick elastic shell.
The measured hoop bending moments in the thick shell for the six measurement points are plotted in Fig. 15. These

ime series were measured during test 9 with impact velocity of 12.19 m/s. Fig. 16 shows the thin shell during test 35
ith impact velocity of 12.12 m/s. The maximum bending moments are overpredicted for the thick elastic plate while
he thin elastic plate the simulations are more accurate.
17
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Fig. 16. Comparison of measured and calculated bending moments in the hoop direction for the 6 measurement points on the thin elastic shell for
rop test 35 with impact velocity of 12.12 m/s. (For interpretation of the references to colour in this figure legend, the reader is referred to the
eb version of this article.)

The difference between the full blue and the dashed blue curves in Figs. 14 plot (b) and 16 shows the effect of the
mperfection of the thin shell. The most noticeable difference is that the period of oscillation is considerably more accurate
hen the imperfection is accounted for. The extreme responses are not significantly affected by the imperfection.
Figs. 17 and 18 shows the hoop membrane force of the shell at the measurement points 1 to 6 for the same impact.

or both the thick and the thin shell the largest membrane force occurs during the first half-period of oscillation.
The comparisons of the time series show that the numerical solution predicts the deformation velocity and membrane

orces of the shell accurately. The bending moment of the thick shell is overpredicted but is more accurate for the thin
hell.

. Extreme response as a function of impact velocity

In this section the numerical method was used to study the extreme response of the shells for a wide range of impact
elocities spanning from 5 to 25 m/s. In this work the extreme response is defined as the maximum of the absolute value
18
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Fig. 17. Comparison of measured and calculated membrane force in the hoop direction for the 6 measurement points on the thick elastic shell for
rop test 9 with impact velocity of 12.19 m/s.

f the response time series. The main motivation was to study the effect of hydroelasticity on extreme responses through
omparisons of static and hydroelastic calculation results.
Figs. 19 and 20 shows the extreme bending moments as a function of impact velocity for the thick and the thin shell.

igs. 21 and 22 shows the corresponding extreme hoop membrane forces. Hydroelastic analysis of the model shell are
hown as the blue curve, hydroelastic analysis of the full-scale concrete shell as the dashed blue curve, static analysis of
he elastic model shell as the red curve and static analysis of the full-scale concrete shell as the dashed red curve.

Fig. 19 show that the hydroelastic solution for the thick shell overestimates the extreme bending moments for all
rop heights. For the thin shell, Fig. 20, an extra green curve was plotted. This curve shows the hydroelastic solution
hen the imperfection of the shell is accounted for in the analysis. The imperfection is seen to cause larger extreme
ending moments and can explain some of the discrepancies between the measurements and the calculations with a
erfectly circular shell. Furthermore, the calculations of extreme bending moments are more accurate for the thin shell
han for the thick shell for the whole range of impact velocities.

The effect of hydroelasticity on the extreme bending moments is the difference between hydroelastic solutions seen
s the blue curves and the corresponding red curves indicating the static solutions. For all points and both shells a critical
mpact velocity can be identified for which the static solution crosses the hydroelastic solution. This intersection point
aries across the measurement points, for the two thicknesses, and between full-scale and model-scale.
Figs. 21 and 22 shows the extreme dynamic hoop membrane force. This membrane force was calculated as in Eq. (6),

ut without the static contribution from the prestressing of the concrete. The figures show the extreme hoop membrane
orce for all 6 measurement points as a function of impact velocity for the thick and the thin shells. The description of the
ifferent curves follows from Figs. 19 and 20. The plots show that the extreme membrane forces from the hydroelastic
ethod are generally more accurate for extreme membrane forces than for the extreme bending moments. Furthermore,
19
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Fig. 18. Comparison of measured and calculated membrane force in the hoop direction for the 6 measurement points on the thin elastic shell for
rop test 35 with impact velocity of 12.12 m/s.

he plots show that the extreme hoop membrane force is less sensitive to imperfections than the extreme hoop bending
oments. Also, the difference between the extreme membrane force from hydroelastic calculations are much larger than

or the static calculations for the whole range of impact velocities calculated.
The difference between the numerically calculated and measured extreme hoop bending moment and membrane force

ere quantified. The differences are calculated based on the data in Figs. 19–22. The average deviation was estimated for
our drop tests each at a different drop height. The deviation for each drop height were estimated as (num − meas)/meas
100, were num and meas denotes the numerical and experimental value of the extreme bending moment or membrane

orce. These average deviations of extreme hoop bending moment and extreme membrane force compared to experiments
re listed in Table 3, and show that the numerical solution overpredicts the extreme bending moments between 17 and
4% for measurement point 1 to 5 for the thick elastic shell. However, the corresponding extreme membrane force is far
ore accurate with a deviation from −7 to 10%. The experimental error sources discussed in Section 3 is; (1) repetition
rrors with a standard deviation less than 3%, (2) strain gauge errors expected to be less than 2% and, (3) uncertainty of
he Young’s modulus which is expected to be less than 5%. The experimental uncertainties are not sufficient to explain
he difference between calculated and measured extreme hoop bending moments for the thick elastic shell. Furthermore,
he numerical errors which were investigated at the end of Section 4, mesh refinement which increases of the extreme
oop bending moment of 3.6% and full 3D potential flow calculations which increased the hoop bending moments by 8%,
oth results in event higher calculated bending moments which both suggests that more accurate analysis would increase
he discrepancy between theory and experiment not reduce it. Hence, a proper explanation of the overestimation of the
xtreme hoop bending moments for the thick elastic plate were not identified.
20
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Fig. 19. The extreme hoop bending moments as a function of impact velocity for the thick elastic shell. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

For measurement point 6 the extreme hoop bending moment is overpredicted by 37% and the extreme membrane force
the overprediction is 26%. This is far larger discrepancy than for the other measurement points on the thick elastic shell.
Measurement point 6 on the thick elastic section is likely defect since the measured bending moments and membrane
forces were much lower than at point 1 on the same elastic shell. Although point 1 and 6 are not located completely
symmetrically, the strains are not expected to be that different. This is supported by the measurements on the thin elastic
21
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m

Fig. 20. The extreme hoop bending moments as a function of impact velocity for the thin elastic shell. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

section and the hydroelastic calculations for both the thin and the thick elastic shells. A physical cause of this defect was
not identified.

For the thin elastic shell average deviations were calculated using the dented shell geometry. For the thin elastic
shell, the error of the extreme bending moments spans from −22 to 15% for all measurement points while the extreme
embrane force deviates between −15 to 16% in average for the four drop heights. In contrast to the thick elastic shell,
22
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Fig. 21. The extreme dynamic hoop membrane force as a function of impact velocity for the thick elastic shell. (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of this article.)

he numerical calculations for the thin elastic shell does not systematically overestimate the extreme bending moments.
he largest deviations are found for the extreme hoop bending moments measured at point 1 and 6, where the numerical
ethod overestimates the extreme bending moments by 22 and 20%.

. Accuracy of Froude scaled elastic shells

The presented timeseries of response suggests that a limited number of modes contributes to the response of the
hell. The two most important modes are shown in Fig. 23. The upper row of plots shows the thin model shell, the thin
oncrete shell, the thick model shell, and the thick concrete shell for the most important mode for deflections, shell
ending moments and shell membrane forces. It governs the radial displacement along the front of the shell, and it
ominates the bending moments at all strain measurement locations. Together with the mode on the second row it also
overns the hoop membrane response of the shell. The mode on the second row dominates the radial displacement of the
hell at the left and right sides. In the case that the shells were perfectly scaled, the mode shapes and eigenfrequencies of
he model and the full-scale concrete shells would be identical. Fig. 23 shows to what extent this is the case and hence
hows the shell scaling error. The upper row of plots shows that the dominant mode is more accurately scaled for the
hin shell than for the thick shell. The calculated dry natural frequencies are given above each plot. The experimental
ry natural frequencies were documented through impact tests with a hammer, hitting the shells at their centres. The
xperimental dry natural frequencies were 35.7 Hz for the thick elastic shell, which is a bit higher than the calculated
23
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Fig. 22. The extreme dynamic hoop membrane force as a function of impact velocity for the thin elastic shell. (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
The average deviation of extreme hoop bending moments and membrane forces between numerical calculations and
measurements. The average deviation of the four studied drop heights is presented for the thin and the thick elastic
shell.
Deviations: Numerics - Experiments

Meas. point: 1 2 3 4 5 6
Unit % % % % % %

Thick shell
max|M| −21 −24 −18 −17 −17 −37
max|N| −7 10 4 −5 8 −26

Thin shell
max|M| −22 2 15 −7 −2 −20
max|N| −8 16 8 −4 −3 −15

natural frequency of 33.6 Hz. For the thin elastic shell, the experimental dry natural frequency was 24.9 Hz for the thin
elastic shell, which is a bit lower than the natural frequency of the perfectly circular shell, 25.4 Hz and a bit higher than
the natural frequency for the imperfect shell which had a natural frequency of 23.9 Hz.

The effect of the shell scaling error on the deflection velocities is the difference between the blue and red curves in
ig. 14. The effect of the shell scaling error on the timeseries of the hoop bending moments and membrane forces can be
24
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Fig. 23. Radial displacement of governing shell response modes for the thin and thick elastic model shells and full-scale concrete shells. The upper
row of plots shows the most important mode with respect to deflection along the centreline and bending moments in the whole shell. The second
row of plots shows the mode governing the radial displacement on the left/ right side of the shell and this mode also significantly contributes to
the hoop membrane forces in the shell.

found by studying Figs. 15–18. Both the thin and the thick shells have a period of oscillation which is larger in full-scale
than model scale. The effect of shell scaling errors on the extreme shell responses are shown in Figs. 19–22.

The calculated extreme hoop bending moment and membrane force for the Froude scaled elastic shells are higher
than the hoop bending moment and membrane force for the full-scale concrete shells. The overprediction increases with
the impact velocity V . For the extreme hoop bending moment of the thick shell, this overprediction is 18% and 28% for
impact velocity of 10 and 24 m/s close to the shell centre (pt. 4). For the thin shell this overprediction is 8% and 33% for
impact velocities of 10 and 24 m/s. The extreme hoop membrane force calculated for the Froude scaled elastic shell is
more accurate than the extreme hoop bending moments. The extreme hoop membrane force close to the centre point
calculated for the thick Froude scaled elastic shell is 2% and 6% higher than for the thick full-scale concrete shell at impact
velocities of 10 and 24 m/s. For the thin shell this overestimation of extreme hoop membrane force was 17% and 16% for
the impact velocities of 10 and 24 m/s respectively.

8. Dynamic amplification factors

The extreme structural responses of the shell are most important in the design. A relevant measure on the effect of
hydroelasticity is hence the ratio between the extreme response when hydroelasticity is accounted for and the extreme
response from a static analysis. In this section dynamic amplification factors DAFs for the deflections w, hoop bending
oments M, and hoop membrane forces N are calculated for the measurement points close to the centre of the shell.
AF is defined as the maximum absolute value of the response (w, M, N) from the hydroelastic calculations divided by

the maximum absolute value of the response from the static analysis. Fig. 24(a) shows the DAF of the shell displacement
near the shell centre (pt 2–2), while (b) shows the DAF of the hoop bending moment near the shell centre (pt. 4) and (c)
shows the DAF of the hoop membrane force at the centre point (pt.4). The x axis in all three plots is the load duration Td
divided by the dry natural period of the governing mode (mode 2) denoted Tn. These natural frequencies are shown in
the top row of plots in Fig. 23. Td was defined as the time from the start of the impact to the time when the section was
fully wet, estimated from Eq. (18). DAFs are plotted for the thin model shell, thick model shell, thin concrete shell, and
thick concrete shell.

The DAFs were derived for impact velocities from 4 to 40 m/s, which is a wide range of velocities. Relevant impact
speeds of design critical slamming waves governing the design in the North Sea spans from 10 to 24 m/s. This range of
impact velocities are indicated in the plots. Where (o) indicates 10 m/s and (*) indicates 24 m/s. Table 4 shows the range
of DAFs relevant for the different structural responses close to the centre of the plate.

The magnitude of the DAF strongly depends on which response which is considered. The lowest DAFs are seen for
the hoop bending moment for both the thin and the thick plate ranging from 0.5 to 1.13. Then follows the displacement
ranging from 0.73 to 1.38 and the hoop membrane force ranging from 1.8 to 2.18.

None of the DAFs for the response of the concrete shell approached 1 for large values of load duration. This is contrary to
the work by Faltinsen (1999) who studied the impact of a stiffened plated steel/aluminium wedge on a flat free surface. In
25
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Fig. 24. Dynamic amplification factors versus load duration-to-governing natural period ratio Td/Tn for (a) the deflection at the centre (pt 2–2), (b)
the hoop bending moment at the centre (pt. 4) and (c) the membrane force at the centre (pt. 4). The impact velocity of 10 m/s and 24 m/s are
indicated by circles (o) and stars (*) respectively.

Table 4
Relevant range of dynamic amplification factors (DAFs) for deflection, hoop bending moment and hoop membrane force
for points close to the centre of the plate and impact velocities ranging from 10 to 24 m/s.
DAF (centre) Deflection (pt. 2-2) Hoop bending moment (pt. 4) Hoop membrane force (pt. 4)

Shell 24 m/s 10 m/s 24 m/s 10 m/s 24 m/s 10 m/s
Thin concrete 0.73 1.17 0.5 0.98 1.8 2.19
Thick concrete 0.90 1.38 0.6 1.13 1.89 2.18

Faltinsen (1999) the DAF for the strains approach 1 for long load durations. A considerable difference between (Faltinsen,
1999) and the present case is that the rise time of the modal loads for the wedge is finite while it is mathematically zero
in the present case. Standard textbooks on structural dynamics often show plots of DAFs of single degree mass spring
system exposed to transient loads. See for instance Clough and Penzien (1975) page 94. For a triangular load with zero
rise time, which is relevant for the concrete shells studied herein, the DAF goes to 2 for large values of the load duration.

9. Hydrodynamic load modifications due to structural vibration

Fig. 25 shows the deflection near the shell centre (i.e. pt. 2–2). Plot (a) shows the deflection for the thick shell and
b) shows the deflection for the thin shell as a function of time. The deflections are plotted for relevant impact speeds of
26
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Fig. 25. Plot (a) and (b) shows the deflection near the centre of the shell (pt. 2–2) for the thick and the thin full-scale concrete shells for three
mpact velocities. Tn is the dry natural period of the governing mode of response (mode 2). Plot (c) and (d) shows the deflection velocity for the
hick and thin concrete at the same point divided by the impact velocity.

ull-scale design critical breaking waves: 10, 16 and 24 m/s. For the thick shell the deflection is largest during the first half
eriod of oscillation. For the thin shell the later deflection peaks are of similar magnitude as the first. Plot (c) and (d) shows
he shell deflection velocity near its centre (at pt 2–2) divided by the impact velocity V for the thick, and for the thin shell
espectively. The horisontal axis shows the time divided by the dry natural period of the governing mode, mode 2 (ref.
ig. 23). The thick concrete shell is accelerated to a velocity of 0.39 V during the time before the first negative deflection
eak for the impact velocity of 16 m/s. The same value is about 0.53 V for the thin shell. The shell deflects inward and
hen outward and consistently reaches higher deflection speed on the way outward for both shells. The plot shows that
he deflection velocity is considerably larger for the thin shell than the thick shell. Faltinsen (1997), studied the impact of
flat, horizontal beam impacting a flat free surface with zero deadrise angle. In that case the averaged deflection velocity
as equal the impact velocity initially. Since the beam was fixed at both ends, it meant that the deflection velocity in the
iddle of the beam was larger than the impact velocity. In the present case however, the concrete shells do not reach
deflection velocity which is equal to the impact velocity in an averaged sense. A second difference between the beam

n Faltinsen (1997) and the concrete shells is that the centre point deflection velocity is much larger, O(40%), when the
hell deflect back outwards than during the initial inward deflection.
The key question is to what extent the structural vibration modifies the hydrodynamic load. If such load modification

id not occur, then the response would be obtained through an ordinary dynamic analysis with slamming pressures valid
or a rigid cylinder. To answer this question the hydrodynamic load terms in Eq. (19) which depends on the structural
ibration are studied. These terms are the time dependent added mass force − [A]

{
Z̈
}

and the force −
[
Ȧ
]
{Ż}. The
27
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Fig. 26. Structural and added mass modal force for the equilibrium equation of the governing mode compared with the corresponding excitation
(slamming) force. Plot (a) shows the structural mass force and plot (b) with the added mass force for the thick full-scale concrete shells. Plot (c) and
plot (d) shows similar plots for the thin full-scale concrete shells. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

force term from the transient added mass of the governing mode is studied in detail and compared with the excitation
(slamming) force of the same mode. The plots in Fig. 26 show the nondimensional excitation force for mode 2, −Ȧ20(t)V,
ivided by its initial (extreme) value F exit

2 = −Ȧ20(t = 0)V. This force is denoted R2
exit and is plotted for all plots for

eference. There is one dotted black curve for each of the three impact velocities; 10, 16 and 24 m/s. Plots (a) and (c)
hows the modal mass force of the second mode R

M
2 = −M22Z̈2/F exit

2 for the same impact velocities as red curves. Plots
(b) and (d) shows the hydrodynamic modal added mass force for the same mode, R

A
2 = − [A2 : ]

{
Z̈
}
/F exit

2 . Here, [A2 : ]
is the second row of the matrix [A]. Comparing the modal structural mass force for the thick concrete shell, plot (a)
with the modal added mass force for the same shell, the two curves differ initially. The structural mass force starts at
−1, perfectly balancing the excitation force at this moment, the modal added mass force starts at zero, and does not
contribute significantly to balance the modal excitation force initially. Later in the impact when the shell is deflecting
inward for the first time at ∼0.6 t/Tn, the added mass force is a bit higher than the structural mass.

The matrix equation Eq. (19) has a term
[
Ȧ
] {

Ż
}
which is proportional both the impact velocity and the deflection

velocity. This term is by no means new and is contained in previous research works like for instance (Ionina and Korobkin,
1999; Faltinsen, 1999, 1997). However, its relative importance has not been adequately addressed. Here the term

[
Ȧ
] {

Ż
}

is denoted the slam damping since it is linked to the slamming force and that it is proportional to the deflection velocity.
The nondimensional version of the slam damping term is written as R

SD
= −[Ȧ ]

{
Ż
}
/F exit and is plotted in Fig. 27. [Ȧ ]
2 2 : 2 2 :

28



B.C. Abrahamsen, F. Grytten, Ø. Hellan et al. Journal of Fluids and Structures 116 (2023) 103804
Fig. 27. The plots show the time series of the nondimensional hydrodynamic slam damping term compared with the excitation (slamming) force
for (a) the thick concrete shell and (b) the thin concrete shell.

refers to the second row of the matrix [Ȧ]. plot (a) of Fig. 27 shows this force for the thick concrete shell and plot (b) shows
this force for the thin concrete shell. This hydrodynamic force term acts in the opposite direction of the excitation force.
Its significant contribution lasts only until the maximum deflection of the shell at about 0.6 t/Tn. The plots show that
the slam damping force acts with significant magnitude in the opposite direction of the slamming force. Furthermore, the
plots show that this load term is more important for the thin concrete shell than for the thick concrete shell. Considering
the impulse of this hydrodynamic slamming damping term compared to the impulse of the excitation force, it is evident
that the importance of this term increases with impact velocity.

The effect of hydroelasticity can be defined as the modification of the hydrodynamic pressure due to the structural
response. But which of the two hydroelastic terms are most important: added mass or slam damping? To answer this
question, a set of numerical simulations is carried out systematically by removing terms in Eq. (19): First an hydroelastic
analysis including all terms, then an analysis neglecting slam damping, then an analysis neglecting added mass and finally
an analysis neglecting both added mass and slam damping.

Fig. 28 shows the time series of hoop bending moment close to the shell centre (pt. 4) divided by the extreme static
hoop bending moment at the same location for the thick (a) and the thin (b) concrete shells both for an impact velocity
of 24 m/s. The blue curve shows the hydroelastic solution according to Eq. (19). The added mass term modifies the period
of vibration but does not modify the extreme bending moment significantly (blue dashed line compared to blue full line,
red dashed line compared to red full line). The slam damping term cause significant reduction of the extreme bending
moment but does not modify the period of vibration significantly (blue full lines compared to red full lines, blue dashed
lines compared to red dashed lines). Fig. 28(c) and (d) shows the corresponding nondimensional hoop membrane force
close to the shell centre. Here the importance of the slam damping term is similar as for the hoop bending moment.
However, the effect of added mass is much larger on the extreme membrane force than on the extreme bending moments.
Including added mass means increasing the hoop membrane force.

In the following text, the effect of the added mass and slam damping on the extreme responses are investigated for a
whole range of impact velocities.

Fig. 29(a) and (b) shows the extreme bending moment close to the centre point (pt. 4) as a function of impact velocity
for the thick and thin concrete shells. The plot shows that the slam damping term is important for estimating correct
extreme bending moment and that the inclusion of this term in the analysis reduces the extreme hoop bending moments.
Whether or not added mass is included has limited effect when considering bending moments.

Fig. 29(c) and (d) show the extreme hoop membrane forces close to the centre point (pt. 4). Again, inclusion of the
slam damping term reduces the calculated extremes. Added mass is more important for extreme hoop membrane forces
than extreme hoop bending moments. However, inclusion of added mass increases the extreme hoop membrane force
while inclusion of slam damping reduces it. These findings are not sensitive to large variations of the impact velocity.

10. Discussion

The presented study shows how concrete shells respond to violent slamming on a calm water surface. The two shells
in the study represent reinforced and prestressed concrete shells with a diameter of 31 m, with a height of 24.6 m, and
29
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Fig. 28. Plots showing the effect of added mass and slam damping on nondimensional hoop bending moments at the shell centre (pt. 4). For the thin
a) and thick (b) concrete shell. Plot (c) and (d) shows corresponding plots for the hoop membrane force at the same location. (For interpretation
f the references to colour in this figure legend, the reader is referred to the web version of this article.)

overing 77.3 degrees of the circular cylinder. The thick shell represents a full-scale thickness of 872 mm while the thin
hell represents a thickness of 584 mm. The water impact tests are carried out with Froude scaled elastic model shells at
geometrical scale of 1:55.
The slamming pressures are carried by a combination of shell membrane forces, bending moments and structural mass

orces. The proper Froude scaling principles for the material properties were derived and showed that the model shell
hould satisfy the following five conditions: E = řλE, h = λh, ρch = řλρch, ν = ν, ρ = řρ for geometric scaling
actor λ, Young’s modulus E, shell thickness h, shell mass density ρc , Poisson ratio ν and water density ratio between full
and model scale, ř . Barred quantities are properties in model scale. These conditions are quite restrictive, and a relevant
aterial is hard to identify for such a small scale (1:55). A simplified approach is adopted where scaling of the bending
tiffness and the mass per area are given priority and are scaled according to D = Dřλ4 and m = mřλ. Polycarbonate,
hich is a reliable material with low Young’s modulus, was selected for the Froude scaled elastic model shells to minimize
he shell scaling errors as much as possible.

A hydroelastic method was presented, formulating the deformation of the shell in terms of dry natural modes calculated
sing finite element shell analysis. The hydrodynamic boundary value problem was solved for different wetted areas of the
ylinder, using 2D strip theory with 3D corrections and the flat plate approximation. Furthermore, the velocity potential
as set to zero on the free surface. In the calculation of the wetted area of the cylinder the deformation of the shell was
eglected.
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Fig. 29. Extreme hoop bending moment (a) and hoop membrane force (b) close to shell centre as a function of impact velocity V. The plot express
how added mass and slam damping affect the extreme responses of the shell.

The deviation between calculated and measured extreme hoop bending moments and membrane forces were calcu-
lated and compared for the thick and the thin elastic shells. This difference was calculated as the mean deviation for
all the four drop heights tested. The most significant difference was the overprediction of the bending moments for the
thick elastic shell. For measurement point 1 to 5 the bending moments were systematically overestimated by ∼20%.
he uncertainties of the strain gauges and Young’s modulus of the polycarbonate material is not sufficient to explain
his difference. Probable unknown causes of this difference may exist in the experimental set up or inaccuracies of the
ydroelastic method. The mean deviation was far less for the extreme hoop membrane force for points 1 to 5 for the
hick shell. Measurement point 6 on the thick elastic section is likely defect since the measured bending moments and
embrane forces were much lower than at point 1 on the same elastic shell. Although point 1 and 6 are not located
ompletely symmetrically, the strains are not expected to be that different. This is supported by the measurements on
he thin elastic section and the hydroelastic calculations for both the thin and the thick elastic shells. A physical cause of
his defect was not identified. For the thin elastic shell, the mean deviation of the bending moments were more accurate
han for the thick shell, i.e. between −22% to 15% for all measurement points. The corresponding mean deviation for the
xtreme membrane force for the thin elastic shell were between −15% and 16%. It is concluded that the hydroelastic
ethod although simplified, compares well with measurements. Furthermore, the hydroelastic method provide quite
ccurate estimates and captures the most important physics of the impact.
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The accuracy of the Froude scaled elastic model shells were quantified through comparisons of simulation results for
he full-scale concrete shells and for the Froude scaled elastic shells. Both the hoop bending moments and the hoop
embrane force are larger for the Froude scaled elastic shells than for the full-scale concrete shells. The latter is true

or all measurement points, both thin and thick concrete shell. The scaling error for the extreme hoop bending moment
ear the shell centre ranges from 8% and 33% for both concrete shells. For the hoop membrane force scaling error is
ignificantly less (in the range from 2% to 16%). The shell scaling error increase with the impact velocity. The estimated
rrors above (%) are calculated for 10 and 25 m/s respectively.

1. Conclusion

This research shows how realistic Froude scaled elastic shells representing concrete shells can be designed. Further-
ore, the results show that even large, thick and heavy concrete shells experience significant hydroelastic effects during
lamming.
The effect of hydroelasticity was studied through (1) dynamic amplification DAF and (2) hydrodynamic load modifica-

ions due to structural vibration. DAFs were derived for the most loaded measurement points near the centre of the shell.
or typical design-critical 100- and 10.000-year wave slamming events impact velocities in the range 10–24 m/s. For this
ange of impact velocities relevant DAFs were calculated: The lowest DAFs are seen for the hoop bending moment for
oth the thin and the thick shells ranging from 0.5 to 1.13. Then follows the displacement ranging from 0.73 to 1.38 and
he hoop membrane force ranging from 1.8 to 2.18. Hence, the magnitude of the DAF strongly depends on which response
hich is considered.
The time series from experiments and numerical calculations shows one governing frequency of response. Furthermore,

he numerical method shows that two modes are main contributors to the response. The governing mode has three half
aves in the hoop direction of the shell while one half wave in the axial direction. This mode governs the deflection,
ending moment and membrane force at all measurement points. The secondary mode has two half waves in the hoop
irection while one half wave in the axial direction. This mode contributes to the deflection on the sides of the shell and
he membrane force at all locations on the shell.

The centre point deflection velocity time history of the full-scale concrete shells showed oscillations dominated by one
requency but with modulations due to higher frequency components. Interestingly, the centre point deflection velocity
uring the time of the initial inward deflection was much less than the impact speed. For an impact speed of 16 m/s
he centre point inward deflection velocity was equal to 39% and 53% of the impact velocity for the thin and the thick
oncrete shell respectively. The shells deflected inward and then outward at the centre of the shell, consistently reaching
igher deflection velocity on the way outward for both concrete shells.
The modification of the hydrodynamical load due to structural vibrations was investigated. The hydroelastic numerical

ethod was used to isolate the individual contributions. The first observation is that slamming force at the initial moment
f impact is balanced by structural mass alone. The second observation is that the added mass force has a rapid rise-time
nd reaches the same order of magnitude as the structural mass force by the time of maximum response of the shell at
.6Tn. Here Tn is the dry natural frequency of the governing mode of response. After this time instant the added mass and
tructural mass behaves similarly for the governing mode. The third observation is the slam damping term. This term is
roportional to both the impact velocity and the deflection velocity. This force is significant from the initial moment of
mpact and until the time of maximum response, t = 0.6Tn for both shells. After this the term is negligible.

The relative importance of the added mass and slam damping terms were investigated by systematically turning the
dded mass and slam damping terms on and off. These simulations show that the effect of including slam damping reduces
he hoop bending moment by 21% and 35% for the thick shell and 31 and 39% for the thin shell, for impact velocities of 10
nd 24 m/s, respectively. The effect of including slam damping reduce the estimated hoop membrane force with a similar
mount. On the contrary, the effect of including added mass is small considering extreme hoop bending moments but is
een to significantly increase the estimated extreme hoop membrane forces.
Generally, structural responses are seen to significantly modify the hydrodynamic loads during impact. These load

odifications should be properly accounted for when designing concrete shells exposed to slamming.
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