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A B S T R A C T

This paper proposes a robust disturbance observer framework for maritime autonomous surface vessels
considering model and measurement uncertainties. The core contribution lies in a nonlinear disturbance
observer, reconstructing the forces on a vessel impacted by the environment. For this purpose, mappings
are found leading to synchronized global exponentially stable error dynamics. With the stability theory of
Lyapunov, it is proven that the error converges exponentially into a ball, even if the disturbances are highly
dynamic. Since measurements are affected by noise and physical models can be erroneous, an unscented
Kalman filter (UKF) is used to generate more reliable state estimations. In addition, a noise estimator is
introduced, which approximates the noise strength. Depending on the severity of the measurement noise,
the observed disturbances are filtered through a cascaded structure consisting of a weighted moving average
(WMA) filter, a UKF, and the proposed disturbance observer. To investigate the capability of this observer
framework, the environmental disturbances are simulated dynamically under consideration of different model
and measurement uncertainties. It can be seen that the observer framework can approximate dynamical forces
on a vessel impacted by the environment despite using a low measurement sampling rate, an erroneous model,
and noisy measurements.
1. Introduction

In the existing literature, several control concepts have been pro-
posed for path following and collision avoidance for safe navigation.
In this context, a precise perception of the environment is one of the
essential elements of the vessel’s situational awareness for safe sea
operations. For example, sea currents might drift the vessel away from
the desired path, while the wind can affect the vessel in its heading
by creating a torque on the vessel’s hull. If control algorithms are not
considering these influences (Do et al., 2005), safe and comfortable
sea operations are not guaranteed. To accommodate these factors,
some previous works consider the environmental impact. For instance,
a disturbance observer-based control for the dynamic positioning of
vessels is proposed in Wei et al. (2022). The proposal assumes a
constant damping matrix and considers weak disturbances, such as
in Huang et al. (2015), where a global stable tracking control of
under-actuated ships with input saturation is developed. In Hu et al.
(2022), a robust synchronization for under-actuated vessels based on a
disturbance observer is introduced, where slowly varying disturbances
are considered. The results showcase that the disturbance estimations
adapt inertly to the actual disturbances. In addition, it is mentioned
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that the existing schemes require exact velocity measurements. Since
measurement uncertainties are inevitable, this is an essential issue that
has to be addressed. Measurement noise propagates through distur-
bance observers leading to inadvertent noisy results. An overview of
recent advances in coordinated control of multiple autonomous surface
vessels is given in Peng et al. (2021b), where it is mentioned that
the central focus of current investigations is guaranteeing the stability
and robustness of motion control laws in the presence of uncertain-
ties and disturbances. In addition, sliding mode control approaches
based on disturbance observers are proposed (Li et al., 2015; Chen
et al., 2019b). The results of the observer showcased in Chen et al.
(2019b) demonstrate that the disturbances inertly adapt with various
adaptation speeds concerning the dedicated system states. In a recent
study by Selvaraj et al. (2020), an approach to reject uncertainty and
disturbance in complex dynamical networks using truncated predictive
control is discussed. The study guarantees a robust synchronization of
the networks by incorporating input delay and utilizing the Lyapunov
stability theory. However, it is important to note that the simulations
conducted do not account for the potential impact of measurement
vailable online 28 July 2023
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noise. Besides, a global asymptotic regulation control for multiple in-
put, multiple output (MIMO) mechanical systems with unknown model
parameters and disturbances is proposed (Hu et al., 2019). As in many
other proposals, a constant damping matrix is assumed, and the Coriolis
matrix is completely neglected. One of the few disturbance observers
presented in Bouteraa et al. (2022) for tracking control considers model
uncertainties. However, measurement uncertainties are neglected, and
similar to the previously listed work, the damping matrix is oversimpli-
fied, making its use in real applications questionable. A backstepping
control approach based on a disturbance observer and a neural network
is presented in Duong and Duy (2022), where the vessel stability
concerning the roll motion is studied. Here, as well as in Xu et al.
(2022), only slowly varying disturbances are considered, while it is
assumed that the measurements are entirely reliable. Despite ignor-
ing model and measurement uncertainties, a widely used disturbance
observer is presented in Do (2010). The proposal does not provide
insight into the error dynamics of why it is difficult to guarantee
sufficient adaptation speed regarding all observed disturbances. For
this reason, synchronizing the error dynamics is a convenient way
to supply controllers with consistent estimations. A detailed survey
about the most popular disturbance observers is given in Gu et al.
(2022). More recently, with the advancement of data-driven modeling,
machine learning approaches for observing disturbances are coming up.
A disturbance observer constructed by fusion of neural networks and
minimal learning parameterization is proposed in Huang et al. (2019)
for robust dynamic positioning control under consideration of model
and servo-system uncertainties, while Qiang et al. (2019) proposes
adaptive neural network auto-berthing control of marine ships. The
latter mentions that external disturbances cannot be approximated
by neural networks. In Peng et al. (2021a), a data-driven adaptive
disturbance observer for model-free trajectory tracking control of mar-
itime autonomous surface vessels is introduced. Common to all the
data-driven approaches is that the models are trained with historical
data and have a memory stack for online learning. Once again, most
of such works are limited to scenarios with very weak disturbances.
Since data-driven models are prone to overfitting and suffer from
poor generalization outside the training scenarios, they are unfit to
handle previously unseen severe and dynamic disturbances (Trivedi
et al., 2021). Furthermore, the impact and rejection of disturbances
and uncertainties are studied in several other applications, including
autonomous aircraft (Emami and Banazadeh, 2019), unmanned driving
robotic vehicles (Chen et al., 2019a), and in general nonholonomic
mobile robots (Kim et al., 2003). The estimation of environmental dis-
turbances is relevant for trajectory tracking, such as described in Emami
and Banazadeh (2019), where an intelligent trajectory tracking of an
aircraft in the presence of internal and external disturbances is dis-
cussed using neural network-based model predictive control. While the
impact of model uncertainties is considered in the regarded proposals,
the influence of measurement uncertainties is completely ignored.

To summarize, none of the proposed approaches demonstrate ro-
bust behavior under several environmental conditions by considering
measurement uncertainties. Moreover, most proposals disregard that
measurements must be treated discretely since the sampling frequency
of measurements is limited. Hence, this work tries to handle the previ-
ously described weaknesses in a novel observer framework by avoiding
model simplifications but considering model and measurement uncer-
tainties. To this end, the current work attempts to answer the following
questions:

• Can we reconstruct the unknown disturbances despite measure-
ment uncertainties?

• Is it possible to reconstruct the disturbances despite using an
unreliable model?

• Is it possible to observe the disturbances in situations where the
sampling rate of the measurements is very low?

• Can a disturbance observer be designed where we can synchro-
2

nize the adaptation speed of all observed disturbances? 𝝉
Fig. 1. Kinematics of a vessel.

To the best of our knowledge, none of the previous works have ad-
dressed all the research questions mentioned in a single study.

For a better comprehension of the work presented, the relevant
theory, including the original contribution, is presented in Section 2.
Section 3 presents all the details required to reproduce the results
presented in the article. Results and their discussions are presented in
Section 4 and finally, Section 5 concludes the current work.

2. Theory

In this section, we present a brief overview of the theory that is
required for a better comprehension of the work presented. We begin
by explaining the model of the vessel used in Section 2.1 followed
by introducing the weighted moving average in Section 2.2, and a
description of the unscented Kalman filter in Section 2.3. The original
theoretical contribution of the work is presented in Sections 2.4 and
2.5.

2.1. Model

Considering the vessel’s coordinates 𝜼 = [𝑥𝑠, 𝑦𝑠, 𝜓]⊤, where 𝑥𝑠 and
𝑠 describes the vessel’s position with regard to the global coordinates
𝑥, 𝑦]⊤, and 𝜓 is the vessel’s heading. Furthermore, the velocities are
enoted as 𝝂 = [𝑢, 𝑣, 𝑟]⊤, where 𝑢 is the surge, 𝑣 describes the sway, and
characterizes the rotational speed regarding yaw. With these relations,

he kinematics of a vessel can be expressed by

̇ = 𝑹rot (𝜓)𝝂, (1)

here 𝑹rot (𝜓) denotes the rotational matrix, given by

rot (𝜓) =
⎡

⎢

⎢

⎣

cos(𝜓) −sin(𝜓) 0
sin(𝜓) cos(𝜓) 0

0 0 1

⎤

⎥

⎥

⎦

. (2)

Fig. 1 depicts the relations between the different vessel states.
The dynamics of a surface vessel adopted from Fossen (2011) can

e expressed as

�̇� +𝑫(𝝂)𝝂 + 𝑪(𝝂)𝝂 = 𝝉 + 𝝉𝒅 , (3)

here 𝑴 denotes the mass matrix, 𝑫(𝝂) characterizes the nonlinear
amping matrix, 𝑪(𝝂) describes the Coriolis matrix, 𝝉 is the control
nput, and 𝝉𝒅 are all the environmental disturbances. Therefore,
𝒅 = 𝝉wind + 𝝉wave + 𝝉current , (4)
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𝑊

which implies that the disturbances are specified as the sum of forces
induced by wind, waves, and sea currents. Rewriting the dynamical
expression in state space representation leads to

�̇� = 𝑴−1 (−𝑫(𝝂)𝝂 − 𝑪(𝝂)𝝂 + 𝝉 + 𝝉𝒅
)

. (5)

Considering a body-fixed coordinate system [𝑥𝑏, 𝑦𝑏]⊤ with center
[𝑥𝑠, 𝑦𝑠]⊤, where 𝑥𝑏 is directed to surge and 𝑦𝑏 is directed to sway.
Under the assumption that the rigid body has a homogeneous mass
distribution and is symmetric concerning the 𝑥𝑏𝑦𝑏-plane, the mass
matrix is given by

𝑴 ideal =
⎡

⎢

⎢

⎣

𝑚 0 0
0 𝑚 𝑚𝑥𝑔
0 𝑚𝑥𝑔 𝐼𝑧

⎤

⎥

⎥

⎦

, (6)

where 𝑚 defines the mass of the rigid body, 𝑥𝑔 is the center of gravity
regarding the 𝑥𝑏-axis, and 𝐼𝑧 characterizes the moment of inertia con-
cerning yaw. Since expression (6) requires simplifications leading to
model uncertainties, we introduce a generalized, symmetric, positive
definite mass matrix

𝑴 =
⎡

⎢

⎢

⎣

𝑚11 0 0
0 𝑚22 𝑚23
0 𝑚32 𝑚33

⎤

⎥

⎥

⎦

, (7)

such that five instead of three unknown parameters must be identi-
fied. The parameters are assumed to be constant since the mass matrix
is not dependent on the system states 𝝂. Based on later derivations, the
entries of the inverted mass matrix are denoted as

𝑴−1 =
⎡

⎢

⎢

⎣

𝜅11 0 0
0 𝜅22 𝜅23
0 𝜅32 𝜅33

⎤

⎥

⎥

⎦

. (8)

Lemma 1. If the matrix 𝑴 is symmetric and invertible, its inverse 𝑴−1 is
likewise symmetric, since (𝑴−1)⊤ = (𝑴⊤)−1. Since the entries of the mass
matrix are positive, 𝑴 is positive definite and thus invertible.

Moreover, it is assumed that the damping matrix is symmetric, and
the Coriolis matrix is skew-symmetric such as in Fossen (2011), given
by

𝑫(𝝂) =
⎡

⎢

⎢

⎣

𝑑11(𝝂) 0 0
0 𝑑22(𝝂) 𝑑23(𝝂)
0 𝑑32(𝝂) 𝑑33(𝝂)

⎤

⎥

⎥

⎦

, (9)

𝑪(𝝂) =
⎡

⎢

⎢

⎣

0 0 𝑐13(𝝂)
0 0 𝑐23(𝝂)

𝑐31(𝝂) 𝑐32(𝝂) 0

⎤

⎥

⎥

⎦

. (10)

The entries of the matrices are defined as

𝑑11(𝝂) = −𝑋𝑢 −𝑋|𝑢|𝑢|𝑢| −𝑋𝑢𝑢𝑢𝑢
2, (11a)

𝑑22(𝝂) = −𝑌𝑣 − 𝑌|𝑣|𝑣|𝑣| − 𝑌|𝑟|𝑣|𝑟| − 𝑌𝑣𝑣𝑣𝑣2, (11b)

𝑑23(𝝂) = −𝑌𝑟 − 𝑌|𝑣|𝑟|𝑣| − 𝑌|𝑟|𝑟|𝑟|, (11c)

𝑑32(𝝂) = −𝑁𝑣 −𝑁|𝑣|𝑣|𝑣| −𝑁|𝑟|𝑣|𝑟|, (11d)

𝑑33(𝝂) = −𝑁𝑟 −𝑁|𝑣|𝑟|𝑣| −𝑁|𝑟|𝑟|𝑟| −𝑁𝑟𝑟𝑟𝑟
2, (11e)

and

𝑐13(𝝂) = −𝑚22𝑣 − 𝑚23𝑟, (12a)

𝑐23(𝝂) = 𝑚11𝑢, (12b)

𝑐31(𝝂) = −𝑐13(𝝂), (12c)

𝑐32(𝝂) = −𝑐23(𝝂), (12d)

causing highly nonlinear model dynamics, where 𝑋𝑢, 𝑋|𝑢|𝑢, 𝑋𝑢𝑢𝑢, 𝑌𝑣,
𝑌
|𝑣|𝑣, 𝑌|𝑟|𝑣, 𝑌𝑣𝑣𝑣, 𝑌𝑟, 𝑌|𝑣|𝑟, 𝑌|𝑟|𝑟, 𝑁𝑣, 𝑁|𝑣|𝑣, 𝑁|𝑟|𝑣, 𝑁𝑟, 𝑁|𝑣|𝑟, 𝑁|𝑟|𝑟, and 𝑁𝑟𝑟𝑟
3

re hydrodynamic parameters.
.2. Weighted moving average

Moving averages are used in fields such as statistics, soft computing,
conomics, operational research, and engineering (Merigó and Yager,
019). The simple moving average (SMA) at time step 𝑘 with a window
ize 𝑤 is defined by

𝑆𝑀𝐴,𝑘 =
1
𝑤

·
𝑤
∑

𝑖=1
𝑦𝑘−𝑤+𝑖, (13)

where 𝑦𝑘 is the measurement at time step 𝑘. Moving averages are
popular tools for time-series smoothing (Yager, 2008). However, the
disadvantage of the simple moving average (SMA) is its relatively
strong delay depending on the window size 𝑤. Considering measure-
ment noise, strong smoothing properties with little delay are desired.
The weighted moving average WMA is similar to the SMA but with a
weighting of the past samples depending on their recency. Hence, the
WMA at time step 𝑘 with a window size 𝑤 is expressed by

𝑦𝑊𝑀𝐴,𝑘 =
1

∑𝑤
𝑖=1 𝑖

·
𝑤
∑

𝑖=1
𝑖 · 𝑦𝑘−𝑤+𝑖. (14)

he WMA is particularly beneficial if the samples are dynamic since it
pproximates a smoothed version of the measurements with little delay.
s a result, the WMA is more sensitive to strong noise while staying in

he actual range of the measurements.

.3. Unscented Kalman filter

The unscented Kalman filter (UKF), proposed in Julier and Uhlmann
1997), is proved to be a very powerful tool for state estimation of
onlinear systems with measurement noise and model uncertainty.
onsidering the time-discrete nonlinear dynamical system

𝑘+1 = 𝒇 (𝐱𝑘,𝐰𝑘), (15)

𝐲𝑘 = 𝒈(𝐱𝑘,𝐧𝑘), (16)

here 𝒇 and 𝒈 are non-linear functions, 𝐱𝑘 describes the model states,
nd 𝐲𝑘 characterizes the measurement model at time step 𝑘. The model
nd measurement uncertainties are modeled as Gaussian noise with
ero mean. Hence, they are described by

𝑘 ∼  (𝟎,𝑸𝑘), (17)

𝑘 ∼  (𝟎,𝑹𝑘), (18)

here 𝑸𝑘 and 𝑹𝑘 specify the covariance matrix of the model and
easurement uncertainties, respectively.

The main idea of the UKF is to use sigma points distributed symmet-
ically in the area of the mean and gate them through the nonlinear
unctions. Assume the states 𝐱 ∈ R𝐿 have the estimated mean �̂� and
ovariance 𝑷 , the sigma points of the entire sigma point matrix  ∈
𝐿×(2𝐿+1) are generated by

0 = �̂�, (19a)

 𝑖 = �̂� +
(

√

(𝐿 + 𝜆)𝑷
)

𝑖
, 𝑖 = 1,… , 𝐿, (19b)

 𝑖 = �̂� −
(

√

(𝐿 + 𝜆)𝑷
)

𝑖−𝐿
, 𝑖 = 𝐿 + 1,… , 2𝐿, (19c)

where 𝜆 = 𝛼2(𝐿 + 𝜅) − 𝐿. Note that the bracket’s index 𝑖 identifies the
𝑖-th column of the related matrix. The tuning parameter 𝛼 describes the
spread of the sigma points, usually set to 𝛼 = 10−3, and 𝜅 is a secondary
tuning parameter, usually set to 𝜅 = 0. The weights of each sigma point
for calculating the means and covariances are defined as

𝑊 𝑚
0 = 𝜆

𝐿 + 𝜆
, (20)

𝑊 𝑐
0 = 𝜆

𝐿 + 𝜆
+ (1 − 𝛼2 + 𝛽), (21)

𝑚
𝑖 = 𝑊 𝑐

𝑖 = 1
2(𝐿 + 𝜆)

, 𝑖 = 1,… , 2𝐿, (22)
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where 𝛽 is a tuning parameter, which is usually set to 𝛽 = 2 for Gaussian
distributions.

Prediction step
Calculate  according to (19a)–(19c). Afterwards compute the fol-

lowing relations:

�̌� =
2𝐿
∑

𝑖=0
𝑊 𝑚
𝑖 𝒇 ( 𝑖) (23)

�̌� =
2𝐿
∑

𝑖=0
𝑊 𝑚
𝑖 𝒈( 𝑖) (24)

𝑷 𝑥 =
2𝐿
∑

𝑖=0
𝑊 𝑐
𝑖
(

𝒇 ( 𝑖) − �̌�
) (

𝒇 ( 𝑖) − �̌�
)⊤ (25)

𝑷 𝑦 =
2𝐿
∑

𝑖=0
𝑊 𝑐
𝑖
(

𝒈( 𝑖) − �̌�
) (

𝒈( 𝑖) − �̌�
)⊤ (26)

𝑷 𝑥𝑦 =
2𝐿
∑

𝑖=0
𝑊 𝑐
𝑖
(

𝒇 ( 𝑖) − �̌�
) (

𝒈( 𝑖) − �̌�
)⊤ (27)

orrection step

= 𝑷 𝑥𝑦𝑷 −1
𝑦 (28)

̂ = �̌� +𝑲(𝐲 − �̌�) (29)

= 𝑷 𝑥 −𝑲𝑷 𝑦𝑷 𝑥 (30)

Here, �̌� and �̌� are the predictions of the states and measurements,
espectively, calculated by gating the sigma points  through the
onlinear functions. The covariance matrices 𝑷 𝑥, 𝑷 𝑦, and the cross-
ovariance matrix 𝑷 𝑥𝑦 are used for computing the updated covariance
atrix 𝑷 and the Kalman gain matrix 𝑲 . Hence, the Kalman gain
atrix characterizes the trustworthiness of the predicted states �̌�. If
has small values, the predictions are well-performing. Otherwise,

he measurements 𝐲 are weighted stronger to correct the prediction
naccuracy. As a result, the estimations �̂� result in a smoothed version
f the measurements 𝐱𝑚.

.4. Disturbance observer design

In the following, the original theoretical contribution of this article
s explained. Two assumptions are made to formulate the disturbance
bserver.

ssumptions:

1. It is assumed that the vessel’s velocities 𝝂 are measured. However,
the measurements are expected to have uncertainties, described
in more detail in Section 2.5.

2. It is assumed that the disturbances change slowly such that �̇�𝒅 ≈ 𝟎
holds for short time intervals. This assumption is required for the
observer design. Later, it is proven that the disturbances can also
be highly dynamic.

To design the dynamical observer, we define the following relations

̂𝒅 = 𝜻 + 𝝁(𝝂), (31)

�̇� = 𝒉(𝝂, �̂�𝒅), (32)

here the estimation of the disturbances �̂�𝒅 is defined as the sum of an
bserver variable 𝜻 and an unknown mapping 𝝁(𝝂). Hence, the error of

the observer is defined as

𝒛 = 𝝉𝒅 − 𝜻 − 𝝁(𝝂). (33)

The dynamics of the observer variable are defined as an unknown
mapping 𝒉(𝝂, �̂�𝒅). Therefore, the goal is to find the mappings 𝝁(𝝂) and
(𝝂, �̂�𝒅), such that the estimation �̂�𝒅 has a globally, asymptotically
table equilibrium at 𝒛 = 𝟎, and converges to the manifold

{ 3 3 }
4

= (𝝂, 𝜻) ∈ R × R ∶ 𝝉𝒅 − 𝜻 − 𝝁(𝝂) = 𝟎 . (34) m
The error dynamics are obtained by the time derivative of (33),
yielding

�̇� = �̇�𝒅
⏟⏟⏟

≈𝟎

−�̇� −
𝜕𝝁
𝜕𝝂

�̇�, (35)

hich leads to

̇ = −𝒉(𝝂, �̂�𝒅) −
𝜕𝝁
𝜕𝝂

𝑴−1 ((−𝑫(𝝂) − 𝑪(𝝂)) + 𝝉 + 𝝉𝒅
)

. (36)

Remark 1. Since the error dynamics are described by (36), 𝝁(𝝂) must
e continuously differentiable with respect to 𝝂.

To find suitable error dynamics, we define 𝒉(𝝂, �̂�𝒅) as

(𝝂, �̂�𝒅) = −
𝜕𝝁
𝜕𝝂

𝑴−1 ((−𝑫(𝝂) − 𝑪(𝝂)) + 𝝉 + �̂�𝒅
)

, (37)

such that the error dynamics are given by

̇ = −
𝜕𝝁
𝜕𝝂

𝑴−1(𝝉𝒅 − �̂�𝒅) = −
𝜕𝝁
𝜕𝝂

𝑴−1𝒛. (38)

Generally, the observer dynamics �̇� = 𝒉(𝝂, �̂�𝒅) are formulated as

�̇� = −
𝜕𝝁(𝝂)
𝜕𝝂

�̇�(𝝉𝒅 = 𝜻 + 𝝁(𝝂)), (39)

here the partial derivative 𝜕𝝁(𝝂)
𝜕𝝂 is given by

𝜕𝝁(𝝂)
𝜕𝝂

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝜇1
𝜕𝑢

𝜕𝜇1
𝜕𝑣

𝜕𝜇1
𝜕𝑟

𝜕𝜇2
𝜕𝑢

𝜕𝜇2
𝜕𝑣

𝜕𝜇2
𝜕𝑟

𝜕𝜇3
𝜕𝑢

𝜕𝜇3
𝜕𝑣

𝜕𝜇3
𝜕𝑟

⎤

⎥

⎥

⎥

⎥

⎦

. (40)

The expression �̇�(𝝉𝒅 = 𝜻 + 𝝁(𝝂)) describes �̇� as a function of 𝝉𝒅
defined in (5) while the equality symbol inside the brackets denotes a
substitution. Considering the error dynamics, and the system dynamics,
it is reasonable to define

𝝁(𝝂) =
⎡

⎢

⎢

⎣

𝜇1(𝑢)
𝜇2(𝑣, 𝑟)
𝜇3(𝑣, 𝑟)

⎤

⎥

⎥

⎦

, (41)

such that

𝜕𝝁(𝝂)
𝜕𝝂

=

⎡

⎢

⎢

⎢

⎣

𝜕𝜇1
𝜕𝑢 0 0
0 𝜕𝜇2

𝜕𝑣
𝜕𝜇2
𝜕𝑟

0 𝜕𝜇3
𝜕𝑣

𝜕𝜇3
𝜕𝑟

⎤

⎥

⎥

⎥

⎦

. (42)

With these definitions, the error dynamics yield

�̇� = −

⎡

⎢

⎢

⎢

⎣

𝜕𝜇1
𝜕𝑢 𝜅11 0 0
0 𝜕𝜇2

𝜕𝑣 𝜅22 +
𝜕𝜇2
𝜕𝑟 𝜅32

𝜕𝜇2
𝜕𝑣 𝜅23 +

𝜕𝜇2
𝜕𝑟 𝜅33

0 𝜕𝜇3
𝜕𝑣 𝜅22 +

𝜕𝜇3
𝜕𝑟 𝜅32

𝜕𝜇3
𝜕𝑣 𝜅23 +

𝜕𝜇3
𝜕𝑟 𝜅33

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑧1
𝑧2
𝑧3

⎤

⎥

⎥

⎦

. (43)

Regarding 𝑧1, it is evident that the error dynamics are exponentially
stable for every 𝜇1(𝑢), which satisfies
𝜕𝜇1
𝜕𝑢

𝜅11 > 0. (44)

To guarantee stable error dynamics concerning 𝑧2 and 𝑧3, we define
he following conditions.1

𝟏 ∶
𝜕𝜇2
𝜕𝑣

𝜅23 +
𝜕𝜇2
𝜕𝑟

𝜅33
!
= 0 (45)

𝐂𝟐 ∶
𝜕𝜇2
𝜕𝑣

𝜅22 +
𝜕𝜇2
𝜕𝑟

𝜅32
!
> 0 (46)

𝐂𝟑 ∶
𝜕𝜇3
𝜕𝑣

𝜅22 +
𝜕𝜇3
𝜕𝑟

𝜅32
!
= 0 (47)

1 An exclamation mark (!) above an equality (=) or inequality (>) sign
eans that the expression has to be valid to fulfill a hypothesis.
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𝐂𝟒 ∶
𝜕𝜇3
𝜕𝑣

𝜅23 +
𝜕𝜇3
𝜕𝑟

𝜅33
!
> 0 (48)

Here, C1 and C2 guarantee stable error dynamics with regard to 𝑧2,
hile C3 and C4 ensure stable error dynamics concerning 𝑧3. Since C1

and C3 are stronger conditions, we initially define

𝜇2(𝑣, 𝑟) = 𝛤2

(

1
𝜅22

𝑣 −
𝜅23

𝜅22𝜅33
𝑟
)

, (49)

3(𝑣, 𝑟) = 𝛤3

(

1
𝜅33

𝑟 −
𝜅32

𝜅22𝜅33
𝑣
)

, (50)

where 𝛤2 and 𝛤3 are adaptive gains. With these relations, C1 and C3
hold. Consequential, C2 and C4 lead to

𝛤2

(

1 −
𝜅23𝜅32
𝜅22𝜅33

)

!
> 0, (51)

3

(

1 −
𝜅23𝜅32
𝜅22𝜅33

)

!
> 0. (52)

emark 2. Since all entries of the mass matrix are positive, 𝜅23𝜅32
𝜅22𝜅33

is
lways positive.

Concerning (51) and (52), we must consider three cases.

ase 1. 𝜅23𝜅32 < 𝜅22𝜅33
In practice, the entries of the secondary diagonal of the mass matrix

re usually much smaller than the diagonal. Hence, the absolute values
f 𝜅23 and 𝜅32 are also much smaller than 𝜅22 and 𝜅33. In this case C2
nd C4 are satisfied if 𝛤2 > 0 and 𝛤3 > 0.

ase 2. 𝜅23𝜅32 > 𝜅22𝜅33
This case is usually not true. However, if this unrealistic scenario

olds, C2 and C4 are satisfied if 𝛤2 < 0 and 𝛤3 < 0.

Case 3. 𝜅23𝜅32 = 𝜅22𝜅33
In this case, the observer will not adapt. However, this case is

sually neglectable since this case is also unrealistic.

For future considerations, we regard the first case. To satisfy (44)
nd to synchronize the error dynamics, we define

1(𝑢) = 𝛤1
1
𝜅11

𝑢
(

1 −
𝜅23𝜅32
𝜅22𝜅33

)

. (53)

The previous case study also holds for (53) and the corresponding
rror dynamics of 𝑧1. Therefore, 𝛤1 > 0 must hold for practical
pplications. Summarized, the mapping 𝝁(𝝂) is expressed by

(𝝂) =
⎡

⎢

⎢

⎣

𝜇1(𝑢)
𝜇2(𝑣, 𝑟)
𝜇3(𝑣, 𝑟)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛤1
1
𝜅11
𝑢
(

1 − 𝜅23𝜅32
𝜅22𝜅33

)

𝛤2
(

1
𝜅22
𝑣 − 𝜅23

𝜅22𝜅33
𝑟
)

𝛤3
(

1
𝜅33
𝑟 − 𝜅32

𝜅22𝜅33
𝑣
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(54)

The adaptive gains 𝛤1, 𝛤2, and 𝛤3 define the adaptation speed. These
are design parameters and have to be chosen wisely. If 𝛤1 = 𝛤2 =
𝛤3, the estimations of the observed disturbances adapt with the same
speed due to the defined error dynamics. Hence, this observer formula-
tion provides a comfortable approach for synchronizing the adaptation
speed. With these relations, the error dynamics of the observer are
given by

�̇� = −
⎡

⎢

⎢

⎣

𝛤1𝜎 0 0
0 𝛤2𝜎 0
0 0 𝛤3𝜎

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑧1
𝑧2
𝑧3

⎤

⎥

⎥

⎦

, (55)

where 𝜎 = 1 − 𝜅23𝜅32
𝜅22𝜅33

leading to globally exponentially stable error
ynamics. Denoting 𝑻 = 𝜕𝝁(𝝂)

𝜕𝝂 , yields

=

⎡

⎢

⎢

⎢

⎢

𝛤1
1
𝜅11
𝜎 0 0

0 𝛤2
1
𝜅22

−𝛤2
𝜅23

𝜅22𝜅33

0 −𝛤 𝜅32 𝛤 1

⎤

⎥

⎥

⎥

⎥

. (56)
5

⎣

3 𝜅22𝜅33 3 𝜅33 ⎦

𝜻

Thus, the final expression of the disturbance observer is obtained
by

�̂�𝒅 = 𝜻 + 𝑻 𝝂, (57)

where the observer update is given by

�̇� = −𝑻 �̇�(𝝉𝒅 = 𝜻 + 𝑻 𝝂). (58)

Considering the Lyapunov function candidate

= 1
2
𝒛⊤𝒛, (59)

it can be shown that even if �̇�𝒅 ≠ 0, the error of the distur-
ance observer converges exponentially into a ball with radius 𝑟𝑏 =

𝜃
√

2𝜆min(𝜞 )𝜎−1
.

roof. Defining the adaptive gain matrix 𝜞 = diag(𝛤1, 𝛤2, 𝛤3), the
erivative of the Lyapunov function yields

̇ = −𝒛⊤𝜞𝜎𝒛 + 𝒛⊤�̇�𝒅 . (60)

Since

≤ (𝒛 − �̇�𝒅)⊤(𝒛 − �̇�𝒅)

= 𝒛⊤𝒛 − 𝒛⊤�̇�𝒅 − �̇�⊤𝒅𝒛 + �̇�⊤𝒅 �̇�𝒅 (61)
= 𝒛⊤𝒛 − 2𝒛⊤�̇�𝒅 + �̇�⊤𝒅 �̇�𝒅 ,

(60) leads to inequality

̇ ≤ −𝜆min(𝜞 )𝜎𝒛⊤𝒛 + 1
2
𝒛⊤𝒛 + 1

2
�̇�⊤𝒅 �̇�𝒅 (62)

≤ −(2𝜆min(𝜞 )𝜎 − 1)𝑉 + 1
2
𝜃2, (63)

here 𝜆min(𝜞 ) characterizes the smallest eigenvalue of 𝜞 which is
ikewise the smallest adaptive gain min(𝛤1, 𝛤2, 𝛤3), and 𝜃 denotes the
aximum possible norm ‖�̇�𝒅,𝒎𝒂𝒙‖. To guarantee stable behavior of

63), the expression

min(𝜞 )𝜎 > 1
2

(64)

has to be satisfied. The solution of (63) is given by

0 ≤ 𝑉 (𝑡) ≤ 𝜃2

(4𝜆min(𝜞 )𝜎 − 2)
(

1 − 𝑒−(2𝜆min(𝜞 )𝜎−1)𝑡) . (65)

Hence, 𝑉 is bounded by 𝜃2

(4𝜆min(𝜞 )𝜎−2) and thus the estimation error
of the disturbance observer converges into a ball with radius 𝑟𝑏 =

𝜃
√

2𝜆min(𝜞 )𝜎−1
.

emark 3. The stability analysis by using the Lyapunov approach
hows likewise to the previous formulations that the error converges
xponentially to zero if 𝜃 = 0, which implies that the disturbances are
onstant.

.5. Observer framework

Measurements arrive as a temporal sequence and thus have to be
reated as discrete values. Hence, the discrete measurements at time
tep 𝑘 of the system states are defined as

𝑚,𝑘 = 𝝂𝑘 + 𝐧𝑘, (66)

hich expresses the measurement function (16) with Gaussian noise
18). The discretized observer is obtained by

̂𝒅,𝒌 = 𝜻𝑘 + 𝑻 �̂�𝑘, (67)

here �̂�𝑘 describe the filtered measurements, and the observer update
s given by

(

̂
)

𝑘+1 = 𝜻𝑘 + 𝛥𝑡 −𝑻 𝝂𝑘+1(𝝉𝒅,𝒌 = 𝜻𝑘 + 𝑻 𝝂𝑘) . (68)
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Furthermore, the discrete model of (5) yields

𝝂𝑘+1 = 𝝂𝑘 + 𝛥𝑡
(

𝑴−1 (𝝉𝑘 + 𝝉𝒅,𝒌 −𝑫(𝝂𝑘)𝝂𝑘 − 𝑪(𝝂𝑘)𝝂𝑘
))

+ 𝐰𝑘, (69)

where 𝛥𝑡 is the time step between each measurement, and 𝐰𝑘 describes
the model uncertainty defined in expression (17). However, considering
realistic hydrodynamics of vessels, adding Gaussian noise additive to
the model dynamics leads to an impulsive unrealistic behavior. There-
fore, we assume that the identified hydrodynamic parameters and mass
parameters of Table 2 are erroneous. For this purpose, the actual model
dynamics are simulated with randomly generated parameters according
to

𝑝 = �̂�(1 + 𝜌w), (70)

where 𝑝 describes the real parameters, �̂� are the identified parameters
described in Section 3, 𝜌 is a scaling parameter defining the uncertainty,
and w is a randomly generated Gaussian distributed number. As a
result, the model uncertainties affect the model in each model matrix.
The robustness of the disturbance observer concerning measurement
noise depends on the current states. If the velocities are very low, high
noise has a much stronger effect on the observed states. To identify the
relative strength of the noise, we introduce an online noise estimator.
It is expressed by

̂𝑘 = 𝑬

⎡

⎢

⎢

⎢

⎢

⎣

‖

‖

‖

‖

‖

√

𝑬
[

(

(𝝂𝑊𝑀𝐴,𝑘−𝑤∶𝑘 − 𝝂𝑚,𝑘−𝑤∶𝑘) − 𝑬
[

𝝂𝑊𝑀𝐴,𝑘−𝑤∶𝑘 − 𝝂𝑚,𝑘−𝑤∶𝑘
])2

]‖

‖

‖

‖

‖

‖

‖

‖

𝑬
[

𝝂𝑚,𝑘−𝑤∶𝑘
]

‖

‖

‖

⎤

⎥

⎥

⎥

⎥

⎦𝑘−4𝑤∶𝑘

,

(71)

here 𝑬[ · ] describes the expected value, and 𝑤 is the considered win-
ow size. The foundation of the estimator builds the difference between
he actual measurements and their smoothed version provided by its

MA. Hence, the nominator is expressed by the 𝑙2-norm of the stan-
ard deviation concerning the difference between the measurements
nd their WMA-filtered version. At the same time, the denominator
haracterizes the 𝑙2-norm of the measurement’s mean. As a result,
he estimator represents the noise influence depending on the current
tates. The outer expectation bracket has the purpose of smoothing the
stimations. Otherwise, they can be noisy, as depicted in the results.
he entire framework consists of multiple components and has a cas-
ading structure. First, the measurements are propagated through the
oise estimator defined in (71). If the detected measurement noise is
eglectable small, the observer framework provides estimations of the
isturbances without filtering. Otherwise, the noise estimator triggers
cascaded filtering mechanism depicted in Fig. 2.

Here, 𝛾1 and 𝛾2 are the thresholds for triggering the switches 𝑠1
nd 𝑠2. If �̂� > 𝛾1, the disturbance observer receives the WMA filtered
tates. In any switch setting of 𝑠1, the UKF estimates the actual states
y receiving the measurements 𝜈𝑚,𝑘 and the estimated disturbances
𝜏𝑑,𝑘. If �̂� > 𝛾2, a second observer generates smoother versions of 𝜏𝑑,𝑘
by receiving the filtered states from the UKF. Note, that reducing the
adaptive gains 𝛤𝑖 results in a smoothed estimation of the disturbances.
For that reason, the adaptive gains for the second observer should be
chosen small. The grey unit in Fig. 2 can be duplicated and added to
the cascaded structure if the measurement noise is exaggerated.

For traceability, in the following, pseudocode is presented. The
code should give clear instructions to reconstruct the entire framework.
Initialization parameters of the observer framework are depicted in
Table 1. Tuning parameters such as 𝛤1, 𝛤2, 𝛤3, 𝛼, 𝛽, and 𝜅, used for
this study, are just a recommendation. Here, 𝛤𝑖,𝑗 describes the adaptive
gains at the 𝑗th observer depending on the number of cascading units.
In the provided algorithm, two grey units are cascaded, where the
state estimations of the first and second UKF are denoted as �̂�𝑎,𝑘+1 and
̂ 𝑏,𝑘+1. Note that the adaptive gains should be adjusted if the sensor

easurements have a low sampling frequency since higher sampling
6

Fig. 2. Observer framework.

Algorithm 1 Pseudocode
1: while observation = True do
2: Calculate 𝝂𝑊𝑀𝐴,𝑘 according to (14)
3: Calculate �̂�𝑘 according to (71)
4: if �̂�𝑘 ≤ 𝛾1 then
5: 𝑻 (𝛤𝑖) = 𝑻 (𝛤𝑖,1)

6: 𝝉𝒅,𝒌 = 𝜻𝑘 + 𝑻 𝝂𝑚,𝑘
7: 𝜻𝑘+1 = 𝜻𝑘 + 𝛥𝑡

(

−𝑻 𝝂𝑘+1(𝝉𝒅,𝒌 = 𝜻𝑘 + 𝑻 𝝂𝑚,𝑘)
)

8: else if �̂�𝑘 > 𝛾1 then
9: 𝑻 (𝛤𝑖) = 𝑻 (𝛤𝑖,1)

10: 𝝉𝒅,𝒌 = 𝜻𝑘 + 𝑻 𝝂𝑊𝑀𝐴,𝑘

11: 𝜻𝑘+1 = 𝜻𝑘 + 𝛥𝑡
(

−𝑻 𝝂𝑘+1(𝝉𝒅,𝒌 = 𝜻𝑘 + 𝑻 𝝂𝑊𝑀𝐴,𝑘)
)

12: else if �̂�𝑘 > 𝛾2 then
3: Calculate  𝑖,𝑘 according to (19a)–(19c)
4: Calculate 𝝂𝑎,𝑘+1 according to (23)–(30)
5: 𝑻 (𝛤𝑖) = 𝑻 (𝛤𝑖,2)

6: 𝝉𝒅,𝒌 = 𝜻𝑘 + 𝑻 𝝂𝑎,𝑘+1
7: 𝜻𝑘+1 = 𝜻𝑘 + 𝛥𝑡

(

−𝑻 𝝂𝑘+1(𝝉𝒅,𝒌 = 𝜻𝑘 + 𝑻 𝝂𝑎,𝑘+1)
)

8: else if �̂�𝑘 > 𝛾3 then
9: Calculate  𝑖,𝑘 according to (19a)–(19c)
0: Calculate 𝝂𝑏,𝑘+1 according to (23)–(30)
1: 𝑻 (𝛤𝑖) = 𝑻 (𝛤𝑖,3)

2: 𝝉𝒅,𝒌 = 𝜻𝑘 + 𝑻 𝝂𝑏,𝑘+1
3: 𝜻𝑘+1 = 𝜻𝑘 + 𝛥𝑡

(

−𝑻 𝝂𝑘+1(𝝉𝒅,𝒌 = 𝜻𝑘 + 𝑻 𝝂𝑏,𝑘+1)
)

4: end if
5: end while

rates allow greater adaptive gains. Otherwise, the observations can turn
unstable, described in more detail in the following section.

3. Method and setup

This study is conducted with the specifications of the milliAmpere
ferry. MilliAmpere is Norway’s first driverless ferry and part of the
Autoferry project of the Norwegian University of Science and Technol-
ogy (Brekke et al., 2022).
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3.1. Ferry specification

The hydrodynamic parameters and the entries of the mass matrix
are identified in Pedersen (2019) by using datasets consisting of veloc-
ity measurements 𝝂𝑚 of the vessel, rotational velocity measurements
of the propellers, and azimuth angle measurements of the thrusters.
For this purpose, techniques such as optimal control, regularization,
and cross-validation are used. The identified parameters are shown in
Table 2.

3.2. Scenario description

The observer framework was tested in several scenarios correspond-
ing to different severity levels of the environmental disturbances. To
evaluate the capability of the framework under highly dynamic condi-
tions, the forces induced by wind, waves, and sea currents are simulated
by

𝝉wind =
⎡

⎢

⎢

⎣

𝐹wind cos(𝛾wind − 𝜓) (1 + sin(𝑡))
−𝐹wind sin(𝛾wind − 𝜓) (1 + sin(𝑡))

𝐹wind sin(2(𝛾wind − 𝜓)) (1 + sin(𝑡)) 𝐿4

⎤

⎥

⎥

⎦

, (72a)

wave =
⎡

⎢

⎢

⎣

𝐹wave cos(𝛾wave − 𝜓) (1 + sin(𝑡))
−𝐹wave sin(𝛾wave − 𝜓) (1 + sin(𝑡))

0

⎤

⎥

⎥

⎦

, (72b)

current =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐹current cos(𝛾current − 𝜓)
(

1 − 𝑒−
𝑡
𝑇𝑠

)

−𝐹current sin(𝛾current − 𝜓)
(

1 − 𝑒−
𝑡
𝑇𝑠

)

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (72c)

Note that the impact angles 𝛾𝑖 of wind, waves, and currents are
related to the 𝑥-axis of the global coordinate system, while 𝐹𝑖 are the
dedicated mean forces. Moreover, 𝐿 is the length of the vessel and 𝑇𝑠
expresses a time constant. Since the waves are affected by wind, they
have approximately the same direction. Furthermore, it is expected that
the torque induced by the environment is mainly influenced by the
wind. Hence, it is assumed that the wind force in the sway direction
describes the torque dependent on cos(𝛾wind − 𝜓) impacting half of the
vessel’s length. This inference follows from geometrical relations and
the assumption that the vessel’s hull is approximately symmetrical from
the center to the stern side and from the center to the nose side. Note
that the identity

cos(𝛾wind − 𝜓) sin(𝛾wind − 𝜓) =
1
2
sin(2(𝛾wind − 𝜓)) (73)

is valid. In addition, an oscillating force is superposed to the wind’s
mean force in order to simulate a pulsating wind behavior. While the
waves are simulated as an oscillating force, it is assumed that the sea
currents do not exhibit highly dynamic behavior. Therefore, they are
simulated as an exponentially decaying force.

The entire environmental influence described by (72a)–(72c) re-
sults in highly dynamic disturbances affecting the vessel. In addition,
the scenario is made more challenging by adding strongly increasing
measurement noise. To visualize the environmental impact, the control
input 𝜏 is set to zero. The simulation lasts for 100𝑠, and the measure-
ment noise is increased stepwise. This has the purpose of showcasing
the capability of the framework under different conditions. Hence, the
covariance matrix of the measurement noise is defined as

𝑹 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝟎, if 0𝑠 ≤ 𝑡 < 20𝑠,
𝑹1, if 20𝑠 ≤ 𝑡 < 40𝑠,
𝑹2, if 40𝑠 ≤ 𝑡 < 60𝑠,
𝑹3, if 60𝑠 ≤ 𝑡 < 80𝑠,
𝑹 , if 80𝑠 ≤ 𝑡 ≤ 100𝑠,

(74)
7

⎩

4

The simulation parameters are depicted in Table 3. Under consideration
of measurement uncertainties, it turned out that the observer mainly
issues with scenarios where the measured states have small values since
they are more sensitive to noise. If the environmental disturbances are
severe, leading to a higher force impacting the vessel, measurement
noise has a minor influence on the system states since the forces have
greater absolute values and are thus easier to handle by the observer.
Considering (57), this statement is reasonable since the value of the
observer variable 𝜻 will dominate the influence of the measurement
noise within 𝝂 if the disturbances are severe. Various simulations
verified this assumption.

In addition, simulations have shown that the adaptive gains 𝛤𝑖
should be adjusted to the measurement time step 𝛥𝑡. A higher sampling
frequency, i.e., a lower time step, offers the possibility to increase the
adaptive gains very high. However, reducing the sampling frequency
results in a reciprocal effect. If the adaptive gains are improperly
adjusted to the sampling frequency, the observer turns unstable. De-
spite that, a time step of 𝛥𝑡 = 0.1𝑠 still enables 𝛤𝑖 = 18, which is
absolutely sufficient for a fast adaptation. While higher adaptive gains
lead to faster adaptation, decreasing the adaptive gains is beneficial for
generating smoothed estimations. Both of these advantages are used
in the framework showcased in Fig. 2. The parameterization of the
observer framework is given in Table 1. To adapt fast enough to the
real values, the first observer has higher adaptive gains. The subsequent
cascaded observers have lower gains since their main function is to
smooth noisy signals. Hence, the parameterization of switch 𝑠3 is cho-
sen such that the noise rejection dominates the adaptation speed and
shall demonstrate an emergency trigger. Tuning parameters 𝛾𝑖 of the
witches were chosen according to the best generalizability concerning
ultiple simulated scenarios, including several severity levels of the
isturbances and measurement noise. Furthermore, the window size 𝑤
hould be adapted to the sampling frequency. Simulations showed that
proper calibration is done by choosing 𝑤 = 1

𝛥𝑡 .
To compare the influence of various 𝛤𝑖 and model uncertainties, a

second simulation is showcased according to

𝝉𝑑 =
⎡

⎢

⎢

⎣

‖𝝉current‖
‖𝝉current‖
‖𝝉current‖

⎤

⎥

⎥

⎦

. (75)

Furthermore, the second simulation is conducted with a very low
measurement sampling rate of 𝛥𝑡 = 0.1𝑠 to showcase the observer’s
capability of dealing with low sampling frequencies. To compare the
behavior of the observer framework under uncertain model circum-
stances, model uncertainties are simulated according to (70) with
various 𝜌 given in Table 3. Note that 𝜌 = 0.1 corresponds to a model
parameter uncertainty of 10%.

4. Results and discussions

In Fig. 3, the real system states, the measured states, the WMA
filtered measurements, and the filtered measurements from the UKFs
are visualized. While the WMA filtering seems to provide sufficient
smoothing for weak measurement noise, smooth state estimations un-
der consideration of intense measurement noise can only be reasonably
generated by the following cascaded UKFs.

Fig. 4 depicts the estimated disturbances from the observer frame-
work. The first twenty seconds are simulated without measurement
noise. Hence, the observer is adapting in real-time highly accurate.
However, one can see at 20𝑠 < 𝑡 < 22𝑠 how even weak measurement
noise propagates through the observer. The WMA smoothing of the
observed disturbances is a bit delayed since the noise estimator needs
a short time to adapt.

In Fig. 5, the noise estimations and the triggered switches are visual-
ized. Here, 𝑠1 and 𝑠2 are according to the representation in Fig. 2, while
the third switch 𝑠3 is an additional cascading unit depicted in grey. If
the measurement noise is getting too intense, an additional smoothing
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Fig. 3. Real states ( ), measured states with measurement noise ( ), WMA filtered measurements ( ), filtered states from the first UKF ( ), and filtered states from the
second UKF ( ).
Fig. 4. Observed disturbances �̂�𝒅 ( ) compared to the real disturbances 𝝉𝒅 ( ).
5

f
c
m
f

F
f
i
t

nit is connected. Usually, measurements showcased at 𝑡 > 60𝑠 are
onsidered as unrealistically uncertain. However, the framework allows
smoothed estimation even if the disturbances are highly dynamic. If

he disturbances are less dynamic, the smoothed estimations will adapt
n real-time to the actual values.

Fig. 6 compares the various adaptation gains 𝛤𝑖 conducted with the
imulation described by (75). One can see that an increase of 𝛤𝑖 leads
o faster adaptations, while lower 𝛤𝑖 smoothens the estimations. Fur-
hermore, the synchronization of the observer is evident. The observer
ramework benefits from synchronizing the observed disturbances since
ach cascaded unit ensures an equal adaptation speed and smoothing
roperty.

In Fig. 7, the estimations of the observed disturbances are show-
ased if the model parameters are wrongly identified. If the model
arameters have an uncertainty below 10%, the estimations are still
elatively accurate. In this case study, the observer starts getting in-
ccurate if the model uncertainties exceed 10%, and the estimations
re useless if the identified model parameters are intensively erroneous
30%).

Since the model is described in dependency of the system states,
nd these system states are considered to be measured, the model and
easurements are correlated. Hence, the influence of both model and
easurement uncertainties leads to a superposition. As a result, the

ramework can deal with them in parallel until the model uncertainties
xceed a specific limit depicted in Fig. 7. These scenarios are separated
o avoid confusion and clearly state the individual capabilities.
8

m

. Conclusion and future work

The proposed disturbance observer framework proved its capability
or approximating the environmental impact of wind, waves, and sea
urrents despite using an unreliable model and highly noisy measure-
ents. The main takeaway from the current work can be itemized as

ollows:

• The cascaded structure of the observer framework allows adap-
tive smoothing of noisy measurements. As a result, the observed
disturbances have approximately no noisy characteristics.

• Model simplifications are avoided, and the observer framework
showed that the disturbances can be approximated relatively
accurately despite model uncertainties. However, the observa-
tion capabilities are limited if the model parameters are highly
erroneously identified.

• Under consideration of a discrete, temporal sequence of measure-
ments, the framework can observe the actual disturbances despite
low sampling rates.

• The formulation of the observer’s error dynamics allows the
user a convenient approach for synchronizing the adaptive gains.
As a result, the framework can adapt its estimations with a
synchronized adaptation speed and equal smoothing properties.

uture work will utilize the proposed disturbance observer framework
or robust control of autonomous surface vessels and concentrate on
mproving their situational awareness, e.g., via online parameter iden-
ification, to overcome the issue of false estimations by using erroneous
odel parameters and guaranteeing trustworthy model dynamics.
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Fig. 5. Noise estimation without mean smoothing ( ), and the final smoothed noise strength estimation ( ) triggering the switches 𝑠1 ( ), 𝑠2 ( ), and 𝑠3 ( ).
Fig. 6. Comparison of different 𝛤𝑖, for 𝑖 = 1, 2, 3 with 𝛤𝑖 = 0.01 ( ), 𝛤𝑖 = 0.1 ( ), 𝛤𝑖 = 1 ( ), 𝛤𝑖 = 10 ( ), 𝛤𝑖 = 18 ( ), and the real disturbances ( ). This simulation is
designed such that all disturbances represent equal behavior for the purpose of better comparability. Here, it is shown that the designed observer allows a convenient adjustment
of the adaptive gains.
Fig. 7. Observed disturbances under consideration of various randomly generated model uncertainties, where the model parameters are created with uncertainties 𝜌 = 𝜌1 ( ),
𝜌 = 𝜌2 ( ), 𝜌 = 𝜌3 ( ), 𝜌 = 𝜌4 ( ), and the results are compared to the actual disturbances ( ).
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Appendix

See Tables 1–3.

Table 1
Parameters of the observer framework.

Parameter Value

Initializations

�̂�0 𝑬[𝝂0]
𝑷 0 0.1 · eye(𝐿,𝐿)
𝜻0,𝑗 zeros(𝐿, 1)

Observer parameters

𝛤𝑖,1 15
𝛤𝑖,2 3
𝛤𝑖,3 0.2

UKF parameters

𝛼 10−3

𝛽 2
𝜅 0

Noise estimator parameters

𝑤 100
𝛾1 0.001
𝛾2 0.005
𝛾3 0.01
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Table 2
Identified parameters of the milliAmpere ferry.

Par Value Unit Par Value Unit

𝑚11 2389.657 kg 𝑚22 2533.911 kg
𝑚23 62.386 kg m 𝑚32 28.141 kg m
𝑚33 5068.910 kg m2 𝑋𝑢 −27.632 kg s−1

𝑋
|𝑢|𝑢 −110.064 kg m−1 𝑋𝑢𝑢𝑢 −13.965 kg s m−1

𝑌𝑣 −52.947 kg s−1 𝑌
|𝑣|𝑣 −116.486 kg m−1

𝑌𝑣𝑣𝑣 −24.313 kg s m−1 𝑌
|𝑟|𝑣 −1540.383 kg

𝑌𝑟 24.732 kg m s−1 𝑌
|𝑣|𝑟 572.141 kg

𝑌
|𝑟|𝑟 −115.457 kg m 𝑁𝑣 3.5241 kg m s−1

𝑁
|𝑣|𝑣 −0.832 kg 𝑁

|𝑟|𝑣 336.827 kg m
𝑁𝑟 −122.860 kg m2 s−1 𝑁

|𝑟|𝑟 −874.428 kg m2

𝑁𝑟𝑟𝑟 0.000 kg m2 s 𝑁
|𝑣|𝑟 −121.957 kg m

Table 3
Simulation parameters.

Par Value Unit

Initializations

𝜼 [0, 0, 30]⊤ [m,m,deg]
𝝂 [0, 0, 0]⊤ [ m

s
, m

s
, deg

s
]

Simulation parameters

𝛥𝑡 0.01 s
𝐹wind 50 N
𝐹wave 20 N
𝐹current 100 N
𝛾wind 135 deg
𝛾wave 155 deg
𝛾current 270 deg
𝐿 5 m
𝑇𝑠 15 s

Uncertainty parameters

𝑹1 2 · 10−3𝑰3×3
𝑹2 5 · 10−3𝑰3×3
𝑹3 10−2𝑰3×3
𝑹4 10−1𝑰3×3
𝜌1 0.01
𝜌2 0.05
𝜌3 0.1
𝜌4 0.3
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