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• Toxicity indicators of fish affected by 
PS-NPs are greater than those by PS- 
MPs. 

• Endocytosis of MPs and NPs induce 
different fish nutritional reduction. 

• NPs triggered more cell apoptosis in 
Ferroptosis and FoxO signaling path-
ways than MPs. 

• Mitochondria are the major cellular 
targets of PS MPs/NPs for marine fish. 

• NPs introduced higher genes expression 
related to electron transfer chain than 
MPs.  
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A B S T R A C T   

Microplastics (MPs) and nanoplastics (NPs) are ubiquitous in the marine environments due to the wide use and 
mismanagement of plastics. However, the effect of MPs/NPs on the nutrition quality of economic species is 
poorly understood, and their underlying mechanisms remained unclear. We therefore investigated the impacts of 
polystyrene MPs/NPs on the nutrition composition of marine jacopever Sebastes schlegelii from the perspective of 
assimilation and metabolism. Results showed that NPs reduced more nutrition quality than MPs. Despite no 
notable impact on intestinal microbiota function, MPs/NPs influenced the assimilation of fish through intestinal 
damage. Furthermore, NPs induced greater damage to hepatocyte metabolism than MPs, caused by hepatocyte 
uptake through membrane protein pumps/channels and clathrin/caveolin-mediated endocytosis for NPs, while 
through phagocytosis/pinocytosis for MPs. NPs triggered more cell apoptosis signals in Ferroptosis and FoxO 
signaling pathways than MPs, destroying mitochondria structure. Compared with MP treatments, a significant 
upregulation of genes (PRODH and SLC25A25A) associated with the electron transfer chain of mitochondria was 
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detected in the NP treatments, influencing the tricarboxylic acid cycle and interfering with liver metabolism of 
proteins, fatty acid, glycerol phospholipids, and carbohydrates. This work provides new insights into the po-
tential impacts of MPs/NPs on the quality and safety of seafood.   

1. Introduction 

Microplastics (MPs, 1 μm–5 mm) have been shown to be ubiquitous 
in all compartments across the global marine environments. Despite 
challenges with extraction and analysis of nanoplastics (NPs, <1 μm), it 
has been reported that one spherical MP particle (5 mm) can be broken 
down into 1014 NPs (100 nm) for several hundreds of years (Wagner and 
Reemtsma, 2019). Currently, limited studies reported that the numerical 
abundance of NPs in marine environments is expected to be much higher 
than MPs (Davranche et al., 2020; Lenz et al., 2016; Ter Halle et al., 
2017). NPs can cross the gut barrier and translocate into secondary 
tissues, even interacting with proteins, and induce the conformational 
changes and denaturation of protein, while larger sized MPs may be only 
physically trapped in the gut (Gopinath et al., 2019; Li et al., 2021a; 
Magri et al., 2018). After fish (common carp juveniles) exposure to 
polyethylene plastics particles, multi-biomarkers were changed in 
exposure groups, and more serious damage induced in exposure groups 
with the decreasing size of polyethylene plastics particles (nano > micro 
> macro) compared to the control groups (Hamed et al., 2022). There-
fore, NPs may pose a greater risk to marine ecosystems than MPs and 
further effort should be devoted to understanding the impacts of NP 
pollution (Jeong et al., 2016; Li et al., 2021b). 

Economic fish species are a rich source of protein and nutrients (e.g., 
human-essential amino acids and omega-3 polyunsaturated fatty acids) 
for many of the global human population. Previous studies have found 
that MP exposures led to a reduction of energy reserves and nutrition 
quality (e.g., protein and lipid contents) of marine fish (Lu et al., 2022; 
Yin et al., 2018), while the reasons for the reduction were not fully 
investigated. For NPs, only one study found the dietary exposure to 
polystyrene (PS) NPs altered the fatty acid composition and texture of 
muscle in carnivorous marine fish large yellow croaker (Lai et al., 2021). 
Furthermore, it has been reported that there were significant differences 
on the effects of nanoparticles on the crude protein of marine fish ju-
venile turbot between dietary exposure and waterborne exposure (Wang 
et al., 2016). To date, no study focused on the impact of NPs on the 
nutritional composition of economically important fish species through 
waterborne exposure, hampering the risk assessment of NPs on the 
quality and safety of seafood. 

As a critical line of defense against exogenous substances, the in-
testinal tract is a vital organ for controlling digestion, absorption, and 
immunity in animals (Magalhaes et al., 2007). Furthermore, the liver of 
fish plays a key role in lipid and toxicant metabolism (Nguyen et al., 
2008). Moreover, intestinal microbiota composition can affect bile acid 
metabolism, which has been implicated in the regulation of lipid, 
glucose, and energy metabolism (Duparc et al., 2017). PS-MPs have been 
reported to trigger lipid metabolic disorders via inducing intestinal 
microbiota dysbiosis in marine medaka (Oryzias melastigma) (Zhang 
et al., 2021a). Therefore, damage to the intestine and liver induced by 
MPs/NPs has the potential to induce negative impacts on fish digestion 
and absorption of lipids and other nutrients, such as proteins, sugars, 
and so on. In turn, this can influence the nutritional quality of fish. 
However, the potential toxicity mechanisms of MPs and NPs, including 
the internalization pathway and apoptotic signals, remain unclear. 

Sebastes schlegelii is widely distributed in the coastal waters of 
Southeast Asian, and they are cultured in many countries for the food 
supply of humans (Zhang et al., 2021b). In this study, juvenile S. 
schlegelii was chosen because of its high ecological and economic values 
(Kishimura et al., 2007). Relative to MPs, it is hypothesized that expo-
sure to NPs has a greater impact on the nutritional quality of marine 
economic fish and that this is driven by (i) NPs disturbing intestinal 

assimilation and (ii) NPs inducing hepatic metabolism due to higher 
bioavailability and increased endocytosis. To test this hypothesis, we 
examined the behaviors of MPs/NPs in filtered seawater, and investi-
gated growth parameters and the nutritional quality of economic marine 
fish. Through the histochemical and multi-omics analyses, the under-
lying mechanisms of MP/NP exposure influencing the nutrition quality 
of marine fish were elucidated for the first time. 

2. Materials and methods 

2.1. Chemicals and test organisms 

Red fluorescent non-functionalized polystyrene microspheres (PS- 
MPs, 5 μm, 1.06 g/cm3) and nanospheres (PS-NPs, 100 nm) were pur-
chased from Tianjin Unibead Scientific Co. Ltd. (www.qiuhuan.com, 
Tianjin, China) as dispersions. The morphology, fluorescence, polymeric 
composition and the primary size of MPs and NPs were characterized. 
Detailed information regarding the preparation and characterization of 
the PS-MP/NP dispersions is provided in the Supporting Information 
(SI). 

Juvenile jacopever (S. schlegelii) were obtained from Qingdao Qin-
gyuan Marine Biological Technology Co., Ltd. (http://www.qdfenghua 
ngdao.cn/, China). The fish were cultured in filtered seawater with 
aeration for 15 days, 720 healthy fish (average weight: 2.55 ± 0.78 g; 
average length: 54.72 ± 5.36 mm) were randomly selected for use in the 
experiments. The entire exposure medium was renewed daily, and the 
detail of the culturing was shown in SI. The approval about use of the 
fish (S. schlegelii) was obtained by the ethic committee of Yellow Sea 
Fisheries Research Institute (Protocol N.2021028; August 22th, 2021). 

2.2. Experimental design 

The experimental design is summarized in Fig. S1. S. schlegelii (n =
720) were randomly distributed to 9 tanks (80 L), with triplicate tanks 
for control, PS-MPs and PS-NPs samples, respectively. PS particles were 
added to each tank to achieve final exposure concentrations of 0.23 mg/ 
L. This was considered to environmentally realistic for MPs (Zhang et al., 
2019) and so the same concentration was also used for NPs as such 
values are not currently available. The deposition behavior and zeta 
potential of PS-MPs and PS-NPs were shown in the SI. The exposure of S. 
schlegelii was conducted over a period of 15 days. 

2.3. Assessment of health status and nutritional quality analysis 

After 15 days of exposure to PS-MPs and PS-NPs, growth parameters 
(Weight gain rate, Specific growth rate and Survival rate), biometric 
parameters (Condition factor, Hepatosomatic index and Viserosomatic 
index) and nutritional composition (Crude protein, Crude lipid, Mois-
ture and Ash content) were measured and calculated according to 
methods described in our previous research (Yin et al., 2018). Fresh 
brain and liver of 60 fishes from each group were removed and vacuum- 
freeze dried (Labconco, USA), while the rest of the fish was dried at 
105 ◦C until a constant weight was recorded. Then all the dried fish were 
grounded together into powder and the changes of water content 
(Moisture) and body composition matter (Crude protein, Crude lipid and 
Ash content) were analyzed. Gross energy was measured using an 
automatic oxygen bomb calorimeter (WZH-15 DJL9, CSCX, China). 
Crude protein (N × 6.25) was determined by the Kjeldahl method using 
an auto Kjeldahl System (Buchi B-324/435/412, Switzerland) (2002). 
Crude lipid was determined by the ether-extraction method (Grisdale- 
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Helland et al., 2008; Yin et al., 2018). Crude ash was determined by a 
muffle furnace at 550 ◦C for 4 h. The detail of calculation was shown in 
the SI. 

2.4. Histopathological and ultrastructural analysis 

After exposure to PS-MPs and PS-NPs for 15 days, fresh liver and 
intestine were extracted from fish (n = 15) of each group, and then 
randomly divided into three samples to be used for the different ana-
lyses. The first sample was used for histological analysis, and the 
detailed information is shown in the SI. The second sample was fixed in 
glutaraldehyde and embedded in Epon 812 resin (Xia et al., 2020). The 
6 μm thick ultrathin sections were prepared using an ultramicrotome 
(LKB, Sweden) and stained with uranyl acetate and lead citrate. Ultra-
structural changes of these samples were then investigated by TEM. The 
last sample was extracted to analysis of the intestinal microbiota, tran-
scriptomic and metabolomic response of liver. 

2.5. DNA extraction and high-throughput sequencing 

According to our previous study (Sun et al., 2020a), a detailed 
description of the library construction process, sequencing and analysis 
method are provided in the SI. Briefly, the intestine of fish (n = 15) each 
from the control, MP, and NP groups were randomly selected. Due to the 
young age of the fish, the whole gastrointestinal tract was used. The total 
DNA in each sample was extracted by the HiPure Soil DNA Kit (Magen, 
Guangzhou, China), and the amplified products were purified using the 
AxyPrep DNA Gel Extraction Kit according to the manufacturer's 
instructions. 

2.6. RNA extraction and transcriptome sequencing 

For transcriptomic analysis, liver tissues of fish (n = 15) from each 
groups (the control, PS-MP, and PS-NP groups) were randomly selected 
across the three experiments for downstream RNA isolation and Quant- 
Seq analysis. RNA was extracted from frozen liver tissues using a Trizol 
reagent kit (Invitrogen, Carlsbad, CA, USA), followed by RNA quantifi-
cation using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo 
Alto, CA, USA). The method has been described in our previous study 
(Zhu et al., 2016), and the details of the library construction, 
sequencing, analysis method and quantitative real-time PCR assay are 
provided in the SI. All RNA-Seq data have been submitted to the NCBI 
SRA database (https://www.ncbi.nlm.nih.gov/sra/PRJNA772565), 
under accession number PRJNA772565. 

2.7. Metabolomic analysis 

Hepatic metabolites were respectively extracted from the fish livers 
(n = 30) in the control, MP, and NP groups. Briefly, 50 mg of tissue was 
homogenized with 500 μL of 4:1 (v/v) methanol/water and 600 μL of 2:1 
(v/v) chloroform/water. The mixture was centrifuged at 10000g for 5 
min at 4 ◦C. The supernatant phase was transferred to a fresh glass vial 
for analysis. The extracted metabolites were analyzed by liquid 
chromatography-tandem mass spectrometry (LC-MS/MS) using an ul-
trahigh pressure (UHP) LC system (Vanquish, ThermoFisher Scientific) 
fitted with a UPLC BEH Amide column and coupled to Q ExactiveHFX 
mass spectrometer (Orbitrap MS, Thermo). Raw MS data files were 
converted to the mzML format using ProteoWizard and then processed 
by R package XCMS (version 3.2), which included retention time 
alignment, peak detection and peak matching steps. The processed mass 
spectrometry data was then subjected to metabolite annotation with an 
in-house MS2 database (Li et al., 2021b; Zhang et al., 2017). 

2.8. Statistical analysis 

All experiments were conducted using triplicate samples, except the 

six duplications of non-target metabolome, and data are expressed as 
means ± standard deviation (SD). All data were checked for normality 
and homogeneity of variance before performing statistical comparisons. 
Differences among groups were identified using VIP ≥ 1 (OPLS-DA 
model) and t-test p < 0.05. All statistical analysis was performed using 
the IBM SPSS 20. Differences were considered significant when p < 0.05. 

3. Results and discussion 

3.1. Characterization of MPs and NPs 

TEM, SEM, micro-FTIR and fluorescence microscope analysis 
confirmed that both MPs and NPs were spherical PS particles with red 
fluorescence (Fig. 1A–D and S2). The hydrodynamic diameters obtained 
from dynamic light scattering in the filtered seawater were 143.36 ±
5.11 nm for PS-NPs and 16.94 ± 0.93 μm for PS-MPs at 0 h, respectively 
(Fig. 1E, F). The hydrodynamic diameter of PS-NPs in seawater was 
significantly smaller than that of PS-MPs (p < 0.05). In deionized water, 
the repulsion-attraction counteraction can maintain the colloidal sta-
bility of NPs (Martinez-Negro et al., 2021). While, the stability of NPs in 
seawater is strongly influenced by the ionic strength and organic matter 
in seawater (Booth et al., 2013; Lee and Fang, 2022), where the surface 
charge of NPs can be gradually neutralized, leading to reduced colloidal 
stability and aggregation (Booth et al., 2013; Liu et al., 2012). However, 
this phenomenon is not obvious for MPs. 

3.2. Effects of MPs and NPs on growth and nutritional quality 

The growth rates (e.g., WGR and SGR) of jacopever in the PS-MPs 
and PS-NPs groups were significantly reduced compared with the con-
trol group (p < 0.05) (Table 1), indicating that both PS-MPs and PS-NPs 
could significantly inhibit the growth of juvenile fish. However, there 
were no significant differences in growth between the PS-MPs and PS- 
NPs groups. This is consistent with previous results, where the sur-
vival and growth of large yellow croaker also decreased after exposure 
to PS-NPs (Lai et al., 2021). Furthermore, there were no significant 
differences in biometric parameters (CF, VSI and HSI) between the 
control and experiment groups (p > 0.05). 

Relative to the controls, marine jacopever exposed to PS-NPs 
exhibited significantly lower gross energy, crude protein, crude lipid 
and ash content, but higher moisture. Similarly, gross energy, crude 
protein and crude lipid were decreased after exposure to PS-MPs (15 
μm), which is consistent with previous study (Yin et al., 2018). Impor-
tantly, significant differences in gross energy, crude lipid and moisture 
were detected between the PS-MPs and PS-NPs groups, indicating that 
PS-NPs can cause greater effects on the energy reserve and nutritional 
quality of marine jacopever than PS-MPs. Although a greater mass of PS- 
MPs remained in dispersion and interacted with the fish relative to PS- 
NPs (Fig. 1G), more substantial effects on the nutritional quality of 
marine jacopever were observed in PS-NPs treatments than PS-MPs. 
Overall, exposure to PS-MPs and PS-NPs can reduce the growth and 
nutritional quality of marine fish, potentially leading to decreased pro-
duction and reduced economic value. 

3.3. Histopathological and ultrastructural analysis of intestine and liver 

Representative histopathological observations of liver and intestine 
are shown in Fig. S3, and Fig. S4, respectively. Injury of the top villi, 
necrosis, exfoliation and partial dissolution of the columnar epithelial 
cells, and severe vacuolization were detected in the intestinal tissue from 
both the PS-MPs and PS-NPs exposures (Fig. S4). A similar phenomenon 
has also been reported in zebrafish after exposure to MPs/NPs (Duan 
et al., 2022). Damage to the intestinal tract has been proven to reduce 
the assimilation capacity of nutrients in fish (Awad et al., 2019). Path-
ological changes, including congested and dilated blood vessels and 
inflammatory cell infiltration, were also detected in the liver of juvenile 
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fish in both PS treatments, especially in the PS-NPs groups (Fig. S3). 
Interestingly, PS-MPs were observed by fluorescence microscopy in in-
testine and liver (Fig. S3B and S4B), and PS-NPs were observed by the 
hyperspectral-enhanced microscopy in intestine and liver (Fig. S5). This 
also suggests the particles could further enter the circulatory system and 
then transfer into the hepatocytes (Ma et al., 2022). 

The ultrastructures of the intestine and liver were examined using 
TEM (Fig. 2). In the PS-MPs and PS-NPs groups, a large number of 
glycogen granules, cytoplasm vacuolation and autophagolysosome were 
observed in intestinal epithelial cells and hepatocytes, as well as altered 

mitochondrial morphology (e.g., mitochondrial edema, loss of cristae, 
and rupturing of the outer mitochondrial membrane) (Fig. 2B and D). 
Relative to the PS-MPs groups, the PS-NPs groups exhibited more lyso-
somes, serious disruption of the endoplasmic reticulum and ribosome 
loss in the epithelial cells of intestine and hepatocytes. Previous studies 
have also found that the endosomal-lysosomal system and mitochondria 
were the major target organelles of engineered nanomaterials (Rocha 
et al., 2015), including NPs (Gaylarde et al., 2021; Sun et al., 2020b; Wu 
et al., 2021). The PS-NPs induced greater histopathological and ultra-
structural damage to intestine and liver of marine jacopever than the PS- 

Fig. 1. Characteristics of polystyrene microplastic and nanoplastic test materials. (A) Fluorescence microscopy of PS-MPs. (B) Fluorescence microscopy of PS-NPs. 
(C) Scanning electron microscopy (SEM) of PS-MPs. (D) Transmission electron microscopy (TEM) of PS-NPs. (E) Hydrodynamic size distribution of commercial PS- 
MPs in stock solutions at a concentration of 0.23 mg/L in seawater (0 h) determine by dynamic light scattering. (F) Hydrodynamic size distribution of commercial PS- 
NPs in stock solutions at a concentration of 0.23 mg/L in seawater (0 h) determined by dynamic light scattering. 
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MPs, which may be attributed to the smaller dimensions and colloidal 
properties of NPs, allowing them to cross cell membrane, and subse-
quently attack the mitochondria and endoplasmic reticulum to affect 
cell metabolism. 

3.4. Microbiota composition in the intestine 

Microbial dysbiosis can cause serious damage to the permeability of 

the intestinal epithelium (Luo et al., 2019), which then impacts nutrient 
uptake (Lallès, 2019). Proteobacteria, Bacteroidetes, Firmicutes and 
Spirochaetes were the major bacterial phyla in jacopever intestines 
(Fig. 3, Table S1), which was consistent with the major bacterial phyla 
detected in the seawater (Sun et al., 2020a). Specific and shared oper-
ational taxonomic units, the mean relative abundance between groups 
and the top 10 most abundant species in all groups are shown in Fig. 3B 
and C. Differences in the relative abundance of bacteria were observed 
among control, PS-MPs and PS-NPs groups, indicating that the PS-NPs 
and PS-MPs can interfere with the composition of the intestinal micro-
bial community. However, only specific bacterial genera in PS-NPs 
groups (Brevundimona) and PS-MPs group (Tropicibacter, Nautella, Par-
asutterella and Thalassotalea) were found to have significant differences 
relative to the control groups (p < 0.05) (Table S2), and there were no 
significant differences in Shannon index between the different groups 
(Fig. 3D). Kyoto Encyclopedia of Genes and Genomes (KEGG) database 
analysis associated with gut microbiota showed no significant differ-
ences were observed among all the groups (P > 0.05) (Fig. 3E, Table S3). 
Additionally, only the cell motility of the PS-MPs group was significant 
lower than that of the PS-NPs and control groups (Fig. 3F), demon-
strating the intestinal bacteria were more like to attach onto PS-MPs 
rather than PS-NPs. 

3.5. Liver transcriptomic response 

RNA-seq was utilized to explore the target gene(s) for PS-MPs and PS- 
NPs disruption of liver metabolism homeostasis. Significant differential 
expression of genes (326, 253, and 66) was observed in control-vs-MP, 
control-vs-NP, and MP-vs-NP liver samples, with 278, 216 and 16 
genes for up-regulation, and 48, 37 and 50 genes for down-regulation, 
respectively (Fig. S6A). There was a notable correlation (r = 0.8901) 
between q-PCR and RNA sequencing for the 28 selected genes involved 

Table 1 
Growth performance, biometric parameters, energy and nutritional composition 
of S. schlegelii after exposure to PS-NPs and PS-MPs for 15 days.  

Parameters Control PS-MPs (5 μm) PS-NPs (100 nm) 

Growth performance (%) 
WGR 11.66 ± 0.99a 7.17 ± 1.39b 6.43 ± 1.98b 

SGR 0.73 ± 0.06a 0.46 ± 0.09b 0.41 ± 0.12b 

SR 98.67 98.67 98.00  

Biometric parameters (%) 
CF 1.43 ± 0.05a 1.48 ± 0.31a 1.52 ± 0.08a 

VSI 6.56 ± 1.54a 7.15 ± 1.47a 8.05 ± 1.46a 

HSI 1.34 ± 0.68a 1.49 ± 0.41a 2.03 ± 0.64a 

Gross energy (KJ/g) 543.84 ± 0.11a 496.03 ± 0.11b 475.63 ± 2.00c  

Whole body (%) 
Moisture 65.34 ± 1.14a 68.78 ± 0.65a 70.09 ± 4.90b 

Crude protein 19.69 ± 0.65a 17.51 ± 0.37b 16.96 ± 0.68b 

Crude lipid 5.62 ± 0.18a 5.34 ± 0.11a 5.05 ± 0.14b 

Ash content 3.94 ± 0.23a 3.56 ± 0.15ab 3.52 ± 0.53b 

Note: WGR = weight gain rate; SGR = specific growth rate; CF = condition 
factor; VSI = viserosomatic index; HIS = hepatosomatic index. For a given 
parameter, different letters (a–c) indicate significant difference among control, 
PS-NPs and PS-MPs treatments (n = 6, p < 0.05). 

Fig. 2. Transmission electron microscope (TEM) images of S. schlegelii exposed to PS-NPs and PS-MPs. (A, B) intestine cells, (C, D) hepatic cells. (B) and (D) are 
magnified images of the areas outlined by the dotted rectangle in (A) and (C), respectively. Abbreviations: ER = endoplasmic reticulum, M = mitochondria, N =
nucleus, V = vacuole, L = lysosome, F = fat droplet, I = intestinal villi, g = glycogen granules. 
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in metabolism, immune system, and apoptosis, indicating that the 
expression trends of the DEGs identified by q-PCR were consistent with 
those detected by RNA-seq analysis (Fig. S6B, Table S4). 

There were significant differences between the PS-MPs and PS-NPs 
groups in the membrane, vesicle, actin-based activity, and substance 
transport and metabolic based on cellular component category (p <
0.05), and transport activity, protein binding, ion binding, and actin 
binding based on molecular function category (p < 0.05) (Fig. 4A and 
S7). This appears to be associated with the cellular internalization (Roth, 
2007) and indicates a significantly different level of endocytosis for PS- 
MPs and PS-NPs. The endocytosis was influenced by particle size, sur-
face charge and surface composition, which affected their 

internalization pathways (Alimba et al., 2021; Liu et al., 2021). Nano-
sized particles might interact with small biomolecules (e.g., amino acids, 
sugars and ions) and traverse the plasma membrane through the action 
of (i) integral membrane protein pumps or channels, and (ii) clathrin/ 
caveolin-mediated endocytosis (Chakravarty et al., 2010; Prakash 
et al., 2021). Accordingly, the upregulation of amino acid transporter 
(SLC15A1), solution carrier family member (SLC43A2, SLC25A48, 
SLC15A1), and transmembrane protein (TM4SF1) genes appeared as a 
stress response to PS-NPs exposure (Fig. S8). In contrast, the large sized 
PS-MPs might be transported into the cell by phagocytosis or pinocy-
tosis, such as membrane bound vesicles in a process termed micro-
pinocytosis (Conner and Schmid, 2003; Liu et al., 2021). Accordingly, 

Fig. 3. Microbiome analysis of the intestine of S. schlegelii exposed to PS-MPs and PS-NPs for 15 days using 16S rDNA sequencing. (A) Microbiota composition at the 
phylum level, (B) Venn diagram showing specific and shared operational taxonomic units with the mean relative abundance between groups, (C) The top 10 most 
abundant species and the number of tags >2000 in all groups, (D) Alpha diversity (Shannon diversity), (E) Heatmap constructed with the top 35 most abundant 
genera, and (F) Heatmap of predicted functional categories. PICRUST was used to predict and compare the functions of bacterial microbiota using the KEGG database 
at level 2 (n = 4 per group). 
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the upregulation of vacuolar protein (VPS26C), actin (ACT2), myosin 
(MYH) and tubulin (TUBB2B) genes was found in the PS-MPs groups 
(Fig. S8B). A previous study reported that the endocytosis of 50 nm PS- 
NPs occurred through a combination of the clathrin-mediated pathway, 
the caveolin-mediated pathways and macropinocytosis, while endocy-
tosis of 500 nm PS-NPs was mainly via micropinocytosis (Liu et al., 
2021). 

KEGG analysis identified 19 significantly different pathways be-
tween the PS-NPs and PS-MPs groups (p < 0.05) (Fig. 4B). These path-
ways were concentrated in (i) protein, vitamin and carbohydrate 
digestion and absorption, (ii) sugar, amino and lipid metabolism, and 
the (iii) signal pathways related to oxidative stress and immune response 
(Table S5). Oxidative damage was another important impact induced by 
PS-MPs/NPs, which can lead to genomic instability (Kim et al., 2021). 
Several differentially expressed genes (DEGs; CYP4B1, CYP2K1, 
CYP27C1) related to oxidative stress were significantly overexpressed in 
the PS-NPs and PS-MPs groups compared with control groups. To 
explore oxidative damage of liver after exposure to PS-MPs/PS-NPs, the 
malondialdehyde (MDA) content and antioxidative enzyme (SOD and 
CAT) activities of liver were investigated (Fig. S9). The results showed 
the stronger oxidative stress and lipid peroxidation induced by the PS- 
NPs than the PS-MPs. Similarly, oxidative stress-triggered mitochon-
drial depolarization, suppression of fatty acid oxidation and transport, 
and promotion of inflammation were identified as the key mechanisms 
for the hepatotoxicity of photodegraded PS-MPs to grouper (Wang et al., 
2020). In addition to the DEGs related to oxidative stress, a large number 
of DEGs also existed in the substance and energy metabolism, cell pro-
cess and signal transduction categories (Fig. S8). The bacteria abun-
dance has no significant correlation with the gene expression and 
antioxidative enzyme activities (Fig. S10). 

3.6. Liver metabolomic alterations 

When compared to PS-NPs groups, the MPs groups displayed sig-
nificant variation (p < 0.05) in 345 metabolites (Fig. S11). The top 250 
most significantly different metabolites and genes were used to 

construct an integrated network of functional interactions between the 
PS-MPs and the PS-NPs, which showed >80 % of gene expressions were 
negatively related to the metabolites (Fig. 5F). Importantly, the increase 
of genes related to liver metabolism in the PS-NPs group were highly 
consistent with the decrease in metabolites synthesis related to amino 
acid, carbohydrate, nucleoside alkaloids, fatty acid and glycerol phos-
pholipid metabolism (Fig. 5A–E). These metabolites contained human- 
essential amino acids (e.g., isoleucine, racemethionine, threonine, 
valine, phenylalanine and lysine), omega-3 fatty acids (e.g., docosa-
hexaenoic acid, eicosapentaenoic acid), an intermediate product of 
glucose metabolism (e.g., gluconic acid) and tricarboxylic acid (TCA) 
cycle metabolites (e.g., malic acid and cis-aconitate), as well as other 
compounds associated with nutritional quality. However, only one 
human-essential amino acid and one omega-3 fatty acid were signifi-
cantly decreased in the PS-MPs groups relative to those in the control 
groups (p < 0.05). 

The KEGG pathways analysis of liver metabolomic alterations 
showed that more significant changes appeared in the PS-NPs groups 
compared with the PS-MPs groups (p < 0.05). These were not only 
concentrated in the lipid metabolism, but also in the TCA cycle, ABC 
transporters, protein digestion and absorption, and cell apoptosis (Fer-
roptosis and FoxO signaling pathways) (Table S5), which was in 
accordance with results of the transcriptome KEGG pathways analysis. 
However, bile secretion, as well as taurine and hypotaurine metabolism, 
was enhanced in the PS-MPs but not in the PS-NPs groups. Previous 
studies have also found that MPs can induce disruption of bile acid 
metabolism in animals (Yin et al., 2018; Zhang et al., 2022), influence 
combination of bile acids and taurine involved the enterohepatic cir-
culation, and regulate lipid and glucose metabolism (Martins et al., 
2021; Seymour and Geyer, 1992). The results of this study indicate that 
PS-NPs and PS-MPs can differently impact the metabolic homeostasis of 
fish livers and DEGs in a range of KEGG pathways (Fig. S11). Overall, 
impacts mainly followed the order of PS-NPs > PS-MPs > control. These 
results explain the quantifiable reduction in nutritional quality observed 
for S. schlegelii in the PS-NPs groups relative to the PS-MPs group 
(Table 1). 

Fig. 4. Transcriptome analysis of S. schlegelii exposed to PS-MPs and PS-NPs. (A) The top 20 GO terms (biological process) with significant enrichment of DEGs in the 
liver exposed to PS-MPs and PS-NPs (p < 0.05). (B) The top 20 KEGG pathways with significant enrichment of DEGs in the visceral mass exposed to MPs and NPs (p 
< 0.05). 
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Mitochondria, the main target organelle for nanomaterials, plays a 
critical role in their toxic activities (Nichols et al., 2018; Yang et al., 
2016). The histopathological and ultrastructural alterations showed 
both PS-NPs and PS-MPs could induce mitochondrial disruption of he-
patocytes (Fig. 2D and F). Meanwhile, a significant upregulation of 
PRODH and SLC25A25A was detected in the PS-NPs groups relative to 

the PS-MPs and control groups (Fig. S8), which is associated with the 
electron transfer chain and protects against oxidative damage of the 
mitochondria (Hirschenson and Mailloux, 2021; Moreira et al., 2019). 
Similarly, a significantly different metabolic pathway of ubiquinone 
(UQ) and other terpenoid-quinone biosynthesis was observed for PS-NPs 
(Table S6), which is associated with regulation of ATP generation of 

Fig. 5. The significantly different metabolites associated with the key pathways affected by PS-MPs and PS-NPs exposure in S. schlegelii. (A) amino acid, (B) 
Nucleoside alkaloids, (C) Carbohydrate, (D) Fatty acid, (E) Glycerol phospholipid, and (F) Integrated network of functional interactions between metabolites 
(represented by their index-codes) and genes (represented by their ZFIN official names) whose levels were affected in fish liver by PS-MPs and PS-NPs exposure. The 
metabolites and genes were indicated by blue and pink, respectively. Red and blue lines represent positive and negative correlation, respectively. 
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mitochondria through controlling calcium homeostasis (Anunciado- 
Koza et al., 2011; Hao et al., 2018). The damage of mitochondria will 
influence the TCA cycle (Chen et al., 2022; Martinez-Reyes and Chandel, 
2020). The TCA cycle metabolites (cis-aconitate and malic acid) were 
significantly reduced in the PS-NPs group compared with control group, 
while only the cis-aconitate was significantly reduced in the PS-MPs 
group compared with control group (Fig. S8). PS-NPs uptake into the 
hepatocyte mainly occurred through membrane protein pumps or 
channels, and clathrin/caveolin-mediated endocytosis, while PS-MPs 
were taken up through phagocytosis or pinocytosis, which triggered 
different energy and material metabolism. Furthermore, the PS-NPs 
induced a more serious oxidative stress and lipid peroxidation 
response than PS-MPs, and with the help of signal transduction, addi-
tionally destroyed the structural integrity of mitochondria and triggered 

cell apoptosis, decreasing the overall nutritional quality of fish (Fig. 6). 

4. Conclusions 

Overall, the effects of PS-MPs and PS-NPs on the nutritional quality 
of marine fish and the underlying mechanisms of toxicity were suc-
cessfully elucidated. Although the sedimentation rate of PS-MPs in 
seawater was lower than that of PS-NPs at the same concentration (by 
mass), the PS-NPs had a greater effect than the PS-MPs on the energy 
reserve and nutritional quality of marine jacopever. At environmentally 
relevant concentrations, neither PS-NPs nor PS-MPs had a significant 
impact on the intestinal microbiota composition. However, they cause 
different pathological changes in the epithelial cells of intestine, and in 
hepatocytes of liver. Uptake of PS-NPs and PS-MPs by hepatocytes 

Fig. 6. Schematic illustration of the toxicity mechanisms for PS-MPs and PS-NPs in the liver of S. schlegelii.  
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mainly occurred through different forms of endocytosis, which triggered 
different cell signal transduction, including an apoptosis signal for he-
patocytes. Importantly, the uptake of PS-NPs by hepatocytes induced 
more serious oxidative damage than PS-MPs, as well as destroying the 
structural integrity of mitochondria and influencing the release of TCA 
cycle metabolites. Therefore, PS-NP exposure can cause more greater 
decrease in the economic benefits of mariculture and the supply of high- 
quality protein for human beings than PS-MPs. Considering that sec-
ondary NPs are thought to be more prevalent than primary NPs and MPs, 
further studies should be performed to (i) determine the NP concen-
trations in the marine environment, (ii) study the toxicological impacts 
of a broader range of polymer types, and (iii) assess the effects of 
environmental relevant NPs (e.g., secondary NPs). 
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