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Abstract
We propose to use a conventional simulator, formulated on the topology of a coarse volumetric 3D grid, as a data-driven
network model that seeks to reproduce observed and predict future well responses. The conceptual difference from standard
history matching is that the tunable network parameters are calibrated freely without regard to the physical interpretation of
their calibrated values. The simplest version uses a minimal rectilinear mesh covering the assumed map outline and base/top
surface of the reservoir. The resulting CGNet models fit immediately in any standard simulator and are very fast to evaluate
because of the low cell count. We show that surprisingly accurate network models can be developed using grids with a few
tens or hundreds of cells. Compared with similar interwell network models (e.g., Ren et al., 2019, 10.2118/193855-MS),
a typical CGNet model has fewer computational cells but a richer connection graph and more tunable parameters. In our
experience, CGNet models therefore calibrate better and are simpler to set up to reflect known fluid contacts, etc. For cases
with poor vertical connection or internal fluid contacts, it is advantageous if the model has several horizontal layers in the
network topology. We also show that starting with a good ballpark estimate of the reservoir volume is a precursor to a good
calibration.

Keywords Data-driven models · Model calibration · Interwell network models

1 Introduction

Ideas from data-driven methods has become increasingly
popular for modelling flow in subsurface reservoirs in recent
years, and in particular as a means to reduce the computa-
tional cost of evaluating the forward model in model-driven
production optimization and optimized field development
[1–8]. Herein, we consider the somewhat different task of
rapidly building a flow model based on well responses but
limited geological and petrophysical data.

Data-drivenmodels are often formulated using techniques
from machine learning. Such models can give accurate pre-
dictions for physical states close to those embedded in the
training data, but may also easily predict nonphysical states
if no physical laws are incorporated to constrain the model
training. Many authors have therefore considered physics-
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informed models that either try to learn the underlying flow
equations directly (in residual form) or penalize predictions
that violate fundamental flow physics [1, 2, 6].

Another approach is to start from a set of model equations
that represent the flow physics in some discretized form and
calibrate the parameters of these equations so that resulting
predictions match observed well responses from the reser-
voir. Herein, we propose to simply use a straightforward
finite-volume discretization of the standard flow equations,
posed on top of a very coarse, minimal rectilinear grid that
covers the assumedmap outline and the base and top surfaces
of the reservoir, as our data-driven proxy model. The free
parameters in this model are the pore volumes, transmissi-
bilities, and well-connection factors of the grid, and possibly
also the initial fluid compositions and the parameters of stan-
dard Corey-type relative permeability models. These will be
calibrated with a Gauss–Newton method to match observed
data from the injection and production stream. We will refer
to this method as CGNet [9].

The idea of calibrating a coarse-grid model to match
observed production responses has been used for decades
in history matching; confer, for instance, with [10, 11]. The
approach discussed herein is nonetheless different. Modern
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history matching is based on Bayesian statistics and seeks to
sample the uncertainty space, constrained to prior geological
information and observed dynamic data. That is, the goal is
not only tomatch observed dynamical data, but alsomaintain
geological correctness and obtain physically interpretable
parameters that are representative of the physical system.
In our data-driven setting, on the other hand, the parameters
of the discrete model equations should only be viewed as
tunable algebraic coefficients that are calibrated (within rea-
sonable physical limits) to derive a desired, physics-based,
input–output relationship between enforced well controls
and observed reservoir responses. Put simply, our intention
is to achieve a reduced discrepancy with dynamic training
data and enhanced prediction accuracy for scenarios closely
related to or encompassed by the available data by intention-
ally omitting the utilization of prior geological information
to constrain the model calibration. However, this approach
may come at the cost of reduced applicability for scenarios
that deviate significantly from the available data. Hence, it
is crucial to include pertinent flow regimes, particularly fluid
breakthrough at wells, in the dynamic data used for model
training to ensure good predictive ability.

CGNet, in essence, shares a similar conceptual framework
and motivation with interwell network models, as it repre-
sents the reservoir as a network of interconnected flow paths
linking injectors and producers. Interwell network mod-
els come in various forms. Capacitance-resistance models
(CRM) [12–14] are simplified mathematical representations
that combine capacitance (fluid storage) and resistance (flow
pathways) to predict pressure and fluid movement while
preserving the overall material balance. Their validity is
somewhat limited by the assumption of constant productivity
indices and allocation factors. Another example is interwell
networks of stock-tank models [15, 16], used as part of a
top-down reservoir modelling framework [17].

The family of interwell numerical simulation models
(INSIM) focus on the dynamic behavior and interactions
between multiple wells and use analytical or semi-analytical
methods to evolve pressures and fluid compositions within
each interwell connection [18–22].Amore general approach,
referred to by different authors as StellNet/GPSNet/FlowNet,
is to use standard finite-volume methods to represent the
interwell connections and also allow direct fluid commu-
nication among different flow paths without going through
the wells [23–29]. Compared with these interwell models,
CGNet gives a richer network that has more free parameters
per grid cell and a larger set of network paths connecting
each pair of wells. In a recent paper [9], we showed that this
makes it somewhat simpler to build reduced-order models
trained to match simulation data from detailed flow mod-
els. Herein, we consider a purely data-driven scenario in
which one has not yet developed a detailed 3D simulation
model.

For completeness, we mention that Mamonov et al. [30]
introduced an alternative method that shares the same spirit
as CGNet, focusing on optimizing the coarse mesh to pre-
serve aggregated objective values specifically tailored for
production optimization purposes. Likewise, RGNet mod-
els [31, 32] provide another example of models with richer
connections among reservoir nodes. Thesemodels utilize dif-
fusive time-of-flight, representing propagation of pressure
fronts, to determine drainage volumes and then employ inter-
partition transmissibilities [33] to transform interconnec-
tions among these volumes into a comprehensive reservoir
network.

2 Model equations and discretization

CGNets can in principle be formed for any standard set
of flow equations. To simplify the presentation, we only
describe the setup for two-phase, compressible, immiscible
flow without capillary pressure, as the formulation for more
complex models like black-oil, equation-of-state composi-
tional models, and thermal flow follows the same setup with
the obvious modifications. We assume that the reservoir vol-
ume has been discretized into a finite set of non-overlapping
volumetric grid cells. To specify the associated discrete flow
model, we introduce div and grad as the discrete numerical
analogues of the standard divergence and gradient opera-
tors. These discrete operators are linear maps, represented in
terms of sparse matrices, that operate on vectors of quanti-
ties associated with each cell or cell interface; see Lie [34]
for more details. If we also use backward Euler for the
temporal discretization, the resulting fully implicit flow dis-
cretization of the flow equations consists of three different
parts1:

• Adiscrete continuity equation describing conservation of
mass for each phase (or component for multicomponent
flows)

1

�t

[(
�Sαρα

)n+1 − (
�Sαρα

)n] + div
(
ραvα

)n+1

= qn+1
α , α ∈ {w, o}. (1)

Here, � is the vector of pore volumes per cell, ρα is the
vector of cell-averaged phase densities, Sα is the vector
of cell-averaged fluid saturations, vα is the vector of inter-
cell phase fluxes, and qα is the vector of cell-averaged
volumetric source terms for phase α. The superscript
refers to the time steps of the temporal discretization,

1 By a slight abuse of notation, we here interpret the product of two
vector quantities as the vector of element-wise products.

123



Computational Geosciences

which we henceforth for brevity will drop for all terms
evaluated at time step n + 1.

• The phase fluxes are given by a discrete version of
Darcy’s law

vα = −upw(λα)T
(
grad( p) − g avg(ρα)grad(z)

)
. (2)

Here, p denotes the cell-averaged fluid pressure, g is the
gravity constant, and z holds the z-coordinates of the cell
centroids. The avg(·) operator computes the arithmetic
average of cell-averaged densities defined on opposite
sides of cell faces, whereas upw(·) picks mobility val-
ues λα from the upstream side of the face. (The phase
mobility is defined as krα/μα , where the relative per-
meability krα(Sα) is a known function of Sα and μα is
the phase viscosity.) Finally, the vector T holds the inter-
cell transmissibilities,which involve geometric terms and
harmonic averages of the permeabilities of cells on oppo-
site sides of each interface.

• The volumetric source (or sink) terms from wells perfo-
rated inside individual cells are given by an inflow (or
outflow) performance relationship,

qα = λwb
α J( pwb − p) (3)

relating flow rates qα to phasemobilitiesλwb
α at thewells,

well indices J , and the difference between the wellbore
pressures pwb and the cell-averaged pressure p in the
completed cells.

Assuming that the twofluidsfill pore space completely, the
continuity equations (1) and Darcy’s law (2) can be reduced
to a system of two equations per cell for fluid pressure p
and water saturation Sw. In the last equation, the choice of
unknown depends upon whether fluid rate or wellbore pres-
sure is specified as a known control, which may vary from
one well to the next.

Altogether, we get a nonlinear discrete system F(x) = 0,
which can be solved by a standard Newton–Raphson method
to compute the unknown vector x. This vector consists of the
primary unknowns p and Sw and complementary subsets of
the vectors qw and pwb, all evaluated at time n+ 1. The sys-
tem has the following primary parameters: the pore volumes
�, the transmissibilities T, and the well indices J ; the latter
two account for permeability and geometric factors affecting
the flow. Once T and J have been computed, it is common
in reservoir simulation to view the resulting finite-volume
discretization as a computational graph, in which grid cells
(with associated pore volumes �) and wellbores form the
vertices (nodes) and T and J define the edges. This view is
particularly useful if one wants to incorporate fluid commu-
nication among entities that are not geometrically connected
(commonly referred to as non-neighboring connections).

In CGNet, we take the graph view one step further and
consider the flow model as a general computational graph
in which the vectors �, T, and J are merely tunable factors
we can calibrate to match observed well responses from the
reservoir. Fundamental flowphysics is incorporated automat-
ically through the flow equations and the network topology
derived from a standard grid, and by requiring that � and
T remain nonnegative during calibration. In cases where the
fluid contact is not well known, it may be beneficial to extend
the set of tunable parameters to include the initial satura-
tions inside each grid cell. It can also be beneficial to include
parameters that define krα as function of Sα .

Herein, we assume that a detailed description of the reser-
voir geology is not available (or largely uncertain) and that
the only information we have is a description of the map out-
line of the reservoir, given in terms of two surfaces bounding
the reservoir from above and below, and a rough estimate
of representative permeability and porosity values. To build
a CGNet model, we use a fictitious domain approach that
starts with a uniform rectilinear mesh covering the bound-
ing box of the reservoir and culls cells that fall outside the
map outline and the surfaces bounding the reservoir from
above and below as illustrated in Fig. 1. By default, the mesh
is populated by uniform permeabilities and porosities, but
heterogeneous properties can also be used if available.

The main role of the mesh is to define a network topol-
ogy that is sufficiently rich to provide multiple network paths
between the injectors and producers. Notice that the network
topology does not necessarily depend on the well placement,
like in GPSNet/StellNet. The mesh is also used to calcu-
late an initial guess for the pore (or bulk) volume and the
transmissibilities and well indices. Here, we have used a
uniform rectilinear mesh for simplicity, but the method is
general and can easily be configured with other mesh types
that adapt better to the bounding surfaces and the position
of the wells, including curvilinear, Voronoi, and tetrahedral
meshes or standard corner-point grids. The bulk volume of
the mesh is generally larger than the volume of the reservoir
by definition and must be adjusted for when the associated
pore volumes are calibrated during the model training. If the
surfaces bounding the reservoir are known with confidence,
one can obviously refine the initial estimate of� by comput-
ing the fractions of each grid cell that is part of the reservoir.

3 Model training

In this study, we utilize a research simulator that incor-
porates adjoint simulation capabilities, enabling efficient
gradient and sensitivity computations. Such advanced tools
are generally limited in availability within commercial sim-
ulators, contributing to the prevalence of ensemble-based
methods in calibrationworkflows.Methods like the ensemble
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Fig. 1 Illustration of the setup of a CGNet. The left plot shows a recti-
linear mesh wrapped around the assumed outline of the reservoir. This
mesh is formed by first fitting a 8×8×6 uniform mesh to the bounding
box of the reservoir and then removing all cells that lie above or below
the top and bottom surface, respectively, or outside of their map out-
line. This leaves 145 out of the original 384 cells. (Some of these cells

are not included in the plot to better show the top and bottom surfaces,
displayed in red and green, respectively.) The middle plot shows the 3D
network graph formed by connecting the cell centroids and the wells.
The right plot shows the network graph as a circular ring. Nodesmarked
with P or I contain well perforations; the remaining are reservoir nodes

smoother with multiple data assimilation (EsMDA) [35], as
employed in studies such as [25], exhibit similar convergence
properties to the Gauss–Newton method employed herein
but require simulating an ensemble of models, resulting in
additional computational costs. Ensemble-based methods,
however, offer the advantage of estimating model output
uncertainty, assuming proper understanding of model input
uncertainties. In our purely data-driven setting, this advan-
tage does not apply as we lack a priori knowledge of model
input uncertainties.

3.1 Misfit minimization

Let xn denote the vector of pressures, saturations, and well
rates/pressures at time step n, and let θ ∈ R

Nθ denote the
vector containing all our parameters (assumed constant over
time). At time step n, we are solving a set of equations
Fn(xn, xn+1, θ) = 0, and locally we may regard each xn

as an implicit function xn = xn(θ). To train our model, we
consider a set of observations yobs ∈ R

Ny corresponding to
model outputs y, where y = y(x1, . . . , xN ). For training,
we seek to minimize the least squares function

J = 1

2

Ny∑
k=1

r2k = 1

2
rT r, (4)

where r is the vector of residuals, i.e., rk = wk(yk − yk,obs).
We impose upper and lower bounds for each parameter and
further assume that all values within a bound interval are
equally likely. As a result, there is no regularization in the
objective (4), so for a given set of training data, there will in
general not be a unique optimal solution. In the numerical
examples (reported in the next section) we consider perfect
observations obtained from a high-resolution reservoir simu-
lation.Accordingly, each residualweightwk is just a constant
representing the reciprocal of a typical valuemagnitude (e.g.,

typical rate, pressure range, etc.), introduced for normaliza-
tion purposes.

For minimization of (4) we mainly utilize Levenberg–
Marquardt (see e.g., [36]), but for comparison, we also
consider a purely gradient-based quasi-Newton method (L-
BFGS-B). Both methods are popular choices within adjoint-
based history matching (see e.g., [37]), however since the
Levenberg–Marquardt method requires the full parameter-
to-output sensitivity matrix, it is usually not considered
feasible for large-scale problems in its pure form. For our
application, however, the state space is so small that all
sensitivities can efficiently be computed in a single adjoint
simulation. The two approaches are briefly outlined next.

3.2 L-BFGS-B

We consider a version of the limited-memory Broyden–
Fletcher–Goldfarb–Shannoalgorithmwithboundconstraints
L-BFGS-B [38], where the Hessian approximation at each
accepted optimization iteration is updated usingL-BFGS and
is projected to the active parameter set to obtain search direc-
tions. A cubic line-search with acceptance based on strong
Wolf conditions is used to obtain step lengths. The gradient
∇θ J of the mismatch function (4) with respect to a given set
of parameters θ is obtained by running an adjoint simulation.
In particular, we have that

∇θ J =
N∑

n=1

∂Fn

∂θ

T

λn,

where the Lagrange multipliers λn are obtained by the linear
adjoint equations

∂Fn

∂xn

T

λn = − ∂ J

∂xn

T

− ∂Fn+1

∂xn

T

λn+1, n = N , N − 1, . . . , 1. (5)

In (5) the last term is omitted for n = N .
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3.3 Levenberg–marquardt

Classical Gauss-Newton-type methods use the misfit Jaco-
bian

∇θ r = [∇θr1,∇θr2, . . . ,∇θrNy

]

to approximate the Hessian by ∇2 J ≈ ∇θ r∇θ rT . Since
the term containing the second-order derivatives vanishes
for r = 0, such methods typically perform very well for
problems with sufficiently small residuals. The Levenberg–
Marquardt method introduces a damping parameter α such
that update candidates δθ for the model parameters are
obtained by solving

(
∇θ r∇θ rT + α I

)
δθ = −∇θ J .

Our implementation updates the damping parameter between
iterations following a trust-region logic. Each column of∇θ r
can be obtained by an adjoint simulation, but since we con-
sider reduced (low-order) models with a limited number of
state variables, it is more practical to set up a single adjoint
systemwith multiple right-hand-sides. In particular, we have
that

∇θ r =
N∑

n=1

∂Fn

∂θ

T

�n,

where the matrix of all Lagrange multipliers are obtained by
the linear matrix adjoint equations

∂Fn

∂xn

T

�n = − ∂ r
∂xn

T

− ∂Fn+1

∂xn

T

�n+1, n = N , N − 1, . . . , 1. (6)

We here solve (6) using a direct method based on sparse
matrix factorization, and as a result, the linear solver time is
much less compared to solving Ny individual adjoint equa-
tions. We also note that when Ny ∼ Nθ , we could have
computed ∇θ r from forward linearized equations with sim-
ilar efficiency.

4 Numerical examples

This section discusses applications of CGNet to three differ-
ent cases of waterflooding. None of the cases have real well
observations, so wewill instead use simulated well data from
a full 3D model for calibration. The first case is fully con-
ceptual and describes a simple channelized reservoir [39].
The second case uses reservoir geometry and petrophysi-
cal properties from a real simulation model of the Norne
oil and gas field but describes a synthetic and simplified
production scenario. The only reservoir information we use

from the simulation models when building the CGNet is the
map outline, bounds on the reservoir from above and below,
well positions, and field-average values for permeability and
porosity. Bounds on the reservoir volume is given as piece-
wise (bi)linear surfaces, but instead of computing possible
intersectionswith such surfaces, we simply count the number
of cell centroids from the simulation model that fall inside
each cell in the rectilinear mesh and use this count to cull
cells.

All numerical results are obtained using solvers and
workflow tools implemented in the open-source MRST tool-
box [34, 40, 41].

4.1 The Eggmodel

The Egg ensemble consists of 101 realizations of a channel-
ized reservoir [39], each described on a 60×60×7 rectilinear
grid with 18553 active cells. Permeabilities vary two orders
of magnitude and are highly correlated across the layers; the
porosity is constant. We use the base realization to simu-
late 123 time steps of production data. Initially, the reservoir
contains a mixture of water and oil [Sw, So] = [0.2, 0.8].
The two-phase system is weakly compressible, has cubic
and quartic relative permeabilities curves, and 5 cP and 1 cP
viscosities for the oil and water phases, respectively. In the
original setup, the reservoir is produced under waterflooding
conditions with eight water injectors, operating at a constant
rate but with an upper limit on the bottom-hole pressure of
420 bar, and four producers operating at a constant bottom-
hole pressure. To make the production history more eventful,
we perturb the injection rates randomly every fourth time step
in the interval [59.5, 99.5] m3/day and likewise the bottom-
hole controls for the producers in the interval [391, 396] bar.

4.1.1 Ability to match data

To construct a CGNet, we need the map outline of the reser-
voir, the depth of the surfaces that bound the reservoir from
above and below (which here are horizontal), and a rough
estimate of the lateral and vertical permeability (we use the
field-averaged values). The lateral resolution of the rectilin-
ear mesh is chosen so that no wells end up within the same
mesh cell, which is the case, e.g., with a 6×6 lateral mesh, as
shown to the left in Fig. 2. As a first start, we simply reuse the
fluidmodel from the fine-scalemodelwithout any calibration
of parameters. The right plot in Fig. 2 shows that the match
obtained after 20 iterations with the Levenberg–Marquardt
algorithm is remarkable, given that the model only has 33
cells and 99 tunable parameters. This clearly demonstrates
the ability of CGNet to adapt to data.

From the iteration history reported in Fig. 3,we see that the
misfit is reduced very fast during the first few iterations, e.g.,
dropping almost three orders ofmagnitude over the first three
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Fig. 2 Calibration of a CGNet model for the Egg case based on a 6×6×1 mesh, which after culling has 33 cells. The left plot shows the rectilinear
mesh overlaid on the fine scale model (colors: logarithm of lateral permeability). The right plot shows the match in water rates from the four
producers

iterations, demonstrating the utility of the LM method. With
only a single vertical layer and matching of rock parameters
only (pore volume, transmissibility, and well indices), the
misfit reduction levels off after 8–9 iterations.

Increasing the mesh resolution to 6 × 6 × 3 so that the
CGNet has 99 nodes and 363 tunable parameters reduces
the misfit by a factor 2.7. Alternatively, the fluid model has
six parameters,2 which can be tuned in each reservoir node,
giving a total of 297 tunable parameters for the 6×6×1mesh.
This reduces themisfit by a factor 4.0 comparedwith the base
model and is, overall, a better strategy here since it does not
increase in the number of network nodes, which is the most
important factor that influences the cost of evaluating the
network model. Combining the two strategies gives a total of
957 parameters and a reduction with a factor 5.7 compared
with the base model.

4.1.2 Predictive power

To assert the predictive power of the CGNet, we only use a
subset of the well observations for training. Figure 4 reports
the prediction of water rates in well P4 for the CGNet with
297 parameters calibrated using ten LM iterations on well
observations from the first 64 time steps only. At this time,
all producers have observed water breakthrough and reached
a “semi-steady” phase. There is not a significant increase in
the misfit during the prediction period, and for all four pro-
ducers, the cumulative oil and water production are predicted
to within an error of 1.5% and 0.6%, respectively.

Figure 5 reports how the error in cumulative oil and water
production predicted by CGNet decays as a function of the
number of data points (time steps) used for training. To obtain
reasonable predictions it seems important that the training

2 In a two-phaseCorey-type fluidmodel, the relative permeability curve
for each phase can be uniquely determined by three parameters: the
exponent and two values representing the endpoint.

data contain representative variations in water rates from
the predominant “semi-steady” phase that follows the water
breakthrough in all producers. This period starts around day
1000 (step 36) in all producers except P2, which experiences
earlier breakthrough.

To further emphasize the significance of incorporating
representative data for predominant flow regimes, we con-
ducted a training exercise using a simulation horizon limited
to 900 days. This corresponds to the first quarter of our previ-
ous time horizon, where water breakthrough has occurred in
all producers but a semi-steady plateau for water rates has not
yet been established. To align with this reduced timeframe,
both the time steps and the period of random perturbations
were scaled down by one fourth.

The training data, now consisting of 32 time steps, no
longer include any water breakthrough in wells P1, P3, and
P4, and only account for the initial increase in water rates
for producer P2. Consequently, the predictive capability of
CGNet significantly deteriorates. Notably, the largest errors

0 5 10 15 20
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6x6x1: rock
6x6x1: rock+fluid

6x6x3: rock
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M
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Fig. 3 Comparison of misfit reduction over 20 iterations for the Egg
case when calibrating rock parameters or both rock and fluid parameters

123



Computational Geosciences

500 1000 1500 2000 2500 3000 3500

Time [days]

20

40

60

80

100

120

W
at

er
 s

ur
fa

ce
 r

at
e 

[m
3
/s

]

True
Predicted
Trained

Fig. 4 Prediction of well P4 for a 6×6×1 CGNet with rock and fluid
parameters calibrated only for the first 64 out of the 123 time steps

in cumulative oil and water production are observed in well
P3, with deviations of 19% and 42% respectively. Since pres-
sure communication is nearly instantaneous in an (almost)
incompressible flow model, pressure signals resulting from
varying well controls lack sufficient information for calibrat-
ing pore volumes and interwell transmissibilities.

To address this limitation, we extend the training data to
step 64, ensuring that water breakthroughs are included in
all wells. This refinement results in a substantial reduction in
the error of predicted cumulative oil production, with devia-
tions below 1% in all wells except for P1, which still exhibits
an error of 6.9%. However, the predicted water production
remains overestimated by a factor of 15% in all wells except
P2, where the training data now cover the complete period
from initial water breakthrough to the “semi-steady” phase.

Altogether, this example demonstrates the importance of
training CGNet on representative data but also suggests that
this type of model may be best suited for scenarios where
the predominant dynamics consists of variations around a
“semi-steady” phase.

4.2 The Norne field

In our next case, we focus more on the ability to capture the
effects of complex geology. To this end, we use a simplified
version of a full simulation model of the Norne oil and gas
field from the Norwegian Sea,3 which is one of the standard
test cases from the test suite module of MRST. The reservoir
is represented on a 46 × 112 × 22 corner-point grid having
44915 active cells and contains complex geological features
like faults, displaced layering, pinched cells, internal gaps,

3 The full model is published as an open data set on Github (github.
com/OPM/opm-data) by the Open Porous Media (OPM) initiative.

non-neighboring connections, etc. Petrophysical parameters
are generated as described by [42] but with no modification
of connectivity across faults. Whereas the original simu-
lation model describes a three-phase, water-alternating-gas
scenario, the simplifiedmodel considers a waterflooding sce-
nario of a reservoir initially filled completely by oil with
vertical wells positioned so as to create a dominant five-spot
pattern in the main body of the reservoir and much weaker
line drives in the two ”legs” of the reservoir. In the original
setup, the six injectors operate at constant water rates and
the producers at constant bottom-hole pressure. We modify
this setup by randomly perturbing the imposed water rates
in the six injectors and the bottom-hole pressures of the five
producers every fourth time step.

The only information we utilize to start building the
CGNet model is the map outline of the reservoir, the depth of
the surfaces that bound the reservoir from above and below,
and field-averaged values for permeability and the product
of porosity and net-to-gross. The fluid model, however, is the
same as in the true case: two-phase, dead-oil with constant
formation-volume factors, quadratic relative permeabilities
with zero residual saturations, and constant viscosities with
an oil–water viscosity ratio of 5:1. That is, we make no
attempt to calibrate the parameters in this model to account
for the multiphase upscaling effect one can expect will be
present when moving from a fine-scale corner-point model
to a (very) coarse rectilinear mesh.

4.2.1 Ability to match data

We chose to start, somewhat arbitrarily, with a 6 × 6 × 1
mesh (as we did for the Egg model), which after culling cells
that fall outside the reservoir gave a mesh with 24 cells, as
shown in Fig. 6. The mesh is so coarse that wells I1 and
P1 fall inside the same cell and are thus connected to the
same reservoir node in the network model. Despite this, 20
iterations with Levenberg–Marquardt were able to reduce
the mismatch value by a factor 140 so that the calibrated
model reproduces qualitatively correct behavior, except in
P5, which has the lowest water production among the four
wells that experience significant water breakthrough during
the simulation.

By increasing the lateral resolution to 8 × 8 (giving a
mesh with 35 cells), we are able to reduce the mismatch
one order further within 20 iterations, thereby reproducing
water breakthrough in P5 and generally obtaining a much
better qualitative match for the fluid rates in the producers
and the bottom-hole pressures in the injectors. If we increase
the lateral resolution further to 12×12 or 16×16, the misfit
minimization does not converge properly and the resulting
models fail to reproduce water breakthrough in P2, P3, and
P5. One obvious explanation is that the top and bottom sur-
face exhibit significant depth variation that is not possible
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Fig. 5 Error in cumulative oil/water production as function of the number of time steps used for training the 6×6×1 CGNet with 297 tunable
parameters using ten iterations of misfit minimization

to represent using a single, fully horizontal layer of cells.
Another possible hypothesis could be that the reservoir has
significant internal layering, which we are not able to resolve
with a single-layered mesh. (This is indeed the case for the
Norne reservoir. It exhibits significant variation in lateral
and vertical permeability, spanning four and five orders of
magnitude, respectively, across different sedimentary layers.
Moreover, there is a notable lack of vertical communica-
tion between the upper three layers of grid cells and the rest
of the model.) To investigate these hypotheses, we increase
the vertical resolution from 1 to 4, giving a total of 94 cells
in the 4-layered rectilinear mesh after culling. This reduces
the mismatch by a factor two and improves the quantita-
tive prediction of production rates, particularly for P3 and
P5.

As commented earlier, the rectilinear grid is generally a
loose fit with the true model. For the 8 × 8 × 4 model with
94 cells, the initial pore volume of the network graph before
calibration overestimates the true pore volume of the reser-
voir by a factor 4.25. A better match can be obtained if we
make a mesh that fits tighter, e.g., by culling all cells that
contain less than 70 centroids. This results in a mesh with 68
cells and a reduction in misfit by a factor 1.7.

Figure 7 summarizes the reduction in misfit over 20 itera-
tions for the different initial meshes and compares the match
obtained for wells P1 to P3. The relative quality of the match
for P1 is much better than for P2 and P3, because deviations
in phase rates are weighted equally for all producers and P1
has much higher liquid rates and experiences earlier water
breakthrough. In terms of absolute errors, the matches for
the other wells are (at least) equally good as for P1, so that
the overall field oil rate is matched to within a relative error
of 2%; see Fig. 8.

4.2.2 Comparison of LM and L-BFGS-B

Continuing the iteration process beyond 15–25 iterations did
not lead to significant improvement for anyof theCGNet con-
figurations considered so far; see Fig. 9. As an alternative, we
also tried to minimize the Lagrangian misfit function using a
variant of the limited-memory Broyden–Fletcher–Goldfarb–
Shanno algorithm with bound constraints (L-BFGS-B) [38]
with the necessary gradients computed using adjoint equa-
tions and automatic differentiation. The Hessian approxima-
tions are projected to the active parameter set to obtain search
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Fig. 6 Calibration of a CGNet for the Norne case based on a 6×6×1 mesh. The right plot shows the observed and predicted water rates for three
of the producers
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directions, and a cubic line-search with acceptance based on
strong Wolf conditions is used to obtain step lengths. Most
iteration steps are accepted without the need for further line
search, but compared with LM, the initial reduction is much
slower and the minimization process stagnates at misfit val-
ues that are one order of magnitude higher or more. Superior
convergence of LM compared to the quasi-Newton approach
is expectedwhen residuals are small. The apparent stagnation
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Fig. 8 Observed field oil production rates compared with rates simu-
lated by CGNet derived from a 8×8×4 culled calibrated with 50 LM
iterations; relative errors are shown in the lower plot

of the latter could also, at least partly, be due to the fact that
the BFGS updates become increasingly sensitive to gradient
accuracy for decreasing residuals.

4.2.3 Comparison with GPSNet

To assess the efficiency of the CGNet approach, we com-
pare it with the interwell network model approach, here
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Fig. 9 Comparison of misfit reduction over 50 iterations with the LM
and L-BFGS-Bmethods for Norne. (∗ = tighter culling of the rectilinear
mesh.)
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Fig. 10 The two different GPSNet setups for the Norne field case. The network to the left has one flow path connecting each injector–producer
pair, whereas the network to the right also has connections among the injectors and among the producers

represented by GPSNet [25] as implemented in the network-
models module of MRST. These models represent the
reservoir in terms of a limited set of flow paths that connect
injectors and producers, which are mapped onto a rectangu-
lar mesh, so that the resulting flow models can be a set up as
a system of non-communicating grid layers in any (standard)
simulator. The flow paths terminate in perforatedwell cells at
each end, and this allows fluid communication between dif-
ferent flow paths connected to the same well without having
to go through the well itself.

The interwell network can be configured in many differ-
ent ways. Here, we assume that each interwell connection
consists of a single flow path, discretized using 10 cells as
suggested in [25], and consider two different network topolo-
gies: injector-to-producer and all-to-all communication, as
illustrated in Fig. 10, giving 30 and 55 flow paths, respec-
tively. The choice of injector-producer connectivity serves
as the default option for GPSNet-type network models and is
intuitive from a streamline simulation standpoint. This con-
figuration enables time-varying interactions between wells
due to fluctuations in rate or bottom-hole pressure controls,
as long as the interwell connections remain relatively sta-
ble without significant changes such as well shut-ins or
conversions between producers and injectors. However, the
inclusion of injector-injector and producer-producer con-
nections in GPSNet provides greater flexibility for fluid
movement and has demonstrated its advantages. For a more
comprehensive discussion on network topology, please refer
to [9].

Regardless of the network topology, every flow path has a
transmissibility and a pore volume that can be tuned, which
means that altogether, there are 71 adjustable parameters for
the injector–producers model: 30 transmissibilities, 30 pore
volumes, and 11 well indices. These are calibrated in exactly

the same way as for CGNet using the Levenberg–Marquardt
method.

To initialize the model parameters, we need to know the
well positions and representative permeability and porosity
values, like for CGNet. However, unlike for CGNet, we do
not need to know the outline of the reservoir; a good esti-
mate of the reservoir volume is sufficient. In lack of more
precise information, this is distributed in equal fractions to
the individual flow paths.

Table 1 summarizes the number of adjustable parameters
and nodes in the resulting computational networks for the
CGNet and GPSNet models we will compare. The first thing
to notice is that CGNet has a much higher ratio of parameters
to nodes in the compute graph compared to GPSNet, giving
the network more freedom for adjustment. Fewer nodes in
the computational graph may suggest that a CGNet is faster
to evaluate than a GPSNet, and this may indeed be the case
using a standard simulator. However, GPSNet’s discrete sys-
tems have a tridiagonal structure and can, in an optimized
implementation, be solved using a highly efficient Gauss–
Seidel type nonlinear solver [43] that starts at the injector
cells and proceeds towards the producers, solving one cell at
the time.

The left plot of Fig. 11 reports misfit reduction for the net-
work models from Table 1. The two GPSNets have almost
the same number of parameters as the 8× 8× 1 CGNet, and
it is interesting to see how much faster they calibrate. This
has a simple explanation: In our initial setup of CGNet, we
removed mesh cells that are outside of the reservoir but did
not adjust the associated bulk volumes (which determine the
initial values of �) to account for the fact that only a frac-
tion of each cell is inside the reservoir. Hence, whereas the
initial volume of the GPSNet models match the true reser-
voir volume, the 8 × 8 × 1 CGNet model overestimates this

Table 1 The number of
adjustable parameters and graph
nodes in different CGNet and
GPSNet models

CGNet GPSNet
setup 8 × 8 × 1 8 × 8 × 4 8 × 8 × 4∗ inj–prod all-to-all

# parameters 99 305 204 71 121

# nodes 35 94 68 300 550
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Fig. 11 Comparison of the misfit reduction for CGNet and GPSNet
during the Levenberg–Marquardt minimization. In the left plot, CGNet
is initialized without using precise information of the reservoir volume.

In the right plot, the bulk volumes of the outer nodes have been adjusted
to account for the fact that only a fraction of the associated cells in the
rectilinear mesh is inside the reservoir

volume by a factor six (and the other two by a factor 4.0 and
2.9, respectively). Fortunately, this is simple to rectify, and
if we adjust the initial volumes so that the volumes of nodes
never exceed the true volume of the corresponding reservoir
section, e.g., by more than a factor 20%, the initial reduction
for the 8×8×1 CGNet is as fast as for the other models. By
30 iterations, this model has same level of accuracy as the
two GPSNets and the 4-layer CGNet.

4.3 Sector model with horizontal oil–water contact

In the two examples discussed so far, we assumed the initial
fluid distribution to be uniform throughout thewhole domain.
This is obviously not the case in general, but we made this
simplification to discuss one issue at the time. In the last
example, we consider a synthetic sector model that contains
a horizontal oil–water contact and is produced by a line drive
consisting of two injectors and three producers, as shown
in Fig. 12. The setup is a modified version of the model
discussed in Lie [34, Section 15.4.4].

Unlike in the previous two examples, where we used rec-
tilinear meshes fitted to the bounding box of the reservoir,
we now use curvilinear meshes that follow the reservoir’s
bounding surfaces to set up our CGNet models. Figure 13
shows our three choices of meshes.

To calibrate the CGNets, we consider four different
choices of parameters for each mesh (Table 2): (i) rock
parameters only, (ii) rock parameters and initial saturation,
(iii) rock and fluid parameters, and (iv) rock and fluid param-
eters and initial saturation. Figure 14 reports the misfit
reduction over 21 iterations with LM.

With only one layer in the network topology, CGNet fails
to match well responses accurately (left plot in Fig. 15) if
we only calibrate pore volume, transmissibilities, and well
indices, as these rock parameters do not give any means to
represent the fluid segregation in the reservoir. If we also cal-
ibrate initial saturation, the misfit improves bymore than two
orders ofmagnitude and the calibratedCGNet reproduces the
observed production curves accurately; see the right plot in
Fig. 15. Adding fluid parameters instead of initial saturation

Fig. 12 A sector model with a horizontal oil–water contact modelled
on a 40× 40× 20 corner-point grid. The left plot shows the upper and
lower bounding surfaces of the reservoir, the fluid contact, and the posi-
tion and perforation of the five wells. The two injectors are perforated

through the whole reservoir, whereas the producers are only perforated
in the upper 2/3 of the oil zone. The right plot shows the horizontal
permeability, which is lognormally distributed within each of the four
deposition units
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Fig. 13 Three different choices of coarse meshes: a 5× 5× 1 and a 5× 5× 2 mesh that follow the top and bottom surfaces and a 5× 5× 2 mesh
that also adapts to the initial oil–water contact

gives a similar but less pronounced effect, whereas calibrat-
ing all three parameter types gives the overall best match.
This is a good example of a case where the network model
reproduces the observedwell responses accurately, butwhere
the calibrated parameters should not be interpreted as repre-
sentative for the associated rock volume in the volumetric
mesh used to build the network topology.

With two layers in the topology, the network model can
represent vertical fluid movement explicitly, which reduces
the overall misfit slightly comparedwith the best single-layer
model, even when only rock parameters are calibrated. On
the other hand, adding more calibration parameters reduces
the misfit by at most 50% since the match is already very
good.

If we adapt the mesh so that the interface between the
two cell layers follows the horizontal oil–water contact, the
networkmodel will represent the initial fluid distribution cor-
rectly in a physical sense, andwehence get a very goodmatch
by only calibrating rock parameters. If we continue iterat-
ing, the misfit decays slowly and ends up at 1.7 · 10−5 after
one hundred iterations. Adding initial saturation as a calibra-

tion parameter accelerates the convergence and improves the
mismatch by 15%. If we continue iterating, the mismatch
drops to 8.2 · 10−6 after one hundred iterations. The two
CGNets that calibrate fluid parameters have the lowest mis-
fits after 21 iterations, but if we continue iterating, the misfit
minimization stagnates after 29 and 33 iterations at values
1.5 · 10−5 and 2.1 · 10−5, respectively, because the updates
fall below a lower tolerance (here, chosen to be 10−10 to
force the iteration to continue as long as possible). For mis-
fit values so small, errors in the gradients coming from the
numerical solution of the adjoint equations will start to affect
the minimization.

Our overall conclusion is that the parameter spaces for
all the 5 × 5 × 2 CGNets are large enough to allow very
good matches, particularly when adapting the mesh to the
oil–water interface. However, in choosing among the four
versions, we prefer the CGNet with rock parameters and ini-
tial saturations as free parameters and avoid calibrating fluid
parameters as this would effectively result in multiple fluid
regions,whichmaybe somewhat cumbersome in certain sim-
ulators.
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Fig. 14 Misfit reduction over 21 iterations with LM for the sector model with three different meshes and four different choices of calibration
parameters
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Table 2 The number of tunable parameters in the different CGNets for
the sector model

5 × 5 × 1 5 × 5 × 2 5 × 5 × 2 – ow

rock 70 162 162

rock + initial 95 212 212

rock + fluid 220 462 462

rock + fluid + initial 245 512 512

5 Concluding remarks

We have introduced a simple idea for constructing network
models that has proved to work (surprisingly) well on a num-
ber of problems; three of these have been reported herein.Our
CGNets are easy to set up; all you essentially need is a coarse
volumetric mesh that covers the assumed outline of the reser-
voir, preferably designed so that no wells are included in the
same mesh cell. Herein, we have used either a rectilinear
mesh or curvilinear mesh, but the same idea applies without
changes to other volumetric tessellations (tetrahedral, pris-
matic, general Voronoi, etc.). In addition, you need a rough
estimate of representative petrophysical properties and some
idea of a suitable fluid model and potential fluid contacts.

Given these, CGNets calibrate relatively robustly, even
when you can only provide very crude initial guesses for
transmissibilities, pore volumes, and the overall reservoir
outline and bulk volume. The importance of calibrating
specific parameters depends on the starting point of the
calibration process. If the initial pore volumes and/or trans-
missibilities deviate significantly, CGNet may fail to predict
any fluid breakthrough, rendering the optimizer unable to
determine the correct direction based on gradients.

In reservoirs initially filled solely with oil, fluid break-
through is primarily influenced by pore volumes, transmis-
sibilities, and well indices. Initially, it is crucial to get these
parameters roughly right before starting to fine-tune them,
along with the ones related to the fluid model, to ensure
accurate prediction of fluid behavior and match the intricate
details observed in production curves. Similarly, for mod-
els with initial fluid stratification, the calibration of initial
saturation holds equal significance in achieving reliable pre-
dictions.

Sharper initial estimates of the reservoir outline and possi-
ble fluid contacts will generally improve the model accuracy
and speed up the calibration process, but for models with
complex geometry our experience indicates that the misfit
minimization is faster if you start with a slightly overesti-
mated bulk volume (up to 20–50%). For network models
with a few hundred network nodes and up to a few thousand
parameters, our experience is that the Levenberg–Marquardt
method by far outperforms quasi-Newton methods like L-
BFGS-B. For models with many hundred wells, or with
simulators that are incapable of computing gradients, other
optimization methods like ES-MDA may be necessary.

Compared with interwell network models, CGNets have
a richer network topology and have more tunable param-
eters per network node. As a result, a calibrated CGNet
will in a typical setup therefore have fewer network nodes
than an interwell network model of comparable accuracy
and hence be faster to evaluate in a forward simulation by a
standard simulator. Likewise, because the CGNets are essen-
tially a very coarse standard simulation model, it is more
straightforward to include information about fluid contacts
and petrophysical heterogeneity.

Our motivation for developing CGNet has been to provide
compactmodels that are quick to calibrate and fast to evaluate
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Fig. 15 Observed water production rates compared with rates simulated by CGNet with network topology corresponding to a 5 × 5 × 1 mesh. In
the left plot, only rock parameters have been calibrated using 21 LM iterations, whereas the right plot also includes calibration of initial saturation
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for optimization purposes in settings where you have access
to a significant amount of production data. (One example
would be short-term rate optimization, as a more physics
based alternative to pure data-driven models.) Given the lim-
ited amount of information necessary to set up a CGNet, it
may be tempting to try to use them for early-stage history
matching, too. However, as the Egg example illustrated, this
will likely be futile for cases with low compressibility, since
observed production data will not contain much useful infor-
mation to determine effective interwell transmissibilities and
communication volumes before the breakthrough of displac-
ing fluids. Whether CGNets can prove useful for early-stage
history matching of more compressible systems remains to
be investigated.
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