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Abstract. With millions of connected edge gateways, there is a pressing
challenge of remote maintenance of containerised software components
after the initial release. To support remote update operations, edge soft-
ware providers have been increasingly adopting digital twin-based device
management platforms for run-time monitoring and interaction. A com-
mon limitation of these solutions is the lack of support for modelling the
multi-dimensional context of edge devices deployed in the field, which
hinders the software management in a tailored and context-aware man-
ner. This paper aims to address this lack of context-awareness in digital
twins required for edge software assignment by introducing two mod-
elling principles, which allow focusing on the device fleet as a whole and
capturing the diverse cyber-physical-social context of individual devices.
As part of proof of concept, these principles were incorporated in an
existing digital twin platform. This prototype implementation demon-
strates the viability of the proposed modelling principles via a running
example in the context of a telemedicine application system.

Keywords: Digital Twin · Context Awareness · Edge Computing · IoT
· Device Fleet · Eclipse Ditto · Remote Patient Monitoring.

1 Introduction

With the increasing computing and networking capabilities, IoT devices and edge
gateways have become part of a larger IoT-edge-cloud computing continuum,
where processing and storage tasks are distributed across the whole network
hierarchy, not concentrated only in the cloud. At the same time, this also intro-
duced continuous delivery practices to the development of software components
for network-connected edge gateways. These devices are placed on end users’
premises and are characterised by changing multi-dimensional contexts, forcing
developers to maintain multiple software versions and frequently re-deploy them
on a distributed fleet of devices with respect to their updated contexts. Un-
like the traditional cloud model, where computing resources are homogeneous
and concentrated in a single physical location, an edge fleet may be distributed
across thousands of heterogeneous devices, each with a unique context in terms
of hardware capacity, surrounding physical environment, network connection,
user preferences, etc. To address such heterogeneous contexts, software compo-
nents are also becoming increasingly diverse, and edge software providers often



simultaneously maintain multiple active versions of the same application. Taken
together, the increasing diversity on both sides, i.e. edge devices and software
components, raises a challenge of assignment implemented in a precise, reliable
and scalable manner.

Doing this correctly and efficiently goes beyond the manual capabilities of
software vendors and requires an intelligent and reliable automated solution.
This has given rise to device management cloud platforms, which allow collect-
ing information from distributed devices and provide a near real-time view on the
overall fleet. This functionality is often underpinned by the prominent concept of
Digital Twins (DTs). However, existing platforms often require increased coding
and modelling effort from edge software providers in order to implement software
assignment for the two main reasons. First, the existing solutions typically focus
on individual devices in isolation from each other, thus neglecting their interrela-
tions. Second, the default DT modelling support mainly considers the traditional
context metrics, such as hardware and software resources, to assign software up-
dates, neglecting a much more diverse and dynamic multi-dimensional context
of each edge device. As a result, this lack of modelled context information forces
edge application providers to manually map multiple versions of their software,
which eventually becomes a bottleneck in their agile development processes.

Accordingly, this paper aims to address the following high-level research ques-
tion – how to model the dynamic multi-dimensional device context in
order to support correct and targeted assignment of software manage-
ment updates on edge infrastructures? The contribution of the paper is
threefold. First, by exploiting the DT concept we elevate the level of modelling
abstraction to the fleet level, as opposed to the state of practice primarily focus-
ing on individual devices. Second, we enhance digital representations of devices
within a fleet with a notion of multi-dimensional context, as opposed to the exist-
ing IoT device management platforms primarily focusing only on hardware and,
occasionally, software aspects. Third, we demonstrate the applicability of the
proposed methodology with a proof of concept from the telemedicine domain.

The rest of the paper is organised as follows. Section 2 provides motivation
behind this research by explaining the challenges existing in the edge software
management. Section 3 briefs the reader on the state of practice and related re-
search works in the domains of DTs and software assignment on edge infrastruc-
tures, highlighting the existing limitations. Section 4 explains how the prominent
DT paradigm can be applied to address these limitations. Section 5 puts theory
into practice and describes how the proposed research ideas have been imple-
mented on top of the existing DT platform Eclipse Ditto. Section 6 summarises
the results and concludes the paper with an outlook for future work.

2 Research Context and Motivation

2.1 Software Maintenance at the Edge

The ubiquitous connectivity has given rise to a new sector within the ICT
market comprised by companies specialising in software development for cloud-
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connected edge infrastructures. Typically, such software providers are not di-
rectly involved in hardware manufacturing, but rather rely on some third-party
gateways shipped directly to end users, along with various IoT sensors and ac-
tuators. While downstream IoT devices are not always Internet-connected and
are not equipped with sufficient computing resources, edge gateways have tradi-
tionally served to collect sensor data, transfer it to the central cloud back-end,
and relay actuation commands back to actuators, as illustrated by Fig. 1.

More recently, edge gateways have also become fully-functional processing
units in their own right, going beyond the passive transferring to the cloud. In-
deed, edge gateways are equipped with relatively powerful computing (i.e. CPU
and RAM) and networking capabilities to run some business applications on
top of data collected from downstream IoT sensors. Thanks to these increased
capabilities, edge devices are not only able to support intensive data exchange
between the IoT and the Cloud layers, but also run complex software on top
of Linux OS, including a user interface for direct interaction with end users.
With the recent advancements in virtualisation and containerisation technolo-
gies, edge software is often packaged and released as Docker containers – the
de facto standard for enterprise-level software containerisation. The hardware
and software counterparts of the described edge-based installations comprise the
next generation of connected cyber-physical systems across a wide range of in-
telligent scenarios, such as various smart spaces, transportation, Industry 4.0,
telemedicine [10], etc.1
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Fig. 1. Application system spanning across the Cloud-Edge-IoT infrastructures.

Like all software, edge applications may contain bugs or security flaws, which
will only emerge after the initial deployment. At the same time, software providers
also frequently release functional updates in incremental manner following agile
development practices. Unlike in traditional data centres, maintenance of edge
software needs to take place remotely, since edge devices are installed and con-
nected on end users’ premises. For a relatively small fleet of devices, this might

1 Throughout this paper, and in Section 5 in particular, we will use telemedicine as
the main reference example. Nevertheless, the described concepts apply to other
scenarios dealing with edge software management.
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not be a challenge. Larger fleets, comprised of thousands of units distributed
around the globe, need an automated device management platform to remotely
provision, monitor, reset or lock every device, as well as to push updates when-
ever a new software version is released. Automating functions through a device
management platform saves time and resources, and minimises human errors. Ex-
amples of such platforms include mainstream commercial solutions such as Azure
IoT Hub2 and AWS IoT Greengrass,3 niche market offerings such as Balena
Cloud,4 and open-source community-driven toolkits such as Eclipse hawkBit.5
All these platfroms focus on container-based software management and rely on
some device-side monitoring agents for collecting metrics at run-time.

2.2 Challenge: Context-Awareness for Software Assignment

Assignment is an important part of all software management activities, be it
the initial release or the follow-up maintenance. Unlike the centralised cloud
model, where computing resources are relatively homogeneous, a fleet of edge
gateways consists of distributed and heterogeneous devices, which have diverse
multi-dimensional contexts in terms of hardware capacity, network connection,
physical deployment, user preferences, etc. [8]. Developers often need to maintain
several software variants to fit such different device contexts. For example, some
devices may require a variant tailored to a specific hardware capacity, while
some others with limited connectivity may need a variant with lower bandwidth
requirements. This can be formulated as as a generic assignment problem – i.e.
how to assign m software variants to n devices, so that each device is assigned
with a variant that matches its context. At the same time, the whole fleet may
also need to meet its global goals, e.g. maximise software diversity in the fleet
for security purposes [16] or pick a sub-set of devices for preview and testing.

The existing tag-based fleet assignment mechanisms offered by device man-
agement platforms are sufficient for rather simple scenarios with a few device
properties to take into account. Devices can be logically grouped so that a par-
ticular maintenance update is applied only to a specific group. For example,
grouping can be based on physical location or hardware architecture. However,
this is not expressive enough to address software assignment scenarios with hun-
dreds and thousands devices, each having its own continuously changing multi-
dimensional context – on the one hand, and multiple software versions – on
the other. In these circumstances, correctly assigning software components in
a precise and scalable manner heavily depends on up-to-date contextual infor-
mation about managed devices, which seems to be not immediately available in
existing solutions, which rely on general-purpose monitoring agents collecting
a limited number of hard-coded performance metrics. In the absence of richer
context-aware information about the managed fleet, using the default available

2 https://azure.microsoft.com/products/iot-hub/
3 https://aws.amazon.com/greengrass/
4 https://www.balena.io/
5 https://www.eclipse.org/hawkbit/
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tag-based assignment mechanisms is still possible, but would result in a com-
plex collection of chained fine-grained if − then conditions – an error-prone and
difficult-to-maintain solution.

3 State of the Art and Practice

3.1 Digital Twins for Edge Fleet Management and Context Modelling

As already explained, by using a device management platform, edge application
providers are able to remotely provision, monitor, and maintain their device, as
well as push software updates whenever a new version is released. In recent years,
all these tasks have been underpinned by the prominent concept of DTs. DTs
are virtual models designed to accurately reflect physical objects equipped with
various sensors related to certain aspects of their functionality. They enable to
create rich digital models of anything physical or logical, from simple assets or
products to complex cyber-physical environments. The collected sensor data is
relayed to a processing system and applied to the DT. Once updated with such
data, the DT can be used to run simulations, explore performance issues, and
identify possible improvements – which can then be applied back to the original
physical twin using bi-directional IoT connections.

Among many research efforts on DTs applied to the IoT [20,21] an impor-
tant part belongs to research on DT interoperability and standards [14,22]. An
industry-driven effort in this context was done by Microsoft’s DT Definition Lan-
guage (DTDL)6 to provide more semantics to modelled physical environments.
Albeit open-source, it can primarily be used only within the Azure ecosystem.
A similar attempt was made by the now-retired Eclipse Vorto.7 W3C Web of
Things (WoT) has come up with another effort to standardise the modelling
domain of IoT systems its Things Description model [6] – a formal information
model and a common representation to describe the metadata and interfaces of
IoT devices. In parallel, there is also an on-going effort to integrate the Semantic
Web ontologies to provide more formal semantics and reasoning to the WoT.

Another relevant research field is context modelling, which has already been
active for a few decades [5,15]. Context modelling produces a formal or semi-
formal description of the context information to create a context-aware system.
Some recent attempts [11,7] have started considering the cyber-physical dimen-
sion of the IoT and edge environments. In particular, there is a demand for
context-awareness to assess trustworthiness of devices [18], as well as to com-
plement application-specific analytics with enriched context information, e.g.
disease diagnostics based on extra information from IoT sensors [12].

In summary, engineering of context-aware DTs is currently ad-hoc to a great
extent, which is a challenge for quality-controlled development, deployment, and
operation. Most works focus on a limited set of conventional metrics, not suffi-
cient and suitable for edge software maintenance scenarios. A common limitation
6 https://learn.microsoft.com/azure/digital-twins/concepts-models
7 https://www.eclipse.org/vorto/
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of the existing approaches is the hard-coded focus only on modelling the cyber-
aspects of the managed physical entities, while more extensive modelling and
coding is left to system administrators to be done manually.

3.2 Software Assignment

The existing works on software assignment at the edge primarily focus on re-
source usage optimisation [19,13,4,17], in which the objective function is typically
based on generic infrastructure-level metrics, such as network latency [25], hard-
ware resources utilisation, energy consumption, etc. and less frequent metrics,
such as CO2 footprint, monetary costs, number of tenants, etc. Optimisation
metrics and related challenges are extensively surveyed in [2]. In all these works,
edge software is typically treated as a black box, owned or managed by some
external third party. As opposed to this, this proposed work tackles the soft-
ware assignment problem from the perspective of an application provider, who
owns and manages the whole vertical application system, including edge and
cloud components. This means that software placement is mainly driven by
application- and business-level requirements and evaluated against continuously
monitored device-specific contexts, not strictly limited to the infrastructure level.

In this light, implementing software assignment requires modelling the appli-
cation domain (i.e. software requirements and device context) and correspond-
ing multi-dimensional constraints. Research approaches to solving complex con-
straints have resulted in several theories and tools, such as Satisfiability Modulo
Theories (SMT) [1], which offered several fully automated fleet assignment solu-
tions based on various constraints and conditions. The SMT-based approaches
are specifically popular and efficient due to their expressive and rich modelling
language [3,23,24]. Nevertheless, they still require manually modelling the target
system with some contextual information and testing the constraints.

Managing software updates across a large fleet of devices is an everyday task
for the leading mobile OS providers, such as Apple and Google. At present, their
adopted over-the-air update mechanism implements a publish-subscribe model,
where mobile devices first get notified of and then fetch available updates through
the centralised marketplace. Since smartphone fleets are rather homogeneous
in terms of hardware and OSs, there is no challenge of multi-criteria software
assignment as such, and the compatibility check is performed only once, upon
the initial installation. Furthermore, in a fleet of smartphones there are typically
no global system goals, such as even distribution of components or A/B testing.

4 Modelling Principles for Context-Awareness
As we have argued, existing approaches lack the support for context-aware soft-
ware assignment at the edge, which we aim to tackle by this paper. We now
proceed with a description of the two main underpinning design principles.

I. Device fleet as the main level of abstraction. This design principle
represents one step up from the conventional approach to maintain DTs of indi-
vidual devices. By lifting the abstraction level, we are thus able to maintain a
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Fig. 2. Multi-dimensional context of edge gateways within a fleet.

live view not only on the managed individual devices, but also on the dynamic
inter-relations between them – something that can potentially play an important
role when deciding what software management commands need to be applied to
specific devices. This is especially important when considering some global soft-
ware management policies within a fleet, where assigning a software version to
one device will depend on what version has already been assigned to another. For
example, in DevOps, A/B testing is often implemented to test newly-added fea-
tures on a limited sub-set of staging devices before pushing them to production.
Another example is the artificial software diversity – i.e. a common technique
to improve system resilience, robustness, and security by deploying functionally-
equivalent, yet different software versions on multiple systems [16]. In all such
cases, updated software versions are required to be deployed only on a sub-set
of the device fleet. Another common scenario is to limit the simultaneous use
of some licensed software to a specific number of devices. Assignment in such
circumstances will depend on whether other devices belonging to the same user
are already running this software or not.

II. Multi-dimensional context awareness. In the context of rather static
and homogeneous computing nodes (e.g. a computing cluster or a data cen-
tre), software management typically takes into consideration only the cyber-
dimension of the target nodes, such as available hardware, networking configu-
ration, OS version, already installed software, etc. As opposed to this, correctly
assigning software components at the edge often needs to take into account a
much richer and more diverse context of edge infrastructures [9]. To this end, we
propose adopting a three-fold context model, consisting of the cyber, physical,
and social dimensions, as explained below:

1. Cyber dimension covers the hardware and software aspects of edge gate-
ways. For example, software assignment on a specific gateway may depend on
connected sensors/actuators, OS version, security patches, networking interfaces
(e.g. wireless/wired), power source (e.g. battery/constant power supply).
2. Physical dimension primarily refers to where exactly an edge gateway is de-
ployed physically. As explained in Section 3, in this paper we consider connected
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edge infrastructures deployed on end users’ premises. For many scenarios (e.g.
precision agriculture or environmental monitoring), this means that edge gate-
ways may be exposed to changing and possibly harsh weather conditions, such
as high/low temperatures or extreme humidity. Accordingly, vendors may opt
for not assigning compute intensive AI-driven applications to those nodes al-
ready exposed to high temperatures not to cause overheating. Another example
comes from telemedicine, where monitored patients are advised to take gate-
ways with them even when travelling (e.g. in a camping trailer or in a cruise).
In such cases, the updated physical placement or even the GPS location may be
taken into account to assign a matching software update. The last but not the
least, the physical placement is crucial for software assignment as far as security-
related software management is concerned due to the direct affect on the current
trustworthiness of the target device.
3. Social dimension captures the human-related aspects of edge gateways, which,
as previously explained, are deployed on end users’ premises and may be even
equipped with some physical user interfaces for direct interaction. A good exam-
ple of the social dimension is the subscription level, which defines the ‘richness’ of
applications features a user might have. Coming back to the telemedicine exam-
ple, only premium subscribers may be given a possibility to take their gateways
on a trip, whereas non-premium subscribers will be blocked based on the updated
GPS position. Another example from telemedicine is advanced AI-driven image
recognition to be deployed directly on cameras for immediate fall detection or
some other urgency.

Taken together, the three dimensions provide a useful conceptual framework
for modelling heterogeneous device contexts. It is worth noting that these two
design principles can be applied together to allow modelling situations where
one device is part of a context of another device within a fleet. This way, we are
able to capture the contextual inter-dependencies existing between the devices
at the fleet level. For example, assigning a new software version to a device may
depend on what other devices are connected and what software they are already
running. We will discuss such relevant use cases in more detail in Section 5.

5 Proof of Concept

We now proceed with explaining how the proposed context modelling principles
can be put in practice. For convenience, we will base our demonstration on a
relevant example of remote patient monitoring (RPM), which we will explore
through several use case scenarios related to day-to-day software maintenance.

5.1 Running Example: Edge Gateways for Remote Patient Monitoring

The use case scenario refers to a telemedicine provider, who offers RPM services.
For each customer (typically – elderly people living at their own residences), they
provide a healthcare gateway, i.e. a small single-board computer similar to Rasp-
berry Pi, along with a set of medical sensors, cameras, and wearable emergency
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beepers. Each gateway collects measurements from Bluetooth-connected down-
stream sensors (e.g. blood pressure, glucose and oxygen levels) or cameras (e.g.
video stream for fall detection) and, before sending them to the back-end cloud
service, may also perform some local (pre-)processing and aggregation. The pa-
tients and their caretakers have access to the data via a Web interface and a
mobile app. Some patients also opt for battery-powered portable gateways to
have a possibility to carry them with the essential sensors whenever they are
away, e.g. relocating to a summer house, travelling in a camper trailer or on
a cruise ship. During these periods, the gateway connectivity switches from the
residential WiFi network to a mobile one (3G or 4G). The gateways also differ in
terms of their hardware capacity – i.e. the older versions are less powerful than
the modern ones in terms of CPU, RAM, and available disk storage. At present,
the device fleet comprises more than 500 gateways installed on the customers’
premises, and there also exist several versions of the edge RPM software. More
specifically, there is a version dependent on additional disk storage to accumulate
sensor measurements and occasionally send them in batches, whenever a device
is not connected to a WiFi network (e.g. in a trailer camper). Another version
requires increased CPU and RAM resources, since it not just transfers data,
but also implements local data pre-processing. There is also a version enhanced
with support for image processing for fall detection, and therefore requires sev-
eral cameras to be installed and connected. Depending on the subscription level,
some versions provide only basic limited features, while some other are richer in
terms of offered functionality. All these examples demonstrate how the hetero-
geneous context determines what RPM software version has to be assigned and
installed on each individual gateway in the fleet.

The development team continuously updates the edge software by adding new
features and patching bugs, following agile practices. After each DevOps cycle,
typically executed on a weekly basis, there is a mass re-deployment involving
many or sometimes all the devices in the fleet. To perform the assignment, it is
required to parameterise each deployment and match them to devices and their
cyber-physical-social context properties.

5.2 Technological Baseline: Eclipse Ditto

As the technological baseline on top of which we have developed our proof of
concept implementation, we have used Eclipse Ditto8 – an open-source frame-
work for building DTs of Internet-connected devices with extensible modelling
and built-in querying languages. Ditto acts as middleware, providing an abstrac-
tion layer for IoT solutions interacting with physical devices via the DT pattern.
It can be seen as a toolkit, providing some core functionality (e.g. meta-model,
database, different messaging protocols and connectors, REST APIs, etc.), while
some other features have to be written by users on top of them (e.g. domain-
specific DT models, graphical user interfaces, device-side monitoring agents,
etc.). Being part of a larger open-source ecosystem, it can be relatively easy

8 https://www.eclipse.org/ditto/
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integrated with some other technologies from the Eclipse stack, including vari-
ous communication protocols, pub-sub messaging and load balancing.

Fig. 3. Eclipse Ditto meta-model.

Eclipse Ditto meta-model. Ditto
offers developers a meta-model, which
in its simplest form enables modelling
physical entities (i.e. things) using a
JSON schema with the following key
concepts (as depicted in Fig. 3):
– Thing is the top-level modelling con-
cept for describing physical assets.
– Definition is included in every
Thing (and optionally in Features)
and essentially represent a URI link-
ing to an external WoT model. It de-
scribes how a Thing is structured and
which behaviour/capabilities can be
expected in a interoperable and stan-
dard manner.9

– Policy enables to configure fine-grained access control. A specific policy defines
who and how can access a specific resource. Although very important for the
overall security trustworthiness of the DT system, Policies are beyond the
scope of this work.
– Metadata is Ditto’s internal field to store technical information, e.g. version
or creation/modification timestamps.
– Attributes are used to model rather static properties of a Thing, i.e. values
that do not change as frequently as Features. They can be of any type and can
be used to search for Things.
– Features are the central modelling concept to capture all run-time data and
functionality of a Thing in a given application system. Users are allowed to define
their own Features or extend existing WoT definitions. This is a key enabler for
modelling the multi-dimensional context through more fine-grained Properties.
– Properties are used within Features to model individual run-time indicators
of a Thing, e.g. to manage the status, the configuration or any fault informa-
tion. Each Property can be either a simple scalar value or a complex JSON
object. By using Properties, it is possible to implement the prominent desired-
reported pattern widely adopted in DTs, wherein sensor measurements are re-
ported upstream, while desired configuration updates are pushed downstream,
until eventually Properties and DesiredProperties are in sync.

Extending the default Ditto functionality. The default Ditto functionality
was extended in the following ways:10

9 We further discuss this functionality in Section 6 as part of future work.
10 https://github.com/SINTEF-9012/ditto-fleet
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– Graphical user interface (based on the NodeJS/React stack) to offer the RPM
provider the required application-specific software management features.
– Device-side monitoring agents for collecting contextual information and re-
ceiving updates.
– Back-end service for exchanging and synchronising desired (i.e. pushed by the
RPM provider) and reported (i.e. collected by monitoring agents) properties.
– Extended DT definitions of RPM gateways including the cyber-physical-social
context information (i.e. Properties) received from monitoring agents, as part
of the application-specific fleet model. The gray circles in Fig. 3 represent these
extensions to the Property concept.
– Software assignment logic based on Resource Query Language (RQL)11 mak-
ing use of the enriched DT definitions.

The latter two extensions are particularly relevant in the context of this pa-
per. The simplified JSON snippet in Listing 1.1 demonstrates the overall struc-
ture of the DT. Please note the three blocks within Features, corresponding
to cyber, physical and social context properties of the managed gateways. For
clarity purposes, we omit extensive definitions and will focus on some practical
use cases in the next subsection. In practice, the definition of a DT is expected
to be much longer in order to accommodate all possible contextual information
required for software assignment.

Listing 1.1. A sample of an RPM gateway digital twin.
1 "thingId": "no.sintef.sct.giot:rpm_gateway_01",
2 "policyId": "no.sintef.sct.giot:rpm_policy",
3 "definition": "no.sintef.sct.giot:rpm_gateway:1.0.0",
4 "attributes": {
5 "manufacturer": "RPM Inc.",
6 "cpu_model": "Broadcom BCM2711"
7 "cpu_arch": "arm_v8",
8 "os": {
9 "name": "Raspberry Pi OS 11 (Bullseye)",

10 "kernel_version": "5.15.84"
11 }
12 },
13 "features": {
14 "cyber": {
15 "properties": {
16 "monitoring_agent": {
17 "enabled": true,
18 "version": "1.0.0"
19 },
20 "docker_engine": {
21 "enabled": true,
22 "version": "containerd.io_1.2.0-1_arm64.deb"
23 },
24 "proxy": {
25 "enabled": false,
26 "host": "",
27 "port": ""
28 },
29 "ssh": {
30 "enabled": false,
31 "port": 443
32 },

11 https://github.com/persvr/rql
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33 "dev_env": "testing",
34 "fingerprint_sensor": true,
35 "2fa": false
36 }
37 },
38 "physical": {
39 "properties": {
40 "deployment_site": "hospital",
41 "gps_location": {
42 "latitude": "59.945283167835846",
43 "longitude": "10.713121330182533"
44 }
45 }
46 },
47 "social": {
48 "properties": {
49 "user_subscription": {
50 "type": "premium",
51 "expires": "2023-12-31T23:59:59Z"
52 }
53 }
54 }
55 }

5.3 Use Case Scenarios

Ditto comes with an RQL-based query language to search for devices within the
managed fleet using their attributes and features and a collection of logical and
arithmetical operators. We now present a series of common use cases scenarios
serving to demonstrate the use of context-aware DTs in day-to-day software
maintenance activities of the RPM provider. The examples use RQL to search for
target devices within the fleet and use conventional logical operators. Please note
that the code snippets with queries are somewhat simplified for demonstration
and clarity purposes.

Use case 1: targeted maintenance of a single device. A very simple, yet
common task is to perform remote maintenance on a single device, e.g. during
live interaction with a customer over the phone. In such cases, the device ID is
known, and some test commands can be executed using this query.

eq(thingId,"no.sintef.sct.giot:rpm_gateway_01")

Use case 2: maintenance of devices based on a single context property.
Another common scenario is to target a specific subset of devices based on some
single attribute or feature. It can be, for example, a new version release for all
ARM-based gateways:

eq(attributes/cpu_arch,"arm_v8")

Similarly, it is also a common practice to release some experimental features to
a testing environment, before pushing it to production:

eq(features/cyber/properties/dev_env,"testing ")

To a great extent, the first two use case scenarios represent the current state of
practice as far as DT-based software assignment is concerned.
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Use case 3: maintenance of devices based on a multi-dimensional con-
text. This is a more advanced scenario, which needs to take into account several
features to release agile updates only to those devices falling into the target scope
of the update command. Depending on the strictness of the target conditions,
it can be none, a few or all devices from the fleet. The following query refers to
a situation when a new software version with mandatory fingerprint-based au-
thentication needs to be pushed to a device equipped with such a sensor (cyber)
and where the two-factor authentication is not yet enabled (social).
and(eq(features/cyber/properties/fingerprint_sensor,"true"),

eq(features/social/properties/2fa, "false"))

Another example is releasing new AI-driven wellness recommendation features
only to GPU-enabled devices (cyber), do not get overheated (physical), and
have a premium subscription (social). For simplicity, we define ‘overheating’ as
an exceeding of the mean value of recent CPU temperature observations (40◦).
and(eq(features/cyber/properties/gpu,"true"),lt(mean(features/physical/

properties/cpu_temp),"40"),eq(features/social/properties/user,"premium "))

Use case 4: releasing an experimental feature to a limited number of
devices This scenario refers to a situation when new software features should be
safely tested only on a very small number of devices in a production environment.
For example, the assignment logic can target a single device within a larger
installation of 10+ gateways in the same medical institution. Accordingly, this
combined query will first check if there are more than 10 gateways installed, and,
if yes, will return a single device among the available. This is a demonstration of
an assignment logic at the fleet level, wherein the decision is based taking into
account other neighbour devices.
and(first(eq(features/physical/properties/deployment_site,"hospital ")),

gt(count(eq(features/physical/properties/deployment_site,"hospital ")),10))

Use case 5: evenly distributing 2 software versions within the fleet The
next related example refers to the software diversification strategy, often applied
to increase the overall security of the fleet. Briefly, the idea is to run multiple
software versions (functionally identical, yet different at the code level). This can
be achieved by first querying the total number of target gateways (e.g. running
a specific Raspbian OS), and then equally splitting them into two.
num = count(eq(attributes/os/kernel_version, "5.15.*")) (1)
limit(count(eq(attributes/os/kernel_version, "5.15.*"), 0, num/2) (2)

5.4 Assumptions and Limitations

The described query snippets serve to demonstrate the feasibility of the proposed
approach. Admittedly, in practice they will be somewhat more complex and
expressive, as well as the definition of the DT in Listing 1.1. Despite the fact
that current proof of concept is based on Eclipse Ditto and its internal modelling
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and querying languages, the high-level design concepts can be applied to and
implemented in other DT platforms allowing extending the definition of DTs
with cyber-physical-social context properties.

An important assumption to make, however, is the need to design and imple-
ment own monitoring agents. These agents will be deployed on devices to collect
run-time multi-dimensional metrics about the managed devices, to be collected
by the centralised DT platform. In many occasions, these monitoring agents
would also need to have some elevated access rights to be able to probe low-level
information about hardware or host OS. Admittedly, as with many modelling
approaches, there is usually more than one way of representing the surround-
ing world with digital models. While the proposed design principles can provide
a high-level modelling framework, some extensive modelling is still needed to
make the DTs usable in practice. To this end, some deep knowledge of the target
application system is required.

6 Conclusion and Future Work

In this paper, we answer the research question posed in Section 1 and aimed to
address the challenge of limited context-awareness in the existing DT platforms
– an important pre-requisite to perform assignment for software maintenance in
edge application systems. We brought forward the two design principles required
for modelling DTs. First, it is important to focus on the overall fleet, rather than
on individual devices. This way, it is possible to capture and evaluate possible
inter-dependencies between the devices, as well as global goals of the overall edge
system. Second, it is required to go beyond the traditional hardware and soft-
ware context properties, but also take into consideration the physical and social
dimensions of edge devices, which are often installed on end users’ premises and
provide an interface for physical interaction. By enabling such multi-dimensional
cyber-physical-social context awareness, we provide a much richer foundation for
performing software assignment across a wide range of business scenarios. The
latter is demonstrated in the context of an RPM edge application, using the ex-
isting DT framework Eclipse Ditto. In this proof of concept implementation, we
we were able to model the device fleet following the two design principles, which
supported a series of software maintenance use case. Although the overall re-
sults are positive, the proposed solution to a certain degree still requires manual
modelling effort, since proposed design principle are too high-level, while the de-
scribed prototype implementation is specific to the RPM scenario and underlying
Ditto implementation. Another related limitation is the need for device-specific
monitoring agents, which will collect multi-dimensional context information re-
quired for DTs. Nevertheless, this is a work-in-progress research effort, which we
ar eplanning to further improve in the following directions:

1. Integration with WoT Thing Description and semantic modelling:
WoT Thing Description is used to model the metadata and interfaces of phys-
ical things to enable integration of heterogeneous devices and interoperability
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across diverse applications. They are encoded in a JSON format that also allows
JSON-LD processing. The latter provides a promising foundation to represent
knowledge managed devices in a machine-readable way. Even further possibil-
ities for automated reasoning can be unleashed with the adoption of Semantic
Web ontologies, which are based on Description Logics and come with multiple
automated reasoners and modelling editors. Ditto can support both technolo-
gies, meaning that assignment may be implemented using more expressive tools,
going beyond the the simple RQL reported in this paper.
2. Using a graph-based database: As we advanced with the experiments on
Eclipse Ditto, it became apparent that entities and relationships describing the
multi-dimensional context of devices within a fleet do not always fit into the
fixed nested structure of JSON documents, adopted by Eclipse Ditto and its un-
derlying document-oriented MongoDB database. A promising research direction
is to adopt a graph-based representation of a managed fleet. Graph-based DTs
is a prominent paradigm, mainly due to a more intuitive representation of data,
which will then be easier to query for a human by traversing the graph elements.
Arguably, a graph is a more natural abstraction for a device fleet, with all the
inter-dependencies and heterogeneous contexts of individual devices.
3. Empirical evaluation: Even though we have used the running RPM ex-
ample to demonstrate the viability of the proposed approach, it still needs to
undergo a proper empirical validation by DevOps engineers to prove its appli-
cability in enterprise-level production environment. This will be implemented as
part of the ongoing work in the R&D projects acknowledged below.
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