
Computers in Industry 149 (2023) 103917

A
0

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.sciencedirect.com/journal/computers-in-industry

Virtual sensors for erroneous data repair in manufacturing a machine learning
pipeline
Sagar Sen a, Erik Johannes Husom a, Arda Goknil a,∗, Dimitra Politaki b, Simeon Tverdal a,
Phu Nguyen a, Nicolas Jourdan c

a SINTEF Digital, Forskningsvegen 1, Oslo, Norway
b INLECOM Innovation, Tatoiou 11, Kifisia 145 61, Greece
c TU Darmstadt, Otto-Berndt-Straße 2 64287 Darmstadt, Germany

A R T I C L E I N F O

Keywords:
Machine learning pipeline
Deep learning
Manufacturing
Virtual sensors
Data quality
Erroneous data repair

A B S T R A C T

Manufacturing converts raw materials into finished products using machine tools for controlled material
removal or deposition. It can be observed using sensors installed within and around machine tools. These
sensors measure quantities, such as vibrations, cutting forces, temperature, currents, power consumption, and
acoustic emission, to diagnose defects and enable zero-defect manufacturing as part of the Industry 4.0 vision.
The continuity of high-quality sensor data streams is fundamental to predicting phenomena, such as geometric
deformations, surface roughness, excessive coolant use, and imminent tool wear with adequate accuracy and
appropriate timing. However, in practice, data acquired by some sensors can be of poor quality and unsuitable
for prediction due to sensor faults stemming from environmental factors. In this paper, we answer if we can
repair erroneous data in a faulty sensor based on data simultaneously available in redundant sensors that
observe the same process. We present a machine learning pipeline to synthesize virtual sensors that can step in
for faulty sensors to maintain reasonable quality and continuity in sensor data streams. We have validated the
synthesized virtual sensors in four industrial case studies.
1. Introduction

Industry 4.0 is an ongoing industrial revolution where multivari-
ate sensor data obtained from production lines are analyzed to di-
agnose problems in manufacturing processes. It aims to realize Zero
Defect Manufacturing (ZDM), i.e., achieving zero defect in manufactur-
ing through the continuous observation and control of manufacturing
processes. However, automated sensor data analysis is reliable only
when data is adequately high quality and available without interrup-
tion (Nguyen et al., 2022; Cassoli et al., 2022; Sen et al., 2022; Husom
et al., 2022). Sensor data quality is adversely affected (i.e., corrupted or
missing data) by several factors, e.g., electromagnetic noise (Ze et al.,
2019), thermal errors (Li et al., 2021), and sensor overload (Dahl and
Engineer, 2001), or even cyber-attacks (Rajmohan et al., 2022). Erro-
neous data repair has an important role in advancing ZDM due to the
increased accuracy and reliability of the data used to control and mon-
itor manufacturing processes. Manufacturers can ensure that the data
used for quality control is accurate and reliable (hence improving the
detection of defects and reducing the risk of faulty products shipped to
customers). They can increase the accuracy of predictions of when the
equipment needs maintenance which prevents downtime and reduces

∗ Corresponding author.
E-mail address: arda.goknil@sintef.no (A. Goknil).

the risk of defects caused by equipment failure. Data repair can improve
the accuracy of process control algorithms, which can help optimize
manufacturing processes and reduce the risk of defects. Furthermore,
repaired data can improve the accuracy of real-time monitoring and
decision-making, which can help detect and correct issues before they
lead to defects.

Erroneous sensor data is either removed (resulting in missing
values/Not-a-number) or tagged with an error code indicating unreli-
able and unusable data points. The inevitable occurrence of erroneous
data interrupts the reliability and execution of data-driven prediction
components in Industry4.0 for activities such as tool condition moni-
toring (Patil et al., 2021), anomaly detection (Pittino et al., 2020), and
predictive maintenance (Zonta et al., 2020). Therefore, our motivation
is to answer if we can automatically repair erroneous sensor data
to maintain the continuity and accuracy of data-driven prediction in
manufacturing.

Correlations among various data sources (sensors) can be learned
through Machine Learning (ML) techniques to substitute one sensor
with another sensor and predict missing values or new data that
replace corrupt data. Non-ML data repair approaches (e.g., Lin et al.,
vailable online 13 April 2023
166-3615/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.compind.2023.103917
Received 14 July 2022; Received in revised form 3 February 2023; Accepted 3 Apr
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

il 2023

https://www.sciencedirect.com/journal/computers-in-industry
http://www.sciencedirect.com/journal/computers-in-industry
mailto:arda.goknil@sintef.no
https://doi.org/10.1016/j.compind.2023.103917
https://doi.org/10.1016/j.compind.2023.103917
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2023.103917&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers in Industry 149 (2023) 103917S. Sen et al.

m
v
t
v
m
T
m
(
v
d
f
f

t

2019; Khan and Algarni, 2020; Weiss et al., 2013; Kong et al., 2021;
Wang et al., 2018; Russell et al., 2019) have different constraints
(e.g., the availability of dependent data computations in the application
state history and the applicability for only a few data types), which
limit their applicability in industrial manufacturing settings. A few
approaches (Okafor et al., 2020; Flick et al., 2019) in the literature
apply ML to data repair for industrial manufacturing systems. However,
they do not exploit correlations among sensors and do not address
challenges in deploying ML models in production for online (real-time)
data repair.

In this paper, we present an ML pipeline for Erroneous Data Repair
for Industry 4.0 (ErDRe) to synthesize virtual sensors that can repair
erroneous sensor data. The synthesis of virtual sensors is based on
training ML models that can predict the most representative values for
data repair using inputs from redundant sensors observing the same
manufacturing process. Our pipeline is open-source and built using an
open-source framework called Data Version Control (DVC) (iterative.ai,
2023). DVC facilitates the process of configuring and synthesizing
virtual sensors as configurable stages.

The training data of the pipeline is a batch of reference multivari-
ate time series acquired from 𝑁 sensors (𝑠1, 𝑠2,… , 𝑠𝑁 ) observing the
manufacturing process under normal operation where the degradation
in data quality is minimal and within acceptable tolerances (i.e., when
a production cycle is successful before environmental and aging factors
affect sensor data quality). The pipeline is configured to generate
target virtual sensor 𝑣𝑖 for faulty sensor 𝑠𝑖 using data from sensors
𝑠1, 𝑠2,… , 𝑠𝑃 (where 𝑃 ≤ 𝑁 and 𝑠𝑖 ∉ {𝑠1, 𝑠2,… , 𝑠𝑃 }) correlated to 𝑠𝑖.
The pipeline stages are (i) data profiling to identify candidate sensors
for sensor synthesis, (ii) data cleaning, (iii) generating engineered
features (e.g., slope, gradient) from raw data, (iv) cordoning data for
training/evaluation, (v) normalizing and sequencing data for training
ML models, (vi) training the ML models and (vii) evaluating ML models
on unforeseen input data. When the model performance is satisfactory,
the model is deployed as a service that can perform both online and
offline data repair.

We validated our approach over four case studies. We systematically
investigated different configurations (i.e., various window sizes, input
features, ML model types and ratio of training and test set sizes) while
creating virtual sensors for the case studies. The best ML model for each
case study was used to evaluate the performance on unforeseen sensor
data. Our main contributions are as follows.

• Novel Data Repair Approach. We introduce an ML pipeline that
exploits correlations among various data sources to substitute one
with another and predict missing values or new data replacing
corrupt data.

• New Tool Support. We introduce new and open-source tool
support that enables online and offline data repair.1

• Evaluation on Industrial Case Studies. Virtual sensors effec-
tively repair erroneous data in industrial datasets.

The rest of the paper is structured as follows. In Section 2, we
present related work on erroneous data repair. Section 3 introduces the
problem context. In Section 4, we describe the core technical solutions.
Section 5 reports on the results of the empirical validation. We conclude
the paper in Section 6.

2. Related work

ML has the potential for data repair in industrial manufacturing
settings as correlations among various data sources (sensors) can be
learned to substitute one sensor with another sensor and predict miss-
ing values or new data that replace corrupt data. Non-ML repair tech-
niques (i.e., Lin et al., 2019; Khan and Algarni, 2020; Weiss et al., 2013;

1 https://github.com/sintef-9012/erdre
2

Kong et al., 2021; Wang et al., 2018; Russell et al., 2019) have different
constraints which limit their applicability in industrial manufacturing
settings. For instance, Lin et al. (2019) require all the dependent data
computations in the application state history, which are not always
available. Russell et al. (2019) present an approach that repairs the
initial sensed data from cameras (the processed output from the edge)
with the raw data from an ambient sensor. It uses sensory substitution
to increase the data robustness, resilience, and dependability. The
approach is limited to the data obtained from cameras and ambient
sensors for motion detection. Manufacturing systems have various sen-
sors (e.g., for measuring vibration, acoustic, pressure, temperature,
accelerometer, and torque) and produce a massive amount of data in
several forms. Virtual metrology (Dreyfus et al., 2022) is a closely
related topic that is gaining relevance in zero-defect manufacturing.
It emphasizes the use of simulation models and/or AI models to esti-
mate product quality directly from process data (e.g., sensors on the
machine). It enables manufacturers to predict defects and trends in
product quality well in advance. We can easily transform our approach
for creating virtual sensors to a virtual metrology technique if product
quality data is synchronized and made available with process data.
Nevertheless, we do not investigate virtual metrology in this article
as our experimental evaluation focuses on the problem of repairing
erroneous data and improving data quality.

ML can support more generic repair solutions for manufacturing
systems having multiple sensors that can substitute each other. How-
ever, we revealed only two studies (Okafor et al., 2020; Flick et al.,
2019) that apply ML to data repair in manufacturing and Industry
4.0. Flick et al. (2019) use ML algorithms (K-means for clustering
and regression modeling) only to detect outliers in the clusters, not
to predict new values replacing outliers. They employ the overflow,
overweight, substitution value, and algebraic sign calculations to cal-
culate the new values. Okafor et al. (2020) present an approach
using linear regression and neural networks to correct sensor output.
Their technique determines the factors affecting data quality, models
their effects on the sensor response, and applies the calibration model
to calibrate sensors. It merges data from multiple sensor nodes into
the calibration equation to ensure consistent and accurate information
for the calibration model. These two studies do not exploit sensor
correlations, do not address the deployment challenges of ML models
for online data repair, and do not implement different deployment
scenarios of ML models on edge and cloud.

To the best of our knowledge, ErDRe is the first ML pipeline that
exploits correlations among sensors for erroneous data repair in both
online and offline scenarios. It can be invoked either on edge or cloud to
create ML models based on the availability of training data. The models
are containerized as online repair services and deployed on edge for
real-time data repair, while they can also run on the cloud for offline
data repair.

3. Problem context

Let 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑁} be the set of all sensors monitoring a
anufacturing process (see Fig. 1). The problem of synthesizing a

irtual sensor 𝑣𝑖 entails using data from candidate input sensors 𝐶 ⊆ 𝑆
o predict the measurements of a faulty sensor 𝑠𝑖 ∉ 𝐶. Our moti-
ation relies on the fact that multiple sensors monitoring the same
anufacturing process might have latent relationships with each other.
herefore, we can use time-varying measurements/signals from one or
ore sensors to predict time-varying measurements/signals of another

faulty) sensor. For instance, if one of two sensors recording similar
ibration signals on different parts of a CNC milling machine is faulty
ue to electromagnetic interference, a virtual sensor with input data
rom the other sensor can be used to repair the measurements of the
aulty vibration sensor.

An ML model 𝑓𝜃(𝑋, 𝑌 ) can be used to learn a latent relationship be-
ween time-varying data from 𝐶 to predict time-varying measurements

https://github.com/sintef-9012/erdre


Computers in Industry 149 (2023) 103917S. Sen et al.
Fig. 1. Synthesizing virtual sensors for erroneous data repair.
of a target sensor 𝑠𝑖. The ML model 𝑓 requires a high-quality time-
varying input sensor dataset 𝑋 from sensors in 𝐶 and corresponding
time-varying output dataset 𝑌 from target sensor 𝑠𝑖. The input and
output datasets for learning 𝑓 should be of high quality. They should
be complete, accurate, timely, valid and ideally without faults (often
available from early successful production cycles before aging affects
equipment). 𝑓 should be learnt based on a set of parameters 𝜃. These
parameters include the ML model type, e.g., a Dense Neural Network
(DNN)/Fully Connected Neural Network (FCNN), Convolutional Neural
Network (CNN), or a Long Short-Term Memory network (LSTM) (Good-
fellow et al., 2016), window sizes for input and target sensor data, and
percentage split in how much data is used for training and evaluation.
Furthermore, virtual sensor 𝑣𝑖 should embody 𝑓 and be deployed as a
service (e.g., web-service).

4. Pipeline for erroneous data repair

ErDRe aims to train ML model 𝑓𝜃(𝑋, 𝑌 ) and facilitate configuring the
set of parameters 𝜃 to explore different virtual sensors. Furthermore, it
generates assets to embody 𝑓 as a service for continuous deployment.
We present an overview of our pipeline in Fig. 2 and describe its stages
below.

Stage 1: Data Profiling. This stage includes computing non-linear
maximum information coefficient (Reshef et al., 2011) and linear Pear-
son’s coefficient (Sedgwick, 2012) to find correlations between data
columns of different sensors in 𝑆. It generates statistical quantities for
each column and alerts if any column contains several zeros or missing
values. An interactive HTML dashboard is automatically generated to
inspect correlations and select the sensors (from 𝐶) correlated to faulty
sensor 𝑠𝑖.

Stage 2: Data Cleaning. This stage uses the output of Stage 1
(i.e., alerts for data columns having several zeros and missing values) to
automatically remove unwanted data (e.g., columns containing several
constant values or null values). Missing values cannot be used to train
ML model 𝑓 . Therefore, affected observations are removed (a missing
value can also be replaced by zero if it is consistent with the behavior
of the affected variable). Data cleaning parameters, e.g., threshold for
variables having null values, can be set in the pipeline configuration.
The output of this stage is high-quality datasets 𝑋 and 𝑌 for training
and evaluating 𝑓 .

Stage 3: Feature Engineering. The raw input data in 𝑋 obtained
from Stage 2 may contain noise (poor signal to noise ratio). This
stage extracts statistical properties, called features, from 𝑋 that exhibit
invariance to noise. Furthermore, the feature-based representations of
3

Table 1
List of engineered features used in our evaluation.

Feature name Mathematical definition

Mean 𝜇 = 1
𝑤

(
∑𝑤

𝑖=1 𝑥𝑖
)

Sum 𝑆 =
∑𝑤

𝑖=1 𝑥𝑖

Maximum 𝑀 = max(𝑥)

Minimum 𝑚 = min(𝑥)

Range 𝑀 − 𝑚

Gradient ∇𝑥 = 𝑥𝑖+1−𝑥𝑖−1
2𝑑

Slope 𝜃 = arctan
(

𝑥𝑖−𝑥𝑖−1
𝑑

)

Sine of slope 𝑠𝜃 = sin(𝜃)

Cosine of slope 𝑐𝜃 = cos(𝜃)

Standard deviation 𝜎 =
√

1
𝑤

∑𝑤
𝑖=1(𝑥𝑖 − 𝜇)2

Variance 𝑣 = 1
𝑤

∑𝑤
𝑖=1(𝑥𝑖 − 𝜇)2

Peak frequency 𝑓 = 1
𝑡peaks

Related quantities Symbol

Rolling window size 𝑤

Time step between each data point 𝑑

Time between peaks 𝑡peaks

time-series data (Lubba et al., 2019) perform well in classifying tasks
at a fraction of the computational cost of processing raw time-series
data. Table 1 presents a list of engineered features where 𝑥𝑖 ∈ 1,… , 𝑤
is the raw time series data in the rolling window of size 𝑤, 𝑥 is the
vector of data points across the rolling window, and 𝑡peaks is the time
between peaks (distance between heights of nearby points computed
using find_peaks() Virtanen et al., 2020). While configuring the
stage, we may select (optional) engineered features as input to train 𝑓 .

Stage 4: Splitting Training and Test Datasets. The datasets 𝑋 and
𝑌 can be split into training and test datasets. The training set is used
to develop a good hypothesis/ML model 𝑓 through hyper-parameter
tuning. A part of the training dataset is used for validation in Stage 7.
The test dataset is unforeseen (locked away) during model training and
used as an unbiased dataset to evaluate virtual sensor performance in
repairing erroneous data (in Stage 8).



Computers in Industry 149 (2023) 103917S. Sen et al.
Fig. 2. ML pipeline to synthesize virtual sensors.
Stage 5: Scaling Input and Output Data. The training dataset
contains signals/measurements from different sensors with varying
value ranges and therefore needs to be scaled (LeCun et al., 2012)
for a comparable influence during training. The pipeline saves scaling
configuration (as an object) as it is used again while treating raw data
in a deployed virtual sensor in production.

Stage 6: Splitting Input into Subsequences. This stage restructures
the training (including validation dataset) and test datasets into input
and output subsequences of the specified window size since virtual
sensor predictions are based on a window of time-varying observations
from input sensors and desired window of output values. Input subse-
quences of window size 𝑤𝑖𝑛𝑑𝑜𝑤𝑖 can be overlapping (sliding window)
or non-overlapping. The target output values of window size 𝑤𝑖𝑛𝑑𝑜𝑤𝑜
can be a single sensor value (𝑤𝑖𝑛𝑑𝑜𝑤𝑜 = 1) or a sequence of values
(𝑤𝑖𝑛𝑑𝑜𝑤𝑜 > 1).

Stage 7: Training an ML Model. The input and output subse-
quences from Stage 6 are used to configure and train model 𝑓 . Er-
DRe enables specifying learning parameters and selecting ML model
types (architectures). We consider DNNs/FCNNs, CNNs (LeCun et al.,
1989), and LSTMs (Hochreiter and Schmidhuber, 1997) to predict
time-varying values of a virtual sensor. A small part of the training
data (e.g., 20%) is set apart before training to be used as a validation
dataset. ErDRe automatically stops training if the prediction error of the
4

validation set stops improving, preventing the overfitting of the model
to the training data. It saves model 𝑓 for evaluation.

Stage 8: Evaluating Model Performance. The test dataset is an
unforeseen dataset used to evaluate the model performance to minimize
bias due to hyper-parameter tuning in Stage 7. We compare the model
output and the ground truth to assess how well model 𝑓 predicts the
target variable. To do so, ErDRe generates the plots of predictions
on test data. We use Mean Squared Error (MSE), coefficient of deter-
mination (R2 score), and Mean Absolute Percentage Error (MAPE) to
evaluate the performance of model 𝑓 .

Implementation of ErDRe. We implemented ErDRe using DVC (it-
erative.ai, 2023). The pipeline stages are Python programs configured
using a parameter file. DVC can be integrated into Git and allows model
and data versioning while maintaining the consistency of models and
data across the entire pipeline.

Deploying virtual sensors. A virtual sensor embodies the trained,
validated, and evaluated model 𝑓 as a service (e.g., Flask web service)
with an API. The API is invoked using subsequences of data (of size
𝑤𝑖𝑛𝑑𝑜𝑤𝑖) from input sensors and returns a set of target sensor values
(of size 𝑤𝑖𝑛𝑑𝑜𝑤𝑜) with time stamps. The raw input sequences cannot
always be used by 𝑓 as they are since 𝑓 is trained on input data
features extracted from raw data and bounded (e.g., values between
0 and 1) by a scaling operation. The feature engineering operations



Computers in Industry 149 (2023) 103917S. Sen et al.
Fig. 3. Finished Wax Part with an ‘‘S’’ Shape.

require the use of ML libraries such as Sci-kit learn (Pedregosa et al.,
2011) and TensorFlow (Abadi et al., 2016). Therefore, parts of the
pipeline used in inference, such as code to compute engineered features
(Stage 3), scaler (Stage 5), and the ML model (Stage 7) with all its de-
pendencies (e.g., ML libraries), are packaged as a standalone container
(e.g., docker). We can deploy the container on an edge device for online
(real-time) erroneous data repair or the cloud for offline repair (data
repair on long-term data).

5. Evaluation

In this section, we investigate, based on four industrial datasets, the
following Research Questions (RQs):

• RQ1. How can data profiling be used to generate virtual sensors?
• RQ2. What machine learning architectures are effective in generating
virtual sensors?

• RQ3. What features of data from other sensors are useful in creating
virtual sensors with good performance?

• RQ4. To what extent does a virtual sensor perform on unforeseen
data?

5.1. Subjects of the evaluation

We perform erroneous data repair using sensor data from four case
studies (C1, C2, C3, and C4) presented in this section.

5.1.1. Publicly available CNC milling tool wear data (C1)
The Computer Numerical Control (CNC) milling tool wear dataset

(Anon, 2023) was obtained using the System-level Manufacturing and
Automation Research Testbed (SMART) at the University of Michigan.
Eighteen experiments were run on 2" × 2" × 1.5" wax blocks in a CNC
milling machine; each experiment produced a finished wax part with
an ‘‘S’’ shape - S (see Fig. 3).

Time-series dataset was collected from the machine sensors. It has
measurements from the four motors in the CNC (X, Y, Z axes and
spindle). They are motor position, velocity, and acceleration; the com-
manded values of these variables (from path planning in the machine)
are in the dataset. The motor current, voltage, and power were mea-
sured (except the power of the z-axis). The data sampling frequency is
10 Hz, and the total sample count is 25,286.

C1: We predict spindle power using commanded X and Y positions,
the relevant estimation of the energy consumption of a motion
plan generated by the CNC machine.
5

Fig. 4. IDEKO test machine.

5.1.2. Streaming data from test machine at IDEKO (C2)
The dataset contains streaming data from IDEKO (a manufactur-

ing company), i.e., low-frequency (1 Hz) data aggregated from high-
frequency data obtained from a test CNC machine and stored on cloud
infrastructure. The machine is to test process parameters for new parts
before production. The dataset consists of 3,528 records (streamed at
1 Hz for 1-hour on the 3rd of May 2021); each one reports on a single
event and has 121 attributes with a time stamp.

The dataset consists of temperature measurements, ten important
frequencies and amplitudes from the frequency spectrum of high-
frequency accelerometers, and vibration severity from multiple ac-
celerometers. Vibration data were acquired using two accelerome-
ters/vibration sensors located at the ram tip of the machine, measuring
both bending directions of the ram (see Fig. 4).

C2: We repair the vibration severity data measured by one ac-
celerometer using the vibration severity data measured by another
accelerometer for vibration damping.

5.1.3. Broaching of jet engine turbine discs (C3)
Broaching is a manufacturing process for forming internal or ex-

ternal round, flat, or contoured surfaces. A broaching machine pushes
a multi-toothed cutting tool, a broach, into a workpiece to remove
material (see Fig. 5). Slots of various dimensions are cut at high
production rates. Our dataset was collected from three broaching tools
in a tool holder broaching fifty slots for three hours. The broaching
operation was to broach fir tree slots on jet engine turbine discs.

We had three data sources: (i) two accelerometers with a sample
rate of 12.8 kHz, (ii) a data logger with a rate of 250 Hz, and (iii) tool
wear measured with an optical microscope. Tool wear was recorded for
every five slots. Two types of data were collected: average wear, which
gives information about how cutting conditions are for the broaching
tool, and maximum wear, which includes micro tool breakage and is
needed to replace the tool.

C3: We repair X axis acceleration data of accelerometer 2 using X,
Y and Z axis acceleration of accelerometer 1.

5.1.4. CNC milling of combustion chambers in car cylinder heads (C4)
The dataset was collected from a CNC machine of a European car

manufacturer. It was recorded over four weeks at a sampling rate
of 10 Hz during the milling process of the combustion chamber of a
cylinder head (see Fig. 6).



Computers in Industry 149 (2023) 103917S. Sen et al.
Table 2
Input-target sensor correlations for case studies.
Case study Target sensor Input sensor

CNC Milling
(C1)

S1 Output
Power

Y1 Command Position
(𝜌: −0.697045, MIC: 0.706563 )
X1 Command Position
(𝜌: −0.670205, MIC: 0.639470)

IDEKO
(C2)

Severity of
Accelerometer 1

Severity of accelerometer 2
(𝜌: 0.836260, MIC: 0.347422)

Broaching
(C3)

X axis in Accl. 2 X axis in Accelerometer 1
(𝜌: −0.015470, MIC: 0.050781)
Y axis in Accelerometer 1
(𝜌: 0.093902, MIC: 0.050896)
Z axis in Accelerometer 1
(𝜌: 0.004596, MIC: 0.083667)

Automotive
(C4)

Spindle Torque Axis X Position
(𝜌: 0.038328, MIC: 0.427362)
Axis Y Position
(𝜌: −0.029126, MIC: 0.529575)
Axis Z Position
(𝜌: 0.020412, MIC: 0.582200)
Fig. 5. Broaching machine.

The dataset includes time series for (i) linear axis X, a gantry axis
with two linear motors X1 and X2 (e.g., X1 and X2 real position in
millimeter), (ii) linear axis Y and Z with only one motor (e.g., real
position in millimeter and torque in percent of motor drive nominal
torque), (iii) rotational axis A (e.g., position in degree and speed in
degree per minute), and (iv) spindle (e.g., speed in rotation per minute
and torque).

C4: We repair the spindle torque data using axis positions as
spindle torque is used for tool wear prediction.
6

5.2. Results of the evaluation

This section discusses the results of our case studies, addressing, in
turn, each of the RQs.
RQ1: How can data profiling be used to generate virtual sensors?

To address RQ1, we investigated the linear and non-linear corre-
lation between sensor variables ErDRe computes in the data profiling
stage to identify candidate input sensors for virtual sensors. Table 2
presents, for C1, a strong correlation between spindle power and the
command positions on the 𝑥-axis (𝜌=−0.670205, MIC=0.639470) and
𝑦-axis (𝜌=-0.697045, MIC=0.706563). The negative Pearson’s coeffi-
cient 𝜌 is because the movement in X and Y values indicates that
the spindle moves to a specific location without milling and consumes
power at a static location. The high Maximum Information Coefficient
(MIC) values capture the non-linear relationship to create the virtual
sensor for spindle power.

There is a strong linear correlation among the severities of ac-
celerometers 1 and 2 in C2 (𝜌: 0.83626, MIC: 0.347422) due to their
close proximity. We can use the severity amplitudes to predict the
severity of another accelerometer (see Fig. 8).

Table 2 presents, for C3, a weak correlation between the accelera-
tion in the 𝑋-axis (in accelerometer 2) and X, Y, and 𝑍-axis variables in
accelerometer 1, since the two accelerometers measure the acceleration
of two different but connected parts of the broaching machine. The lift
(observed by accelerometer 1 in Fig. 5) moves at programmed velocity
to move up and down the broaching tool (observed by accelerometer
2).

Table 2 presents, for C4, a significant non-linear correlation (high
MIC values but low 𝜌 values) between the spindle torque and workpiece
axis positions. The correlation is likely because the spindle contacts
with the workpiece at some coordinates and produces more torque.

RQ1 Conclusion. Candidate input sensors for virtual sensors can
be determined using linear Pearson’s coefficient and non-linear
maximum information coefficient scores.

RQ2: What machine learning architectures are effective in gener-
ating virtual sensors?

To address RQ2, we investigated the performance of different ML
architectures/models for virtual sensors in our case studies. All possible
combinations of input features in C1 performed well (𝑅2 = [0.69, 0.8]
& MSE = 0.001) for any model (see Table 3). However, based on the
coefficient of determination (𝑅2 = 0.8) and mean square error (MSE =
0.001008), LSTM is the best architecture (the best ones for all cases are
highlighted in green) with the raw feature for the Y1 command position
and the engineered features for the X1 command position. The best ML



Computers in Industry 149 (2023) 103917S. Sen et al.
Fig. 6. Combustion chamber.
Table 3
Model performance for the CNC milling dataset (C1).
Feat. set Features Performance

X1 Command Position Y1 Command Position DNN CNN LSTM

Raw Eng. features Raw Eng. features MSE R2 MSE R2 MSE R2

1 x x 0.001102 0.783763 0.001077 0.788668 0.001110 0.782228
2 x x 0.001409 0.720667 0.001133 0.775306 0.001119 0.778150
3 x x 0.001292 0.743946 0.001081 0.785697 0.001008 0.80024
4 x x 0.001517 0.699318 0.001208 0.760574 0.001251 0.752055
Table 4
Model performance for the IDEKO dataset (C2).
Feat. set Features Performance

Severity of accelerometer 2 DNN CNN LSTM

Raw Eng. features MSE R2 MSE R2 MSE R2

1 x 0.028318 −0.069767 0.019863 0.241584 0.011730 0.717607
2 x 0.018846 0.297966 0.021356 0.212721 0.017192 0.355563
Table 5
Model performance for the broaching dataset (C3).
Feat. set Features Performance

X axis of accl. 1 Y axis of accl. 1 Z axis of accl. 1 DNN CNN LSTM

Raw Eng. features Raw Eng. features Raw Eng. features MSE R2 MSE R2 MSE R2

1 x x x 0.0103 0.0799 0.0125 −0.1127 0.0116 −0.0357
2 x x x 0.0105 0.0698 0.0116 −0.0255 0.0243 −1.1454
3 x x x 0.0104 0.0759 0.0137 −0.2174 0.0254 −1.2458
4 x x x 0.0105 0.0721 0.0183 −0.6226 0.0274 −1.4219
5 x x x 0.0105 0.0705 0.0114 −0.0119 0.0312 −1.7553
6 x x x 0.0118 −0.0456 0.0278 −1.4540 0.0225 −0.9927
7 x x x 0.0113 −0.0024 0.0133 −0.1812 0.0306 −1.7078
8 x x x 0.0109 0.0340 0.0235 −1.0799 0.0221 −0.9562
architecture in C2 is LSTM using the raw severity of accelerometer 2 to
predict the severity of accelerometer 1 (see Table 4). 𝑅2 for the LSTM
model is 66% and 71% (better than 𝑅2 for CNN and DNN).

The combinations of input features in C3 did not perform as well as
the combinations of input features in other datasets (see Table 5) due to
the weak correlation between the C3 variables. Based on 𝑅2 (= 0.0799)
and MSE (=0.0103), DNN is the best architecture with the raw features
of X, Y, and Z-axes of accelerometer 1. The architecture producing the
best model for C4 is LSTM (see Table 6) when using only engineered
features (𝑅2 = 0.858). The CNN model performance is poorer, but the
model creation is more time-efficient.

The best ML architecture in our experiments based on 𝑅2 and MSE
scores is LSTM. Some literature reviews (Alom et al., 2019; Emam
et al., 2020) justify the performance of LSTM; LSTM can look at
7

long sequences of inputs without increasing the network size. It is
the slowest architecture to train. CNN is a good alternative for time
efficiency at the expense of accuracy.

RQ2 Conclusion. LSTM models perform well in terms of accuracy
in most cases, but they need more training time. CNN models are
a good compromise between performance and training time.

RQ3: What features of data from other sensors are useful in creat-
ing virtual sensors with good performance?

To address RQ3, we investigated the performance of virtual sensors
created with and without engineered features. Using raw sensor data vs.
engineered features brings insight into the robustness of a virtual sensor



Computers in Industry 149 (2023) 103917S. Sen et al.
Table 6
Model performance for the automotive dataset (C4).
Feat. set Features Performance

Axis X Position Axis Y Position Axis Z Position DNN CNN LSTM

Raw Eng. features Raw Eng. features Raw Eng. features MSE R2 MSE R2 MSE R2

1 x x x 52.349 0.402 33.975 0.612 30.199 0.655
2 x x x 28.634 0.672 19.332 0.778 17.141 0.804
3 x x x 34.493 0.605 21.931 0.749 20.656 0.763
4 x x x 27.713 0.682 15.130 0.827 12.529 0.856
5 x x x 36.078 0.587 25.669 0.706 22.149 0.746
6 x x x 28.079 0.678 15.523 0.822 13.596 0.844
7 x x x 32.960 0.622 20.622 0.764 19.422 0.777
8 x x x 23.690 0.7285 14.728 0.831 12.366 0.858
Fig. 7. C1: Predicting the spindle output power using the X and Y command positions.
using low-dimensional statistical features vs. its need to use high-
dimensional raw data containing specific patterns and non-statistical
properties.

Table 3 shows that the LSTM model using raw data for the Y1 com-
mand position and engineered features for the X1 command position
performs the best (models only using raw data also perform well) in
C1. Models using raw severity data from accelerometer 1 to predict
the severity of accelerometer 2 in C2 perform better than models using
engineered features (see Table 4). The DNN model using raw data
performs the best in C3 (see Table 5). Models using engineered features
in C4 perform significantly better than models using raw data.

ML architectures automatically constructed an internal feature rep-
resentation from raw data in C1, C2, and C3, having smaller datasets
than the C4 dataset. In C4, models using the engineered feature Slope
perform better than models using raw data, most likely due to the
availability of four weeks of data.

RQ3 Conclusion. We did not observe an obvious benefit of
engineered features in model performance since ML architec-
tures automatically construct internal feature representations for
relatively small datasets.

RQ4: To what extent does a virtual sensor perform on unforeseen
data?

To address RQ4, we investigated the performance of the best model
(highlighted green in Tables 3–6) in each dataset on unforeseen data.
ErDRe cordons part of the unforeseen input/output data for unbiased
evaluation of virtual sensors (see Stage 4 in Fig. 2). Fig. 7 presents
the prediction of spindle power in C1 alongside the ground truth.
The high 𝑅2 score (= 0.8) indicates the high prediction accuracy of
ErDRe. The prediction is closer to the average power during milling,
and it reactively drops to zero when moving between positions. Fur-
thermore, we can use the virtual sensor for spindle power before
production to estimate the energy consumption and carbon footprint
of manufacturing.

Fig. 8 presents the severity prediction for accelerometer 1 using
severity from accelerometer 2 in C2. Severity is computed using the
amplitude spectrum of the accelerometer using the formula 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =
8

√

∑𝑁
𝑖=1𝑥

2, where 𝑁 is the number of the lines of the amplitude spec-
trum, and 𝑥 is the spectrum value for each spectral line. We observe that
accelerometer 2 can replace accelerometer 1 (𝑅2 = 0.71). The virtual
sensor detected about 66% of the transients accurately. There are
two transients/spikes observed in the predicted data for approximate
severity of 1.5 m/s. The magnitude of these repairs is not harmful
to most applications in monitoring tool wear. Consulting a domain
expert, we note that only vibrations above 5–6 mm/s vibration can
lead to problems on a workpiece. These high-severity vibrations are
more consistent and not just transients (hence a clearly distinguishable
pattern over time).

Fig. 9 presents the acceleration prediction in 𝑌 -axis for accelerom-
eter 2 using X, Y, and Z-axes accelerations measured by accelerometer
1 in C3. The low 𝑅2 score (= 0.08) indicates the low prediction
accuracy caused by the distance between the accelerometers. Generally,
virtual accelerometer 2 follows a similar pattern to physical accelerom-
eter 2, although it fails to match the amplitude, particularly in the
negative direction. This behavior is exasperated after 30000 s (high-
frequency vibrations are recorded by physical accelerometer 2 but are
not predicted by virtual accelerometer 2). We explain these factors
with virtual accelerometer 2’s performance on test data (𝑅2 = 0, 0799),
where the predictions of virtual accelerometer 2 are less erroneous for
low-frequency vibrations (while predictions for high-frequency accel-
erations are poor). Therefore, we conclude that virtual accelerometer
2 cannot replace accelerometer 2 under all circumstances (especially
when the input from physical accelerometer 1 does not contain pre-
dictive information to estimate high-frequency vibrations recorded by
accelerometer 2). We may improve virtual accelerometer 2 by moving
physical accelerometer 1 to a position on the broaching machine that
makes it more sensitive to negative accelerations in accelerometer 2.
However, this investigation for an optimal location for accelerometer 1
was not undertaken as part of this research, and we present it only as
a recommendation.

Despite this low score however, as seen in Fig. 9, the virtual sensor
can detect the periods of activity when the broaching occurs close to
accelerometer 2. We can use the virtual sensor as an activity sensor
when accelerometer 2 fails close to the broaching machine in cases the
temperature is high and the coolant flow is limited/obstructed.



Computers in Industry 149 (2023) 103917S. Sen et al.
Fig. 8. C2: Predicting the severity of accelerometer 1 using the severity of accelerometer 2.
Fig. 9. C3: Predicting the Y axis acceleration of accelerometer 2 using the X, Y, and Z axis accelerations of accelerometer 1.
Fig. 10. C4: Predicting the spindle torque using the X, Y, and Z workpiece position.
Fig. 10 presents the spindle torque prediction in C4. The high
𝑅2 score (= 0.858) indicates that the virtual sensor predicted most
patterns without anomalies although the predictions have some ir-
regularities/fluctuations (and deviations from the ground truth) when
predicting long periods of spindle torque. The fluctuations can be
smoothed using a filter.

RQ4 Conclusion. Virtual sensors effectively repair erroneous data
if redundant/correlated sensors are available. They may exhibit
rare irregularities/fluctuations in their predictions, which we can
smooth using a filter.

5.3. Threats to validity

Internal validity. To limit threats to internal validity, we use vir-
tual sensors to exploit the correlation between sensor variables and not
a cause–effect relationship between input and output sensors. Virtual
sensors are not designed to predict future values (using previous time
frames). For instance, the spindle can be in a specific position in a time
9

frame and may move in the next time frame elsewhere based on the
CNC application. However, in C1 and C4, we see that part position
may have a causal relationship to spindle power and torque as motion
plans for CNC milling are determined and simulated before real-world
manufacturing takes place.

External validity. To mitigate the threat to generalizability, we
designed our pipeline as reusable, modular, and extensible to new ML
architectures and methods to pre-process time-varying data. However,
ErDRe requires synchronized reference data from different sensors to
train virtual sensors. Furthermore, virtual sensors based on deep learn-
ing models cannot extrapolate well to data outside of the distribution
of the reference data.

Industrial sensor data experience different distributional shifts: (a)
concept drift that occurs when the underlying distribution of the sensor
data changes over time (resulting in a shift in the data distribution) and
(b) sensor drift that occurs when the sensor experiences a shift in its
measurement capabilities. Concept drift happens due to changes in the
manufacturing process, equipment wear and tear, and environmental
factors. Sensor drift may occur due to physical damage, calibration
errors, or changes in temperature or humidity. All these distribu-
tional shifts may affect the virtual sensor performance. Therefore, we



Computers in Industry 149 (2023) 103917S. Sen et al.

e
v
w

6

f
s
a
s
m
a
w
a
a
F
i
a
S
z
d
a
t
p
t
v
p
k
m
c
t
l
p
t
e
l
w
a

D

l
e
C

D

A

s
(

should estimate uncertainty in virtual sensor predictions and learn from
new data. In future work, we intend to take a Bayesian approach
(e.g., dropout Gal and Ghahramani, 2016) to obtain an uncertainty
estimate as a standard deviation. A standard deviation above a cer-
tain threshold should trigger re-training from a new batch of sensor
data to adapt to distributional shifts. However, it is also desirable to
replay (Hayes et al., 2021) some of the old data to mitigate the problem
of catastrophic forgetting (French, 1999) in neural networks where gradi-
nts from new data overwrite weights from past learning. We expect the
irtual sensor performance to be poor initially but gradually improve
ith more data continually adapting to distributional shifts.

. Conclusion

We presented an open-source ML pipeline to create virtual sensors
or erroneous data repair in manufacturing. The pipeline supports
electing features, window size, and ML architectures to train, validate,
nd test virtual sensors. Furthermore, we can deploy virtual sensors as
ervices on edge and cloud infrastructure omnipresent in Industry 4.0
anufacturing to perform online and offline erroneous data repair. We

ssess the usefulness and performance of virtual sensors using four real-
orld case studies in manufacturing using a publicly available dataset
menable to scientific reproduction and real-world datasets from the
erospace and automotive domains.
uture Work. The quality of the data acquired for decision support
s getting more important since more manufacturing data are shared
cross industrial ecosystems (Isaja et al., 2023; Tran et al., 2023).
haring quality data could be one of the key aspects in realizing
ero-waste strategies at the value chain as one of the future research
irections beyond zero-defect manufacturing (Powell et al., 2022). In
ddition, erroneous data repair could be one of the inspection solu-
ions and advanced monitoring to support continuous manufacturing
rocesses, which are less explored in terms of zero-defect manufac-
uring (Powell et al., 2022). On the other hand, manufacturing en-
ironments are highly dynamic, where processes are adjusted during
roduction, and ML models may become obsolete. A phenomenon
nown as concept drift may be detected using uncertainty estimation
ethods, e.g., Bayesian neural networks (Charnock et al., 2022) and

onformal prediction (Stankeviciute et al., 2021). Confidence in vir-
ual sensor predictions gives information about concept drift. With
arge confidence intervals, we are uncertain about the virtual sensor
redictions. There is a need to update/retrain the virtual sensor due
o a shift in input data distribution. We will investigate uncertainty
stimation (Jourdan et al., 2020) in conjunction with continual/lifelong
earning (Parisi et al., 2019) to train virtual sensors with new data
hile avoiding the catastrophic forgetting of what is already learned
nd addressing the stability-plasticity dilemma.

eclaration of competing interest

The authors declare the following financial interests/personal re-
ationships which may be considered as potential competing inter-
sts: All authors reports financial support was provided by European
ommission.

ata availability

The authors do not have permission to share data.

cknowledgments

This work was supported by the European Union’s Horizon 2020 Re-
earch and Innovation programme under Grant Agreement No. 958357
InterQ).
10
References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., et al., 2016. Tensorflow: A system for largescale machine
learning. In: OSDI’16. pp. 265–283.

Alom, M.Z., Taha, T.M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M.S., Hasan, M.,
Van Essen, B.C., Awwal, A.A.S., Asari, V.K., 2019. A state-of-the-art survey on deep
learning theory and architectures. Electronics 8 (3).

Anon, 2023. The (CNC) milling tool wear dataset. https://www.kaggle.com/datasets/
shasun/tool-wear-detection-in-cnc-mill.

Cassoli, B.B., Jourdan, N., Nguyen, P.H., Sen, S., Garcia-Ceja, E., Metternich, J.,
2022. Frameworks for data-driven quality management in cyber–physical systems
for manufacturing: A systematic review. In: 15th CIRP Conference on Intelligent
Computation in Manufacturing Engineering, Vol. 112. pp. 567–572.

Charnock, T., Perreault-Levasseur, L., Lanusse, F., 2022. Bayesian neural networks. In:
Artificial Intelligence for High Energy Physics. World Scientific, pp. 663–713.

Dahl, K., Engineer, D., 2001. Accelerometer overload.
Dreyfus, P.-A., Psarommatis, F., May, G., Kiritsis, D., 2022. Virtual metrology as an

approach for product quality estimation in industry 4.0: A systematic review and
integrative conceptual framework. Int. J. Prod. Res. 60 (2), 742–765.

Emam, A., Shalaby, M., Aboelazm, M.A., Bakr, H.E.A., Mansour, H.A., 2020. A
comparative study between CNN, LSTM, and CLDNN models in the context of
radio modulation classification. In: 2020 12th International Conference on Electrical
Engineering. ICEENG, pp. 190–195.

Flick, D., Gellrich, S., Filz, M.-A., Ji, L., Thiede, S., Herrmann, C., 2019. Conceptual
framework for manufacturing data preprocessing of diverse input sources. In: 2019
IEEE 17th International Conference on Industrial Informatics, Vol. 1. INDIN, IEEE,
pp. 1041–1046.

French, R.M., 1999. Catastrophic forgetting in connectionist networks. Trends in
Cognitive Sciences 3 (4), 128–135.

Gal, Y., Ghahramani, Z., 2016. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In: International Conference on Machine
Learning. PMLR, pp. 1050–1059.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press.
Hayes, T.L., Krishnan, G.P., Bazhenov, M., Siegelmann, H.T., Sejnowski, T.J., Kanan, C.,

2021. Replay in deep learning: Current approaches and missing biological elements.
Neural Comput. 33 (11), 2908–2950.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8),
1735–1780.

Husom, E.J., Tverdal, S., Goknil, A., Sen, S., 2022. Udava: An unsupervised learning
pipeline for sensor data validation in manufacturing. In: Proceedings of the 1st
International Conference on AI Engineering: Software Engineering for AI. pp.
159–169.

Isaja, M., Nguyen, P., Goknil, A., Sen, S., Husom, E.J., Tverdal, S., Pedersen, K.J.,
Anand, A., Jiang, Y., Myrseth, P., Stang, J., Niavis, H., Pfeifhofer, S., Lamplmair, P.,
2023. A blockchain-based framework enabling trusted quality data sharing towards
zero-defect manufacturing. Comput. Ind. 146, 103853.

iterative.ai, 2023. Open-source version control system for machine learning projects.
https://dvc.org/.

Jourdan, N., Rehder, E., Franke, U., 2020. Identification of uncertainty in artificial
neural networks. In: Uni-DAS EV, Vol. 2. p. 12.

Khan, M.A., Algarni, F., 2020. A healthcare monitoring system for the diagnosis of
heart disease in the iomt cloud environment using msso-anfis. IEEE Access 8,
122259–122269.

Kong, T., Hu, T., Zhou, T., Ye, Y., 2021. Data construction method for the applications
of workshop digital twin system. J. Manuf. Syst. 58, 323–328.

LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R., 2012. Efficient backprop. In: Neural
Networks: tricks of the Trade. Springer, pp. 9–48.

LeCun, Y., et al., 1989. Generalization and network design strategies. Connect. Perspect.
19, 143–155.

Li, T.-j., Zhao, C.-y., Zhang, Y.-m., 2021. Real-time thermal error prediction model
for CNC lathes using a new one-dimension lumped capacity method. Int. J. Adv.
Manuf. Technol. 1–12.

Lin, W.-T., Bakir, F., Krintz, C., Wolski, R., Mock, M., 2019. Data repair for distributed,
event-based iot applications. In: The 13th ACM International Conference on
Distributed and Event-Based Systems. DEBS’19, pp. 139–150.

Lubba, C.H., Sethi, S.S., Knaute, P., Schultz, S.R., Fulcher, B.D., Jones, N.S., 2019.
Catch22: Canonical time-series characteristics. Data Min. Knowl. Discov. 33 (6),
1821–1852.

Nguyen, P.H., Sen, S., Jourdan, N., Cassoli, B., Myrseth, P., Armendia, M., Mykle-
bust, O., 2022. Software engineering and ai for data quality in cyber- physical
systems - sea4dq’21 workshop report. SIGSOFT Softw. Eng. Not. 47 (1), 26–29.

Okafor, N.U., Alghorani, Y., Delaney, D.T., 2020. Improving data quality of lowcost
IoT sensors in environmental monitoring networks using data fusion and machine
learning approach. ICT Express 6 (3), 220–228.

Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S., 2019. Continual lifelong
learning with neural networks: A review. Neural Netw. 113, 54–71.

Patil, S., Pardeshi, S., Patange, A., Jegadeeshwaran, R., 2021. Deep learning algorithms
for tool condition monitoring in milling: A review. J. Phys. Conf. Ser. 1969 (1),
012039.

http://refhub.elsevier.com/S0166-3615(23)00067-2/sb1
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb1
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb1
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb1
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb1
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb2
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb2
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb2
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb2
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb2
https://www.kaggle.com/datasets/shasun/tool-wear-detection-in-cnc-mill
https://www.kaggle.com/datasets/shasun/tool-wear-detection-in-cnc-mill
https://www.kaggle.com/datasets/shasun/tool-wear-detection-in-cnc-mill
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb4
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb4
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb4
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb4
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb4
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb4
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb4
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb5
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb5
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb5
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb6
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb7
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb7
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb7
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb7
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb7
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb8
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb8
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb8
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb8
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb8
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb8
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb8
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb9
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb9
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb9
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb9
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb9
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb9
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb9
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb10
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb10
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb10
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb11
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb11
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb11
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb11
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb11
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb12
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb13
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb13
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb13
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb13
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb13
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb14
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb14
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb14
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb15
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb15
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb15
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb15
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb15
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb15
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb15
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb16
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb16
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb16
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb16
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb16
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb16
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb16
https://dvc.org/
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb18
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb18
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb18
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb19
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb19
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb19
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb19
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb19
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb20
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb20
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb20
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb21
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb21
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb21
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb22
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb22
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb22
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb23
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb23
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb23
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb23
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb23
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb24
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb24
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb24
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb24
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb24
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb25
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb25
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb25
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb25
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb25
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb26
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb26
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb26
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb26
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb26
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb27
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb27
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb27
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb27
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb27
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb28
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb28
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb28
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb29
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb29
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb29
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb29
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb29


Computers in Industry 149 (2023) 103917S. Sen et al.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al., 2011. Scikit-learn: Machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Pittino, F., Puggl, M., Moldaschl, T., Hirschl, C., 2020. Automatic anomaly detection on
in-production manufacturing machines using statistical learning methods. Sensors
20 (8), 2344.

Powell, D., Magnanini, M.C., Colledani, M., Myklebust, O., 2022. Advancing zero
defect manufacturing: A state-of-the-art perspective and future research directions.
Comput. Ind. 136, 103596.

Rajmohan, T., Nguyen, P.H., Ferry, N., 2022. A decade of research on patterns and
architectures for IoT security. Cybersecurity 5 (1), 2.

Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., McVean, G., Turnbaugh, P.J.,
Lander, E.S., Mitzenmacher, M., Sabeti, P.C., 2011. Detecting novel associations in
large data sets. Science 334 (6062), 1518–1524.

Russell, L., Kwamena, F., Goubran, R., 2019. Towards reliable IoT: Fog-based AI sensor
validation. In: IEEE Cloud Summit. pp. 37–44.

Sedgwick, P., 2012. Pearson’s correlation coefficient. Bmj 345.
Sen, S., Husom, E.J., Goknil, A., Tverdal, S., Nguyen, P., Mancisidor, I., 2022. Taming

data quality in AI-enabled industrial internet of things. IEEE Software 39 (6),
35–42.
11
Stankeviciute, K., Alaa, A.M., van der Schaar, M., 2021. Conformal time-series
forecasting. Adv. Neural Inf. Process. Syst. 34.

Tran, T., Nguyen, P.H., Erdogan, G., 2023. A systematic review of secure IoT data
sharing. In: The International Conference on Information Systems Security and
Privacy, Science and Technology Publications.

Virtanen, P., Gommers, R., Oliphant, T.E., et al., 2020. SciPy 1.0: Fundamental
algorithms for scientific computing in Python. Nature Methods 17, 261–272.

Wang, C., Zhu, Y., Shi, W., Chang, V., Vijayakumar, P., Liu, B., Mao, Y., Wang, J.,
Fan, Y., 2018. A dependable time series analytic framework for cyberphysical
systems of IoT-based smart grid. ACM Trans. CyberPhys. Syst. 3 (1).

Weiss, S.M., Dhurandhar, A., Baseman, R.J., 2013. Improving quality control by early
prediction of manufacturing outcomes. In: KDD’13. pp. 1258–1266.

Ze, Y., Liu, L., Cheng, T., Kun, Z., Jianhua, Z., 2019. Measurement based characteriza-
tion of electromagnetic noise for industrial internet of things at typical frequency
bands. In: 2019 IEEE Wireless Communications and Networking Conference. WCNC,
IEEE, pp. 1–6.

Zonta, T., da Costa, C.A., da Rosa Righi, R., de Lima, M.J., da Trindade, E.S., Li, G.P.,
2020. Predictive maintenance in the industry 4.0: A systematic literature review.
Comput. Ind. Eng. 106889.

http://refhub.elsevier.com/S0166-3615(23)00067-2/sb30
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb30
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb30
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb30
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb30
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb31
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb31
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb31
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb31
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb31
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb32
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb32
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb32
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb32
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb32
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb33
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb33
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb33
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb34
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb34
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb34
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb34
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb34
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb35
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb35
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb35
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb36
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb37
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb37
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb37
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb37
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb37
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb38
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb38
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb38
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb39
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb39
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb39
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb39
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb39
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb40
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb40
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb40
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb41
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb41
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb41
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb41
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb41
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb42
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb42
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb42
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb43
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb43
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb43
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb43
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb43
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb43
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb43
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb44
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb44
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb44
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb44
http://refhub.elsevier.com/S0166-3615(23)00067-2/sb44

	Virtual sensors for erroneous data repair in manufacturing a machine learning pipeline
	Introduction
	Related Work
	Problem Context
	Pipeline for Erroneous Data Repair
	Evaluation
	Subjects of the Evaluation
	Publicly Available CNC Milling Tool Wear Data (C1)
	Streaming Data from Test Machine at IDEKO (C2)
	Broaching of Jet Engine Turbine Discs (C3)
	CNC Milling of Combustion Chambers in Car Cylinder Heads (C4)

	Results of the Evaluation
	Threats to Validity

	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


