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Abstract—Probabilistic operational planning of power systems
usually requires computationally intensive and time consuming
simulations. The method presented in this paper provides a time
efficient alternative to predict the socio-economic cost of system
operational strategies using graph convolutional networks. It
is intended for fast screening of operational strategies for the
purpose of operational planning. It can also be used as a proxy for
operational planning that can be used in long term development
studies. The performance of the model is demonstrated on a
network inspired by the Nordic power system.

Index Terms—probabilistic operational planning, power sys-
tem reliability, contingency analysis, machine learning, graph
neural networks

I. INTRODUCTION

A. Motivation

Most power systems today are operated and planned accord-
ing to deterministic criteria, which are often socio-economical
sub-optimal. In order to keep adequate reliability of supply
while also minimizing the socio-economic costs, moving to-
wards probabilistic criteria is recommended by the European
FP7 project, GARPUR [1]. ACER, the European Union’s
Agency for the Cooperation of Energy Regulators, adopted
a decision for transmission system operators (TSOs) to de-
velop a methodology on probabilistic risk assessment [2].
The move towards probabilistic criteria requires efficient and
accurate methods for decision support. This study explores the
possibility of using machine learning for modeling decision
support according to probabilistic criteria in system opera-
tional planning. The idea is that the model can be used as
a screening method for operational planning, or for including
a more accurate and fast representation of operations in long-
term planning studies. There is a multitude of considerations
when implementing probabilistic operational planning. The
method should not only consider the risk of violating physical
constraints but also the cost of operation [3]. Methods that
attempt to minimize the cost of power system operation are
therefore considered in this work.

The research leading to these results has received funding from the Research
Council of Norway through the project “Resilient and Probabilistic reliability
management of the transmission grid” (RaPid) (Grant No. 294754), The
Norwegian Water Resources and Energy Directorate, and Statnett.

A dynamic programming model was developed in [4] to
quantify the socio-economic cost and detect the most favorable
socio-economic operational strategy. Dynamic time-domain
simulations were used to capture situations that normally
go undetected by traditional static methods. However, this
approach is computationally intensive. It is also necessary to
predict consequences for a large sample space of possible con-
tingencies, available corrective actions and other uncertainties,
as steps toward identifying the optimal operational strategy.

As a response to these challenges, this paper proposes a two-
step supervised learning model based on graph convolutional
networks (GCNs) to rapidly predict the expected costs of sim-
ulated operational strategies, exemplified using data from [4].

B. Related works

Alternative methods to [4] for probabilistic operational
planning have been presented in the literature [5]–[9]. In [5]
a DC power flow was used to include power system response
in a probabilistic operational planning model. Different cost-
based criteria are compared in [6], where a transport model
was used to model the power system response. An AC power
flow and a linear approximation of frequency response were
used in [7] to include frequency response in an operational
planning model. More recent approaches use machine learning
for generating proxy models of real-time operation to speed
up probabilistic operational planning [8], [9]. In these papers,
a machine learning model is trained to act as a DC-security
constrained optimal power flow (SCOPF) and to predict the
optimal corrective actions given a set of preventive actions.
This is a promising approach, however, the use of a DC-
SCOPF means that voltage, frequency and stability issues will
not be captured. Moreover, the time domain characteristic
of protection systems cannot be included. In the proposed
approach, a GCN is trained to predict the result of a detailed
time-domain simulation that calculates the cost of operating
a power system given a set of preventive and corrective
actions while considering the time-domain characteristics of
protection systems [4].

Graph neural networks (GNNs) is a collective term describ-
ing neural networks that process data structured as graphs. Use
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of GNNs in power system applications has recently gained
popularity [10]. The graph structure allows the model to
capture specific entity attributes and their relations. This is
useful for representing and enforcing power system topology
in deep learning models. In [11] and [12] GNNs are used to
model power flows, predicting optimal power flow and load
shedding, respectively. Other applications include transformer
fault diagnosis [13], weather related power outages [14] and
complex energy systems [15]. Multiple studies show that
GNNs outperforms other machine learning models for graph-
structured data [11]–[13].

C. Structure of paper

The probabilistic operational planning approach applied in
this paper and some fundamentals of GCNs is explained in
Section II. The data generation method, model training and
how to do the predictions is presented in Section III. Results
from a case study are given in Section IV, and conclusions
and further work are given in Section V.

II. THEORY AND DEFINITIONS

A. Probabilistic Operational Planning

Probabilistic operational planning often aim to find a strat-
egy that minimizes expected operational costs given numerous
fault scenarios, their probabilities, and preventive and correc-
tive measures. This is different from traditional power system
operational schemes that are mainly based on the N-1 criterion.
The criterion states that the system should be able to withstand
any credible contingency at all times in such a way that
the system is capable of accommodating the new operational
situation without violating operational security limits [16].

One way of doing this is through the use of preventive and
corrective measures during operations. Preventive and correc-
tive measures are defined in this paper as an adaptation of
the understanding of remedial actions and preventive remedial
actions applied to a deterministic reliability criterion found
in [17]: A preventive measure is understood as an action taken
to ensure that the system will adhere to a reliability criterion in
the future, based on a predicted future system state and threat
exposure. Examples of preventive measures are the allocation
of reserves, transmission switching or reducing transmission
capacities between market areas. A preventive strategy in this
work is subsequently understood as a set of measures taken
prior to the operational hour that change the system operating
state such that the system will adhere to a reliability criterion
subject to a contingency. Similarly, a corrective measure is
understood as an action to ensure the system’s compliance
with a reliability criterion based on an observed and estimated
present system state and threat exposure.

The main objective of the method presented in this paper is
to identify the preventive operational strategy with the lowest
expected socio-economic cost according to the framework
presented in [4]. The socio-economic costs are given by:

Π = min
p∈P

S(p | C, U). (1)

Where S(p | C, U) is the system operation cost for a preven-
tive strategy p, given a set of uncertainties, U and corrective
actions, C. The set of uncertainties can include variation in
load, generation price, contingency, etc. Uncertainties related
to contingencies based on line outages is the focus of this
paper. The cost of an operational strategy is given by:

S(p | C,U) = D(p,U) +
∑
u∈U

ρu min
c∈C

C(p, u, c). (2)

Where D is the dispatch cost and C is the corrective operation
cost for each realization of the uncertainty u. The expected
operational cost is found by using the probability ρu for the
realization of the uncertainties and assuming that the least-cost
corrective measure is chosen for each of these realizations.

The operational cost includes system protection schemes
(SPS) failures by weighing the cost of the system response
with and without successful SPS activation using the prob-
ability of successful SPS γc as shown in (3), where no
corrective action is indicated by c0, and a contingency, f , is
the realization of the uncertainty:

C(p, f, c) = γcR(p, f, c) + (1− γc)R(p, f, c0). (3)
R(p, f, c) = FCR(p, f, c) + SPS(c)

+ CENS(p, f, c) +BAL(p, f, c). (4)

The system response cost includes the cost of frequency
containment reserves (FCR), SPS activation, cost of energy not
supplied (CENS) and balancing BAL (4). Here, FCR and SPS
are obtained from time-domain simulations, while CENS and
BAL are obtained using two variations of static DC Optimal
Power Flow (OPF) models as explained in detail in [4].

B. Graph Convolutional Neural Networks

Data is often represented in the form of graphs which
conveys relations between entities, from social networks to
power systems. Neural networks that exploit and adapt to these
relations have increased in popularity, and generalizations of
methods such as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) to the non-Euclidean space
have seen rapid advancement [18]. A GCN is a type of GNN
which generalize the convolutional operation in a CNNs to
work on graph data [19]. Thus a GCN benefit from the
convolutional operation in a CNN applied to data such that
relations are preserved, e.g. to incorporate information about
the relationship between units in a power system topology.

Entities and relations are in this paper referred to as nodes
and edges in a graph, respectively. In the Graph Network (GN)
framework developed in [20] a graph, G, consists of global
attributes, ϑ, and a set of nodes, V = {v1, v2, ..., vn}, which
are connected by edges, E = {e1, e2, ..., em}, as illustrated
in Fig. 1. An edge is represented as a connection between a
pair of nodes, e = {vi, vj}. If multiple edges are assigned to
the same nodes, the graph is referred to as a multi-graph, and
contains a mapping ϕ : E → {{i, j} : i, j ∈ V }, as shown
in (5).

G = {ϑ, V,E,ϕ}. (5)
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Fig. 1. Left: Illustration of a graph input (left) with nodes, V , connecting
edges, E, subject to a global attribute, ϑ. Right: Demonstration of propagation
in a graph convolutional network (GCN) layer (upper) and a fully connected
(FC) layer (lower).

The foundation of GCN is that nodes in a new layer
are represented by aggregating information from neighboring
nodes in the previous layer. This differs from fully connected
networks with all-to-all relations where each node gathers
information from all nodes in the previous layer, as illustrated
in Fig. 1. The restriction in information gathering per con-
volutional layer isolates the most relevant information for the
task [20].

III. METHOD

The main purpose of the method proposed is to use machine
learning to identify near socio-economic optimal preventive
strategies. Two GCNs models are trained to achieve this.
A classification method is trained to identify operational
strategies with expected low costs, to separate out operational
strategies which have very high costs from those with more
moderate costs. A regression model is then trained to predict
the dispatch and operation costs for the low cost strategies.
The operation cost for high cost scenarios is set to a fixed
representative value since it is more important to know the
value of the low cost scenarios accurately. This two-step
approach avoids that the regression model used to predict the
dispatch and operation costs must take into account the more
extreme values found in the prohibitively high costs outcomes,
and is expected to yield more accurate estimates for the low
cost scenarios.

A. Data generation

The power system used in this paper is depicted in Fig. 2.
The training data is generated by running the dynamic model
described in [4] on a power system based on [21], which is
inspired by three market areas in the Nordic power system1.
The preventive strategies, P , consists of 1401 transmission

1A fourth area is connected by a single HVDC link. This is considered part
of one of the other areas in this study.
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Fig. 2. Simple representation of the three area network. The figure illustrates
the three market areas, inter-line connections, and the three generators and
loads that are disconnected as an SPS measure in this study. Figure from [4].

capacities between the market areas, the set F consists of
single line contingencies of the lines between the market areas,
and generators and loads depicted are included as possible SPS
measures.

Data was generated with the following procedure:
• Choose preventive strategy, p ∈ P .
• Solve OPF based on preventive strategy, p.
• Simulate selected contingencies, f ∈ F , using time-

domain simulations.
• If the system response does not violate the set conditions:

1) Report system operational costs.
• If the system response violates the set conditions:

1) Simulate each SPS measure in C using time-domain
simulation, and report system operation costs.

Each scenario, with a given preventive strategy, contingency,
and corrective action, is an instance represented by a graph,
(5), where V contains area-specific attributes, E contains
information on the inter-area lines, and u contains the system
operational cost for the scenario. All costs are given in per-unit
(p.u.) values which are relative to the OPF solution without
preventive measures.

Our dataset consists in per-unit (p.u.) values which are
of 7953 scenarios, with scenarios based on 1401 preventive
strategies, 3 corrective actions, and 4 possible line contingen-
cies.

B. Model predictions

The aim is to predict the total system operation cost given
a preventive strategy, p ∈ P , a contingency, f ∈ F , and
corrective action c ∈ C as seen in (2). This is done by using
the machine learning model to estimate the predictors D̂ and
Ĉ for D(p,U) and C(p, u, c) respectively.

Only the initial OPF solution is required for prediction with
the GCN model. The idea is for the model to replace the time-
domain simulations during screening so that only the initial
OPF is required at prediction time.

C. Model set up and training

The model is trained on data from the time-domain sim-
ulation but there is no guarantee that it will adhere to all
physical constraints captured by the time-domain simulations.
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TABLE I
NODE ATTRIBUTES

Attribute Description

PG
i Production in area i prior to contingency.

Psys Inter area flow for the whole system, prior to contingency.
isSPSi 1 if SPS measure activated in area. Else, 0.
isF1,i 1 if fault in line 10, 11 or 18 and area connected to line. Else, 0.
isF2,i 1 if fault in line 19 and area connected to line. Else, 0.

Input

GCN Layer GCN Layer GCN Layer

Output

Ŷ

Fig. 3. Network architecture for both classification and regression.

The power system is represented by graphs with X ∈ Rmxn

containing node features X = (X1, X2, ..., Xn) as listed in
Table I. One-hot encodings are used to model SPS measures
and line contingencies. Two features are added to differentiate
between faults on Line 18 and Line 19, since they are
connected to the same nodes.

The edge weights are set based on the undirected power
flow on the relevant line prior to contingency:

ϕijk =

{
pijk, (i, j, k) ∈ L
0, otherwise

(6)

where ϕijk is the kth line between area i and j. L is the
set of lines in the system. The adjacency matrix is given by:

Aij =

{ ∑
k ϕijk, (i, j) ∈ L

0, otherwise
(7)

The propagation rule described in [22] is used in this study,
which can be expressed in a simplified form without self-
connections as:

H l+1 = ReLU(D̃− 1
2AD− 1

2H(l)W (l)). (8)

X is the node feature matrix, H0 = X , A is the adjacency
matrix, l is the layer number, D is the diagonal matrix,
where Dii =

∑
j Aij . The standard Rectified Linear Unit

activation function, ReLU(x) = max(0, x), is applied. The
same architecture is applied for both the classification and
regression models which are shown in Fig. 3 with three hidden
layers each applying the convolution in (8) followed by a
linear transformation for the regression model and a Sigmoid
transformation for the classification. Hyperparameters for the
classification and regression models is given in Table II.

100 101

Total cost (p.u.)

10 2

10 1

100

101

Fr
eq

ue
nc

y

Fig. 4. Histogram of the cost distribution in the data. All costs are given
relative to the OPF solution without preventive measures. The vertical lines
indicate the low-high cost threshold, thr = 1.3, and the maximum cost value
at which the regression data are fitted, Smax = 1.45.

1) Classification model: The classification model is trained
with a binary logistic loss function. The low and high cost
classes are defined by a chosen threshold cost value, thr. There
is a gap in the simulated costs used in the training process seen
in Fig. 4 around 1.3 p.u. which is used to distinguish between
classes. This split leads to imbalanced data, as the majority of
scenarios are categorized as low cost. To prevent biasing the
model, class weights are introduced. This increases the penalty
for misclassification of the minority class. The class weights
are set based on the ratio of observations in each class.

Classification models predict the probability of each in-
stance belonging to a class. For two-class models, it is standard
to use a threshold of 0.5 between the classes. However, in
many cases, better performance can be obtained by adjusting
the threshold used for predictions after training. This may help
to unbias a model in addition to training with class weights.
The post-training probability threshold is chosen such that it
maximizes the F2-score, giving more weight to the recall [23]:

F2 =
TP

TP + 0.2FP + 0.8FN
(9)

where TP , FP , and FN are the true positive, false positive,
and false negative predictions respectively.

2) Regression model: The regression model has a dual
output and predicts both dispatch and correction costs indi-
vidually. The regression model is used to predict the cost of
scenarios already classified as low cost and is only trained on
scenarios with a true cost lower than Smax. However, some
scenarios may be mis-classified, and hence based on Fig. 4
scenarios with a total cost up to Smax = 1.45 is included.
Apart from this, the training data are the same as for the
classification model.

3) Training: The data is split into training (70%), validation
(10%), and test samples (20%). All scenarios for a given
preventive strategy are needed to compute the expected cost
in (2), thus the data is split into preventive strategies rather than
individual scenarios. Hence the test set contains all possible
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Fig. 5. The confusion matrix for the classification model.

scenarios for the included preventive strategies. The same split
is used for both models but the regression model is only trained
and evaluated on scenarios with a total cost less than Smax.

Early stopping, where the training is stopped if the valida-
tion performance does not increase over 10 training epochs,
is applied to prevent overfitting. Additionally, learning rate
decay is set to 95%, which reduces the learning rate on the fly
during training. Other hyper-parameters include initial learning
rate, hidden channels, and dropout rate. These parameters are
tuned with a search over 50 randomly sampled combinations,
in order to find optimal parameters for each model. Table II
provides a description of all model parameters as well as the
chosen values for the two models.

IV. RESULTS

A. Classification model

For the trained model, the post-training classification prob-
ability leading to the maximal F2 score is γ = 0.56. With
this threshold, the classification model obtains an accuracy of
98.1% on the test data and the confusion matrix given in Fig. 5.
It can be seen that the accuracy, precision, and recall are high.

B. Regression model

Fig. 6 shows the true and predicted output values for the
regression model on the test data. Evaluated on the true low
cost scenarios, the normalized root mean square error (RMSE)
for the model is 0.00015 for the dispatch cost, and 0.00336
for the corrective cost. The model has best performance on
the dispatch cost, whereas the corrective cost is accurately
predicted for low cost scenarios, but under-estimated for
scenarios with high corrective costs. The corrective cost for
scenarios classified as high cost is replaced with the median
of corrective costs for the true high cost scenarios. This value
will in many cases over-estimate the corrective cost, but only
for scenarios already classified as less interesting.

By using (2) the expected cost of preventive strategies is
calculated using output from the regression model (input with
the median corrective cost values for the high cost scenarios).
In Fig. 7 the total costs is plotted against the power flow
on Line 10 and Line 11, with ρf = 0.01. The true values
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Fig. 6. The predicted versus true values for the regression model on the
training dataset (upper panels) and test data-set (lower panels). Extreme
outliers are removed but show the same trend.

are labeled as N-1 safe or not N-1 safe based on whether
the contingencies lead to interruptions and associated CENS.
There is a reduction of expected cost with increasing power
flow on the line up until 60 MW on Line 10 and 150 MW on
Line 11. Above those values the risk of energy not supplied
increases, leading to some scenarios and preventive strategies
being classified as high costs with consequent high predictions
of total system operation cost.

The model shows the ability to identify the range of
preventive strategies close to the least-cost strategy shown in
Fig. 7, as well as provide information on which contingencies
contribute to the highest costs.

V. CONCLUSION AND FURTHER WORK

A graph convolutional network (GCN) based method for
power system operational planning is implemented in this
work. The methodology consists of one GCN classifier model
for labeling low and high cost scenarios and a GCN regression
model for predicting the cost of low cost scenarios. Training
data for the models are obtained from a dynamic programming
model with time-domain simulations that capture situations
that normally go undetected by traditional static methods. The
model is used in an illustrative case study on a test network
inspired by the Nordic power system.

High cost scenarios affect the regression model’s ability to
detect low cost scenarios. Therefore, the classification model is
first used to filter out high cost scenarios before the regression
model predicts the dispatch and corrective cost for each
scenario. While the predictions are not perfect, the framework
can be applied for the identification of near-optimal preventive
strategies and thereby significantly reduce the sample space
where one has to run time-domain simulations. Reducing the
amount of time-domain simulations is important to make that
type of detailed simulation applicable in practical operations.
The effect of additional load scenarios with more variation
should be explored in further work.
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TABLE II
MODEL PARAMETERS

Parameter Description Classification Regression

Layers Number hidden layers 3 3
Hidden channels Number of neurons in each hidden layer 29 41
Loss Loss function for gradient descent BCEWithLogits MSE
Epoch Number of times a model is trained on a data set 80 100
Learning rate Initial learning rate determining the step size in updates 0.0009 0.0035
Learning rate decay Rate at which learning rate decreases per epoch 0.95 0.95
Dropout rate Rate that decides number of neurons randomly nullified in each training epoch 0.1 0.25
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Fig. 7. The total system operation cost against power flow on Line 10 (left) and Line 11 (right) for ρf = 0.01.
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