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CNN-XGBoost fusion-based
affective state recognition using
EEG spectrogram image analysis
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Recognizing emotional state of human using brain signal is an active research domain with several
open challenges. In this research, we propose a signal spectrogram image based CNN-XGBoost fusion
method for recognising three dimensions of emotion, namely arousal (calm or excitement), valence
(positive or negative feeling) and dominance (without control or empowered). We used a benchmark
dataset called DREAMER where the EEG signals were collected from multiple stimulus along with
self-evaluation ratings. In our proposed method, we first calculate the Short-Time Fourier Transform
(STFT) of the EEG signals and convert them into RGB images to obtain the spectrograms. Then

we use a two dimensional Convolutional Neural Network (CNN) in order to train the model on the
spectrogram images and retrieve the features from the trained layer of the CNN using a dense layer
of the neural network. We apply Extreme Gradient Boosting (XGBoost) classifier on extracted CNN
features to classify the signals into arousal, valence and dominance of human emotion. We compare
our results with the feature fusion-based state-of-the-art approaches of emotion recognition. To

do this, we applied various feature extraction techniques on the signals which include Fast Fourier
Transformation, Discrete Cosine Transformation, Poincare, Power Spectral Density, Hjorth parameters
and some statistical features. Additionally, we use Chi-square and Recursive Feature Elimination
techniques to select the discriminative features. We form the feature vectors by applying feature
level fusion, and apply Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost)
classifiers on the fused features to classify different emotion levels. The performance study shows
that the proposed spectrogram image based CNN-XGBoost fusion method outperforms the feature
fusion-based SVM and XGBoost methods. The proposed method obtained the accuracy of 99.712% for
arousal, 99.770% for valence and 99.770% for dominance in human emotion detection.

Emotion is fundamentally related to the way people interact with each other as well as with the devices. A human
being can infer another human being’s emotional state, through verbal communication, facial expressions!, body
language, and act in any specific situation. On the other hand, machines have no understanding or features related
to emotions. Yet, people are heavily dependent on the technology and the technology has become a part of our
daily life. In this respect, emotion recognition, especially through using brain signals, is an active area of research
with several open challenges. This area of research is commonly known as Brain Computer Interfacing (BCI).

Up to now some BCI systems make use of brain functions to exchange information and operate devices
without requiring neuromuscular brain production pathways?. BCI based approaches are being continuously
improved through using better feature extraction, band extraction, scaling, and classification models and by using
low cost devices such as wearable devices for the day to day activities®. Approaches using Electroencephalogram
(EEG) signals for emotion identification have problems surrounding the induction of emotional states and the
extraction of traits for optimal classification. Approaches based on EEG signals use expensive medical graded
equipment, which makes brain signal analysis on daily basis unfeasible®. The neural network-based approaches
which uses visual and audio inputs typically lacks accuracy, due to consistency deviation of human emotion over
voice and expression, and will not bring high-end results. These techniques are not effective for reticent people
with physical disabilities when they are unable to articulate their feelings or to interact fully*.

In this study, we aim at recognising human emotion through using EEG signals. We focus on recognising
three dimensions of emotion. These are arousal (calm or excitement), valence (positive or negative feeling) and
dominance (without control or empowered). We used a publicly available DREAMER? dataset consisting of EEG
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signals tested on multiple stimulus along with self-evaluation ratings. In our proposed spectrogram image-based
2DCNN-XGBoost fusion approach, we calculate the Short-Time Fourier Transform (STFT) of the existing EEG
signals from the dataset and convert them into RGB images for further image processing. The key contributions
of the proposed method are:

1. Analysis of the RGB spectrogram images of EEG signals: We calculate the STFT of the EEG signals and
convert them into RGB spectrogram images in order to extract features using a 2D Convolutional Neural
Network (CNN). We use the 2DCNN layers to train the model using the obtained spectrogram images and
another dense layer to retrieve the trained features.

2. Extracting more relevant features: Fast Fourier Transformation, Discrete Cosine Transformation, Poincare,
Power Spectral Density, Hjorth parameters, and some statistical features are among the feature extraction
strategies used in this study for comparison with our suggested method. The Chi-square and Recursive
Feature Elimination strategies are also used to select discriminative features. As previously stated, we extract
features from the 2DCNN layer using spectrogram images of the EEG signals. This results in more relevant
and useful features.

3. Performance study on the DREAMER dataset: We use the DREAMER dataset for testing our proposed
method (i.e., Fig. 1) and comparing it against the existing solutions. In our 2DCNN-XGBoost fusion-based
approach, we generate the spectrogram images and retrieve the features from the training layer of 2DCNN to
use them for further classification using XGBoost. As a result, we achieved a very high accuracy of 99.712%
for arousal, 99.770% for valence, and 99.770% for dominance using this method.

“Related works” dives into the related study of different techniques for affect detection and classification models.
“Proposed method” describes the proposed method and the procedures used in the current study. “Results and
discussion” presents the findings and performance of our proposed method, along with the best approach derived
from our method. “Conclusion” finishes the report with an overview of the entire experiment and its prospects.
Section 6 provides information on data availability.

Related works

There are numerous methods for detecting emotions from brain signals. Various approaches were employed to
influence data collection, such as facial expressions, peripheral physiological signs, and many more. Furthermore,
pattern recognition algorithms for impact recognition involve collecting data on an individual’s emotional state
in the brain while expressing an emotion. Emotion has an essential role in interpersonal connection and cor-
respondence between people. Affective computing employs various emotion recognition models and explains
numerous hypotheses about how emotions develop. Because of exponential progress in machine learning, deep
learning, and countless real-world applications, EEG data processing for emotion identification has enriched
in recent years.

Given the growing interest in affective computing and emotional state recognition, Katsigiannis et al.> pro-
posed DREAMER, a database for measuring emotions evoked by audio-visual stimuli. Each participant rated
their emotional response on the valence, arousal, and dominance scales after watching each of the 18 video
stimuli designed to evoke specific emotions. In addition, participant-specific classification tests for the valence,
arousal, and dominance scales were conducted to generate baseline findings for the proposed database in terms
of classification accuracy and F1 scores. Random voting and class ratio voting were outperformed by classifica-
tion based on EEG and ECG-based features, as well as their fusion. They also agreed with an earlier study that
employed non-portable medical devices, which can pose additional research challenges.

A new generation of emotion detection model is proposed by Tuncer et al.’, to demonstrate a highly accurate
emotion recognition system using EEG signals, a deep classifier, and hand-crafted feature construction. Pre-pro-
cessing, fusion feature synthesis with Led-Pattern and statistical feature generator, discriminative feature selection
with RFI, Chi2, and classification with SVM are the four main phases of this model using the GAMEEMO and
DREAMER datasets. The outcomes illustrate the efficacy of the proposed emotion recognition model. However,
there are several research gaps, such as a lack of more relevant features in the feature-fusion stage and a reliance
on only the SVM classifier rather than other neural network and deep learning methods.

Combining the benefits of LSTM and CNN, a deep-learning architecture is proposed by Dar et al.®, which
has proved to be effective at recognizing emotions and outperforming previous approaches. Their method is
subject-agnostic, combining two publicly available data sets (DREAMER and AMIGOS) with low-cost, wear-
able sensors to extract physiological signals suitable for real-world situations. Multimodal fusion achieves the
maximum overall accuracy for the AMIGOS and DREAMER datasets. However, the scope of the research is
limited to the decision-level fusing of modalities using majority voting.

The GCB-Net was used to recognize emotions using EEG-channel inputs by Zhang et al.”. They use a graph
convolutional layer to deal with the network-structured input before stacking numerous standard CNN layers
to abstract high-level features. They used two datasets called DREAMER and SEED to compare the efficiency of
the proposed GCB-Net. GCB-Net outperformed other models with identical settings in the DREAMER dataset.
The experiment also discovered that the GCB-Net and BLS had strong classification abilities in EEG emotion
recognition. However, the extraction of additional relevant features is lacking in this study.

To facilitate more discriminative EEG feature extraction, a novel Dynamical Graph Convolutional Neural
Network (DGCNN)-based multichannel EEG emotion recognition algorithm was proposed by Song et al.®. The
proposed DGCNN method employs a neural network to dynamically learn the underlying relationship between
multiple electroencephalogram (EEG) channels, which is represented by an adjacency matrix. The SJTU emo-
tion EEG datasets, SEED and DREAMER, are heavily used in their research. The results demonstrated that the
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DGCNN methodology beats state-of-the-art approaches in terms of recognition performance. In terms of average
valence, the suggested DGCNN beats SVM, Graph SLDA, and GSCCA on the DREAMER dataset.

Zheng et al.” used several classifiers, including K-Nearest neighbor, Support-vector machine, Graph regular-
ized extreme learning machine, DBN, and DBN-HMM in their proposed approach for analyzing EEG signals
and comparing the performance with other deep learning models. The experimental results showed that the
high-frequency (beta and gamma) characteristics were associated with emotional recognition more closely, and
DBN and DBN-HMM obtained the most reliable results.

Using a dataset from the International Affective Picture System, Bhardwaj et al.!® extracted features from
EEG signals by using Power Spectral Density and Energy. Data pre-processing was done by using segmenta-
tion, Band-pass filtering, and Independent Component Analysis before features were extracted (ICA). Finally,
EEG signals were classified into seven different emotions using machine learning approaches including Linear
Discriminant Analysis (LDA) and Support Vector Machine (SVM).

Human emotion is classified using EEG signals in research®, where audiovisual stimulation dependent pro-
tocols were designed to obtain EEG signals using 63 sensors. Using a neural network, the authors studied the
EEG signals by means of a Discrete Transformation and grouped them into five frequency sub-bands using the
‘db4’ Wavelet Transformation, while two statistical characteristics were derived from the alpha band. The study
showed that the audio visual feedback performed better than the visual stimulation.

Another study*! compared auditory and visual elicitors for emotional prediction. The data was obtained from
24 participants, including facial electromyography, electroencephalography, skin conductivity, and respiratory
data, from various physiological signals for six selected emotions. The authors employed two methods of data
mining which are decision rules and K-nearest neighbor and extracted the features from physiological meas-
urements. When it came to prediction accuracy, there were no clear cultural differences between Chinese and
Indian participants. These findings suggested to the authors that auditory stimuli can be better understood as
emotional elicitors, which could have implications for HCI applications.

A novel approach for understanding emotions from EEG signals is suggested by Paul et al.'>. Eight stable
participants were used for data collection, and the EEG signals were collected by seven EEG amplifier chan-
nels. Multi-fractal Detrended Fluctuation Analysis (MFDFA) approach is used to extract the features from each
channel for the entire frequency bands. Authors implemented some efficient classifiers including Support Vector
Machine, Linear Discriminant Analysis, Quadratic Discriminant Analysis, and K Nearest Neighbor.

Empirical mode of decomposition is used in research'® for emotional identification using EEG signals. The
dataset of the channelled BIOPAC laboratory device was obtained and EEG signals were gained from a capacity
of 13 women and 13 men for 12 nice and 12 frustrating images. Empirical Mode Decomposition (EMD) has
been used to test nonlinear and also the non-stationary time series that have interrupted the signal into IMFs.
The authors used different Classifiers—SVM, LDA, Naive Bayes to classify pleasant and unpleasant emotions
and compared their performances. In short, the authors found that SVM provides a better solution by using
EMD methods from EEG signals.

The emotion detection of EEG brain signals using the Support Vector Machine (SVM) is discussed in Ref.!*
and the authors have used emotional stimuli from the International Affective Picture System. The study rec-
ognized five kinds of feelings, such as happy, relaxed, optimistic, sad, and frightened. Implemented a feature
extraction process. Via SVM, the combined feature set of all subjects was processed. The findings showed that
70% correct in emotion detection in the arousal-valence domain among more than 30 samples.

Different machine learning algorithms were applied to describe the emotion as a psychological measure in
research!®. The authors suggested an approach to describe the various kinds of estimations with better precision
in humans. The authors extracted several features from EEG brain signals and used the correlation matrix, the
data benefit assessment and the recursive process of eliminating features to refine the collection of features. Then
the Extreme Gradient Boosting algorithm (XGBoost) was used as the classification technique. The DEAP data
set was used as a checked method, and numerous classification algorithms including Naive Bayes, KNN, C4.5,
Decision Tree, Random Forest algorithms were used in relation to the proposed solution. The DEAP algorithm
is based on the structure of gradient boosting and follows linear model solver and tree learning.

In summary, in earlier studies, statistical features, frequency domain features, and time domain features have
been extracted, which needed additional domain expertise and the requirement to understand the impact of a
particular feature for classifying arousal, valence, and dominance. However, in our proposed method, we directly
generate spectrogram images from the raw EEG signals and extract both the shallow and depth-level image
features for affective state classification. We observed that the spectrogram image contains more discriminative
properties for classifying arousal, valence, and dominance.

Proposed method

Figure 1, illustrates the proposed method, which is generally divided into two segments. On the left, we take
a feature fusion-based approach, emphasizing signal processing on the acquired dataset by denoising it with a
band pass filter and extracting alpha, beta, and theta bands for further processing. Numerous features have been
extracted from the extracted bands. Feature extraction methods include the Fast Fourier Transform, Discrete
Cosine Transform, Poincare, Power Spectral Density, Hjorth parameters, and some statistical features. The Chi-
square and Recursive Feature Elimination procedures were used to choose the discriminative features among
them. Finally, we utilized classification methods such as Support Vector Machine and Extreme Gradient Boosting
to classify all the dimensions of emotion and obtain accuracy scores. On the other hand, we take a spectrogram
image-based 2DCNN-XGBoost fusion approach, where we utilize a bandpass filter to denoise the data in the
region of interest for different cognitive states. Following that, we performed the Short-Time Fourier Trans-
form and obtained spectrogram images. To train the model on the retrieved images, we use a two-dimensional
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Convolutional Neural Network (CNN) and a dense layer of neural network to obtain the retrieved features from
CNN’s trained layer. After that, we utilized Extreme Gradient Boosting to classify all of the dimensions of emotion
based on the retrieved features. Finally, we compared the outcomes from both approaches.

Data description. In the proposed method (i.e., Fig. 1), we have used the DREAMER?® dataset. Audio and
video stimuli were used to develop the emotional responses of the participants in this dataset. This dataset
consists of 18 stimuli tested on participants, and Gabert-Quillen et al.' selected and analyzed them to induce
emotional sensation. The clips came from several films showing a wide variety of feelings. Two of each film cen-
tered on one emotion: amusement, excitement, happiness, calm, anger, disgust, fear, sad, and surprise. All of the
clips are between 65 and 393 seconds long, giving users plenty of time to convey their feelings'”'®. However, just
the last 60 s of the video recordings were considered for the next steps of the study. The clips were shown to the
participants on a 45-inch television monitor with an attached speaker so that they could hear the soundtrack and
put them to the test. The EEG signals were captured with the EMOTIV EPOC, a 16-channel wireless headset.
Data from sixteen distinct places were acquired using these channels. The wireless SHIMMER ECG sensor pro-
vided additional data. This study, however, focused solely on EEG signals from the DREAMER dataset.

Initially, the data collection was performed for 25 participants, but due to some technical problems, data
collection from 2 of them was incomplete. As a result, the data from 23 participants were included in the final
dataset. The dataset consists of signals from trail and pre-trail. Both were collected as a baseline for each stimuli
test. The data dimension of EEG signals from the DREAMER dataset is shown in Table 2.

Signal pre-processing. EEG signals usually have a lot of noise in them. As a result, the great majority of
ocular artifacts occur below 4 Hz, muscular motions occur above 30 Hz, and power line noise occurs between
50 and 60 HZ. For a better analysis, the noise must be decreased or eliminated. Additionally, to work on a spe-
cific area, we must concentrate on the frequency range that provides us with the stimuli-induced signals. The
information linked to the emotion recognition task is included in a frequency band ranging from 4 to 30 Hz*. We
utilized band pass filtering to acquire sample values ranging from 4-30 Hz to remove the noise from the signals
and discover the band of interest.

Band pass filter. 'The band-pass filter is a technique or procedure that accepts frequencies within a specified
range of frequency bands while rejecting any frequencies above the frequency of interest. The bandpass filter
is a technique that uses a combination of a low pass and a high pass filter to eliminate frequencies that aren’t
required. The fundamental goal of such a filter is to limit the signal’s bandwidth, allowing us to acquire the signal
we need from the frequency range we require while also reducing unwanted noise by blocking frequency regions
we won't be using anyway. In both sections of our proposed method, we used a band-pass filter. On the feature
fusion-based approach, we used this filtering technique to filter the frequency band between 4 and 30 Hz, which
contains the crucial information we require. This helps in the elimination of unwanted noises. We've decided to
divide the signals of interest into three more bands: theta, alpha, and beta. These bands were chosen because they
are the most commonly used bands for EEG signal analysis. The defining of band borders is somewhat subjec-
tive. The ranges that we use in our case are theta ranging between 4 and 8Hz, alpha ranging between 8 and 13
Hz, and beta ranging between 13 and 20 Hz. For the 2DCNN-XGBoost fusion-based approach, using this filter
technique, we filtered the frequency range between 4 and 30 Hz, which contains relevant signals and generated
spectrum images. Here the spectrograms from the signals were extracted using STFT and transformed into RGB
pictures.

Feature extraction. After pre-processing, we have used several feature extraction techniques for our fea-
ture fusion-based and the 2DCNN-XGBoost fusion-based approach that we discussed below:

Fast Fourier transform. Fast Fourier transform is among the most useful methods for processing various
signals'®-?*. We used the FFT algorithm to calculate a sequence of Discrete Fourier Transform. The FFT stems
are evaluated because they operate in the frequency domain, in the time or space, equally computer-feasible. The
O(NlogN) result can also be determined by the FFT. Where N is the length of the vector. It functions by split-
ting a N time-domain signal into a N time domain with one single stage. The second stage is an estimate of the
N frequency range for the N time-domain signals. Lastly, the N spectrum was synthesized into one frequency
continuum to speed up the Convolutional Neural Network training phase.
The equations of FFT are shown below (1), (2):

N-1

H(p) =>  r(yWx, (1)
t=0
1 N-1

) = > Hpywy™" )
p=0

Here H,, represents the Fourier co efficients of r(t)

We have implemented this FFT to get the coefficients shown in Fig. 2. The mean and maximum features for
each band were then computed. Therefore, we get 6 features for each channel across 3 bands, for a total of 84
features distributed across 14 channels.
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Discrete cosine transformation.  This method exhibits a finite set of data points for all cosine functions at vary-
ing frequencies which is used in research?*-%%. The Discrete Cosine Transformation (DCT) is usually applied to
the coefficients of a periodically and symmetrically extended sequence in the Fourier Series. In signal process-
ing, DCT is the most commonly used transformation method (TDAC).The imaginary part of the signal is zero
in the time domain and in the frequency domain. The actual part of the spectrum is symmetrical, the imaginary
part is unusual. With the following Eq. (3) , we can transform normal frequencies to the mel frequency:

Xp = X;, COS [— (n + 7>P}, (3)
= N 2

where, N is the the list of real numbers and X, is the set of N data values

We have implemented DCT to get the coefficients shown in Fig. 3. The mean and maximum features for each
band were then computed. Therefore, we get 6 features for each channel across 3 bands, for a total of 84 features
distributed across 14 channels.

Hjorth parameters. 'The Hjorth parameter is one of the ways in which a signal’s statistical property is indicated
in the time domain and has three parameters which are Activity, Mobility, and Complexity. These parameters
were calculated in many research®-*2,

Activity: The parameter describes the power of the signal and, the variance of a time function. This can
suggest the power spectrum surface within the frequency domain. The notation for activity is given below (4),

var(y(t)). 4)

Mobility: The parameter represents the average frequency or the share of the natural variation of the spectrum.
This is defined as the square root of the variance of the first y(t) signal derivative, which is divided by the y(t).

The notation for activity is given below (5),
var(y'(t)) )
var(y(t))

Complexity: The parameter reflects the frequency shift. The parameter contrasts the signal resemblance with
a pure sinusoidal wave, where the value converges to 1 if the signal is more identical. The notation for activity
is given below (6),

mobility(y' (t))
mobility(y(t))

For our analysis, we calculated Hjorth's activity, mobility, and complexity parameters as features. Therefore,
we get 9 features for each channel across 3 bands, for a total of 126 features distributed across 14 channels.

(6)

Statistical features.  Statistics is the application of applied or scientific data processing using mathematics. We
use statistical features to work on information-based data, focusing on the mathematical results of this informa-
tion. We can learn and gain more and more detailed information on how statistics arrange our data in particular
and how other data science methods can be optimally used to achieve more accurate and structural solutions.
There is multiple research®*-*> on emotion analysis where statistical features were used. The statistical features
that we have extracted are median, mean, max, skewness and variance. As a result, we get 5 features for each
channel, for a total of 70 features distributed across 14 channels.

Poincare. The Poincare, which takes a series of intervals and plots each interval against the following interval,
is an emerging analysis technique. In clinical settings, the geometry of this plot has been shown to differentiate
between healthy and unhealthy subjects. It is also used in a time series for visualizing and quantifying the asso-
ciation between two consecutive data points. Since long-term correlation and memory are demonstrated in the
dynamics of variations in physiological rhythms, this analysis was meant to expand the plot of Poincare by steps,
instead of between two consecutive points, the association between sequential data points in a time sequence.
We used two parameters in our paper which are:

SD1: Represent standard deviation from axis 1 of the distances of points and defines the width from the ellipse
(short-term variability). Descriptors SD1 can be defined as (7):

Y

2
SD1 = TSD(Pn —Pui1). (7)

SD2: The standard deviations from axis 2 and ellipse length (long-term variability) are equivalent to SD2.
Descriptors SD2 can be defined as (8):

1
SD2 = \/ 28D(P,)? — ESD(P,, = Pyi1)% (8)

We have extracted 2 features which are SD1 and SD2 from each band (theta, alpha, beta). Therefore, we get 6
features for each channel across 3 bands, for a total of 84 features distributed across 14 channels.
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Power spectral density. The Welch method is a modified segmentation system and is used to assess the average
periodogram, which is used in papers****®. The Welch method is applied to a time series. For spectral density, it
is concerned with decreasing the variance in the results. Power Spectral Density (PSD) informs us which differ-
ences in frequency ranges are high and could be very helpful for further study.The Welch method of the PSD can
usually be described by the following equations: (9), (10) of the power spectra.

2

1 M—-1
P(f)=— xi(mwmye 77| 9)
0| 2
1 L—1
P yelch (f) =E Zp(f) (10)
i=0

Here, the equation of density is defined first. Then, Welch Power Spectrum implies that for each interval, the
average time is expressed. We have implemented this Welch method to get the PSD of the signal. From that, the
mean power has been extracted from each band. As a result, we get 3 features for each channel across 3 bands,
for a total of 42 features distributed across 14 channels.

Short-Time Fourier Transform. A Convolutional Neural Network (CNN) is primarily used to process images
since the time series is converted into a time-frequency diagram using a Short-Time Fourier Transform (STFT).
It extracts required information from input images using multilayer convolution and pooling, and then classi-
fies the image using fully connected layers. We have calculated the STFT using the filtered signal, which ranges
between 4 and 30 Hz, and transformed them into RGB images. Some of the generated images are shown in Fig. 4.
To convert time series EEG signals into picture representations, Wavelet algorithms and Fourier Transforms
are commonly utilized, which we have used in our secondary process. But in order to preserve the integrity of
the original data, EEG conversion should be done solely in the time-frequency domain. As a result, STFT is the
best method for preserving the EEG signal’s most complete anesthetic characteristics, which we have used in our
second process. The spectrograms from the signal were extracted using STFT and the Eq. (11) is given below:

22" = W (m)e™™) x x(m)), "

where, e /%" is the complex bandpass filter output modulated by signal. From the above equation we have cal-
culated the STFT from the filtered signals.

Feature ratio. For our feature fusion-based approach, as we have pre-trail signals, we have used 4 s of pre-
trail signals as baseline signals, resulting in 512 samples for each at a 128 Hz sampling rate. Then similar to the
features extracted for stimuli, the features from baseline signals were also extracted. Then the stimuli features
were divided by the baseline features, in order to get only the differences which can be noticed for the feature
fusion-based approach by the stimuli test only, which is also done in the paper”.

Feature scaling. After extracting all the features and calculating the ratio between stimuli features and
baseline features, we have added the self-assessment ratings of arousal valence and dominance. Now the data set
for the feature fusion-based approach has 414 data points with 630 features for each data point. We scaled the
data using Min-Max Scaling to remove the large variation in our data set. The estimator in Min-Max Scaling
scales and translates each value individually so that it is between 0 and 1, within the defined range.

The formula for Min-Max scale is (12),

X; — Min(X)

Xpow = —————2
T Max(X) — Min(X)

(12)

Feature selection techniques. There are various feature selection techniques which are used by many
researchers, to reduce the number of features which are not needed and only the important features which can
play a big role in the prediction. So in our paper we used two feature elimination methods. One is Recursive
Feature Elimination (i.e., Fig. 5) and another one is Chi-square test (i.e., Fig. 6) .

Recursive feature elimination. RFE (i.e., Fig. 5) is a wrapper type feature selection technique amongst the vast
span of features. Here the term recursive is representative of the loop work of this method that traverses back-
ward on loops to identify the best fitted feature giving each predictor an importance score and later eliminating
the least importance scored predictor. Additionally cross-validation is used to find the optimal number of fea-
tures to rank various feature subcategories and pick the best selection of features for scoring. In this method one
attribute is taken and along with the target attribute and this procedure keeps forwarding combining attributes
and merging with the target attribute to produce a new model. Thus different subsets of features of different
combinations generate models through training. All these models are then strained out to get the maximum
accuracy resulting model and its consecutive features. In short, we remove those features which result in the
accuracy to be high or at least equal and return it back if the accuracy gets low after elimination . Here we have
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used step size of 1 to eliminate one feature at a time at each level which can help to remove the worst features
early, keeping the best features in order to improve the already calculated accuracy of the overall model.

Chi-square. Chi-square (i.e., Fig. 6) test is a filter method that states the accuracy of a system comparing the
predicted data with the observed data based on their importance. It is a test that figures out if there is any feature
effective on nominal categorized data or not in order to compare between observed and expected data. In this
method one predicted data set is considered as a base point and expected data is calculated from the observed
value with respect to the base point.

The Chi-square value is computed by (13):

Ri-Ci\2
2 - <Aij_ NJ) (13)
=22 wg

where, m is the number of intervals, k is the amount of classes, R; is the amount of patterns in the i range, Cjis
the amount of patterns in the j range, A; is the amount of patterns in i and j range.

After applying RFE and Chi-square , from the achieved accuracy we have observed that, Chi-square does not
incorporate a machine learning (ML) model, while RFE uses a machine learning model and trains it to decide
whether it is relevant or not. Moreover, in our research, Chi-square methods failed to choose the best subset of
features which can provide better results,but because of the extensive nature, RFE methods give the best subset
of features mostly in our research. Therefore we consider RFE over Chi-square for feature elimination.

Class distribution of self assessment ratings. In research?, on this data set, they have calculated the
mean and standard deviation for the self assessment. Then they have divided each dimension into two classes,
high or low. The boundary between high and low was in the mid point of (0-*5) which is 2.5. But we have
adjusted this boundary on our secondary process based on some of our observation. We have also calculated
the mean and standard deviation of self assessment ratings, shown in Table 3, to separate each dimension of
emotions into two separate classes, which will be high (1) and low (0) and will be representing two emotional
category for each dimension.

Arousal: For our 2DCNN-XGBoost fusion based approach, (ratings > 2.5) is considered in the class of
Excited/Alert and (ratings< 2.5) is considered as Uninterested/Bored (0). Here, from the 5796 data, 4200 was in
the excited/alert class (1) and 1596 was in the uninterested/bored class. For the feature fusion-based approach, We
have focused on the average ratings for excitement which co-responds to stimuli number 5 and 16, having 3.70
+0.70 and 3.35 * 1.07 respectively. Additionally for, calmness, we can take stimuli 1 and 11 into consideration
where the average ratings are, 2.26 £ 0.75 and 1.96 + 0.82 respectively. Therefore, (ratings > 2) can be considered
in the class of Excited/Alert and (ratings< 2) can be considered as Uninterested/Bored. Here, from the 414 data,
393 was in the excited/alert class and 21 was in the uninterested/bored class. We have also shown the parallel
Coordinate plot for arousal in Fig. 8a to show the impact of different features on arousal level.

Valence: For our 2DCNN-XGBoost fusion based approach, (ratings > 2.5) is considered in the class of happy/
elated and (ratings< 2.5) is considered as unpleasant/stressed. Here, from the 5796 data, 2254 was in the unpleas-
ant/stressed class and 3542 was in happy/elated class. To store this values in the new data set, unpleasant/stressed
is considered as 0 and happy/elated is considered as 1. For the feature fusion-based approach, firstly, we con-
centrated on the average happiness ratings, which correspond to stimuli 7 and 13, having 4.52 + 0.59 and 4.39 +
0.66 respectively. Additionally, stimuli (4, 15) and (6, 10) for fear and disgust were considered where the average
ratings are, 2.04 + 1.02, 2.48 £ 0.85, 2.70 + 1.55 and 2.17 + 1.15 respectively. Here, it is clear that, ratings > 4 can
be considered in the class of happy/elated and ratings< 4 can be considered as unpleasant/stressed. Here, from
the 414 data, 359 was in the unpleasant/stressed class and 55 was in happy/elated class. To store this values in the
new data set, unpleasant/stressed is considered as 0 and happy/elated is considered as 1. We have also shown the
parallel Coordinate plot for valence in Fig. 8b to show the impact of different features on valence level.

Dominance: For our 2DCNN-XGBoost fusion based approach, Same approach is followed here with low
and high classes. Here, ratings> 2.5 in the class of helpless/without control and ratings< 2.5 can be considered
for the class of empowered. Here, from the 5796 data, 1330 was in the helpless/without control class and 4466
was in empowered class. To store this values in the new data set, helpless/Without Control is considered as 0
and empowered is considered as 1. For the feature fusion-based approach, we have targeted stimuli number 4,6
and 8 which has targeted emotions of fear, disgust and anger, having mean rating of 4.13 + 0.87, 4.04 + 0.98 and
4.35 + 0.65 respectively. So, ratings> 4 in the class of helpless/without control and rest for the class of empow-
ered. Here, from the 414 data, 65 was in the helpless/without control class and 349 was in empowered class. To
store this values in the new data set, helpless/Without Control is considered as 0 and empowered is considered
as 1. We have also shown the parallel Coordinate plot for dominance in Fig. 8c to show the impact of different
features on dominance level.

The overall class distribution for arousal, valence and dominance is shown in the Fig. 7.

Training through a deep Convolutional Neural Network. Convolutional Neural Network (CNN) is
a type of deep neural network used to analyze visual imagery in deep learning. Figure 9, represents the overall
two-dimensional Convolutional Neural Network model used in our proposed method (i.e., Fig. 1), which is also
our 2DCNN-XGBoost fusion approach. We generated spectrum images before using this CNN architecture by
filtering the frequency band containing significant signals between 4 and 30 Hz. Following that, we compute the
Short-Time Fourier Transform of the EEG signals and convert them to spectrogram images before extracting
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features with a 2D Convolutional Neural Network. We train the model with 2D convolutional layers using the
obtained spectrogram images, and then retrieve the trained features from the training layer with the help of
another dense layer. We have implemented the test-bed to evaluate the performance of our proposed method.
The proposed model is trained using the Convolutional Neural Network (CNN) described below,

Conv2D layer. Basic features such as horizontal and diagonal edges are usually extracted by the first layer. This
information is passed on to the next layer, which is responsible for detecting more complicated characteristics
such as corners and combinational edges. As we progress deeper into the network, it becomes capable of recog-
nizing ever more complex features such as objects, faces, and so on.The classification layer generates a series of
confidence ratings (numbers between 0 and 1) on the final convolution layer, indicating how likely the image is
to belong to a class. In our proposed method, we have used three layers of Conv2D and identified the classes.

Pooling layer. The pooling layer is in charge of shrinking the convolved features spatial size. By lowering the
size, the computer power required to process the data is reduced. Pooling can be divided into two types: aver-
age pooling and max pooling. We have used max pooling because it gives a better result than average pooling.
We found the maximum value of a pixel from a region of the image covered by the kernel using max pooling. It
removes all noisy activations and conducts de-noising as well as dimensionality reduction. In general, any pool-
ing function can be represented by the following formula (14):

(I+1) O] U] ) U]
g = Pool(qy’,....q; ,...,q;)),qieRj , (14)

where, RJ»U) is the jth pooled region at layer 1 and Pool() is pooling function over the pooled region

Dropout layer. We added a dropout layer after the pooling layer to reduce overfitting. The accuracy will contin-
uously improve as the dropout rate decreases, while the loss rate decreases. Some of the max pooling is randomly
picked outputs and completely ignored. They aren’t transferred to the following layer.

Flatten layer.  After a set of 2D convolutions, it's always necessary to perform a flatten operation.Flattening is
the process of turning data into a one-dimensional array for further processing. To make a single lengthy feature
vector, we flatten the output of the convolutional layers. It’s also linked to the overall classification scheme.

Dense layer. Dense gives the neural network a completely linked layer. All of the preceding layer’s outputs are
fed to all of its neurons, with each neuron delivering one output to the following layer.

In our proposed method, with this CNN architecture, diverse kernels are employed in the convolution layer
to extract high-level features, resulting in different feature maps. At the end of the CNN model, there is a fully
connected layer. The predicted class labels of emotions are generated by the output of the fully connected layer.
According to our proposed method, we have added dense layer with 630 units after training layer to extracted
this amount of features.

Extreme Gradient Boosting (XGBoost). Extreme Gradient Boosting (XGBoost) is a machine learning
algorithm that use a supervised learning strategy to accurately predict an objective variable by combining the
predictions of several weaker models. It is a common data mining tool with good speed and performance. The
XGBoost model computes 10 times faster than the Random Forest model. The XGBoost model was generated
utilising the additive tree method, which involves adding a new tree to each step to complement the trees that
have already been built. As additional trees are built, the accuracy generally improves. In our proposed model, we
have used XGBoost after applying CNN. We extracted some amount of features from CNN’s trained layer. . Then,
based on the retrieved features, we used Extreme Gradient Boosting to classify all of the dimensions of emotion.
The following Egs. (15) and (16) are used in Extreme Gradient Boosting.

1
f(m) = f(k) + f'(k)(m — a) + Ef”(k)(m—k)z, (15)

n

DS {l (007" + rifetmp) + %sif,z(mi)} +Q(f) +C, (16)

i=1

where C is Constant, r; and s; are defined as,

n=ol . [ (a207), (17)
si =32§"‘”./ (zi,,%}”‘“>. (18)

After removing all the constants, the specific objective at step b becomes,
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" 1
E {rift(mi) + ismz(mi)} +Q(fr), (19)
i—1
where,
L
Q(f) =yP+ E)VX:ZJ?, (20)
=1

where m; is the input, z; stands for real value known from the training dataset, Q(f) is the complexity of the tree,
and P is the number of leaves.

Results and discussion

The DREAMER?**-8, dataset has been used to validate the proposed model. This dataset tracks the emotions
induced by audio-visual stimulation through EEG signals. Each participant rated their emotional response on
the valence, arousal, and dominance scales after seeing each of the 18 video stimuli intended to represent certain
emotions. In addition, participant-specific classification tests for the valence, arousal, and dominance scales were
conducted in order to provide baseline findings for the proposed database in terms of classification accuracy and
F1 scores. However, because the data set had not been preprocessed, we had to process it ourselves. In the dataset,
as there were 23 subjects tested on 18 stimuli with the 14-channel device at a 128 Hz sampling rate, the duration
of the recorded signal was 65-393, resulting in an unequal number of sample points. We have just used the final
60 s of the recorded signal in this case. We obtained 7680 points for 60 s of signal at a sample rate of 128 Hz.
Furthermore, because there were pre-trail signals in the dataset as a baseline for each stimulus, we only chose 4 s
of data from it. So we have 512 pre-trail sample points for 4 s of data at 128 sampling rate. Then we divided each
channel into 3 separate bands, which are theta, alpha, and beta. From the extracted band, we have performed
feature extraction techniques on both feature fusion and the 2DCNN-XGBoost fusion-based approach.

For our feature fusion-based approach, we have used FFT, DCT, Poincare, PSD, Hjorth parameters and
some statistical features resulting a total of 630 features from 14 channels for each stimuli test and also for each
baseline. After extracting the features, we calculated the ratio between the features from stimuli and baseline for
our secondary process only, to get the actual feature values which is affected by the stimuli.Then we have used
Chi-square and RFE technique. Here we observed that the RFE technique increased the accuracy of the model.
Then we have directly moved to the machine learning algorithms on the final dataset consisting of 414 data from
23 subjects tested on 18 stimuli. For that, firstly, we have used SVM with RBF kernel to test our model on our
secondary model. Here, we have also used 10 fold cross validation to calculate the minimum, mean and maximum
accuracy of the prediction and showed in Table 4 and Fig. 10. Then we have also used Extreme Gradient Boosting
on the final dataset. Here, we have performed 10 fold cross validation for all the dimensions(arousal, valence,
dominance) to calculate the minimum, mean and maximum accuracy of the prediction and showed the range
and variation between the minimum, mean and maximum in Table 5 and Fig. 11.

On the other hand, our 2DCNN-XGBoost fusion-based approach from our proposed method performs well
on our data set and yields the best results. We have filtered the frequency band between 4 and 30 Hz, which
contains significant signals,and generated spectrum images using this filter technique. The spectrograms from
the signals were extracted and converted to RGB images using STFT. Here RGB is a virtual image which is a
matrix of pixel values with three planes.Each layer creates many activation functions that are passed onto the
next layer input an image into a ConvNet such as Conv2D layer, pooling layer, dropout layer, flatten layer, dense
layer accordingly. Here we have added dense layer with 630 units after training layer to extracted this amount
of features. Finally we have used the features extracted from the trained layer of 2DCNN and used XGBoost
algorithm for classification. The results that we have focused on the accuracy score and the AUC score of all three
dimensions of emotions which are arousal, valence and dominance. Here AUC is a model where true positive
and true negative are better predicted. The overall area beneath the ROC curve is measured by the AUC. The
overall accuracy and AUC results are shown in Table 6.
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Study Methodology Target Accuracy
High/low arousal 62.17% (A)

Katsigiannis et al.® Statistical features, SVM High/low valence 62.49% (V)
High/low dominance 61.84% (D)

High valence-high arousal

Dar et al® LSTM + CNN High valence-low arousal | g g,
Low valence-high arousal

Low valence-low arousal

High/low arousal 94.58% (A)
Tuncer et al.® Textural, statistical and fused features, SVM | High/low valence 94.44% (V)
High/low dominance 92.86% (D)
High/low arousal 89.32% (A)
Zhang et al.” GCB-Net High/low valence 86.99% (V)
High/low dominance 89.20% (D)
High/low arousal 84.54% (A)
Song et al.® DGCNN High/low valence 86.23% (V)
High/low dominance 85.02% (D)
High/low arousal 99.712% (A)
Proposed method Spectrogram features, 2DCNN + XGBoost | High/low valence 99.770% (V)
High/low dominance 99.770% (D)

Table 1. Comparison with state-of-the-art related work on DREAMER dataset. A, V and D represent arousal,
valence and dominance respectively.

We have also shown the confusion matrix in Fig. 12 for all the dimension of emotion which are arousal,
valence and dominance in order to show how much our hybrid model of 2DCNN features and XGboost clas-
sification fusion can differentiate between true positive, false positive and true negative and false negative.

For the performance study and overall overview of the results obtained from different approaches, we com-
pared the results of our spectrogram image-based 2DCNN-XGBoost fusion approach and feature fusion-based
method of extracting more relevant features and performing classification with Support Vector Machine and
XGBoost classification algorithm. In Fig. 13, we have shown the accuracy results in a chart in order to compare
between their accuracy and performance. The overall comparison between our proposed method and state-of-
the-art related work done on similar dataset are shown in Table 1.

Conclusion

Human emotional states have been identified as a challenging topic in the domain of affective computing due
to their versatility and complexity. However, we used the DREAMER dataset in the proposed method, which
comprises EEG signals recorded using a 14-channel device at a 128 Hz sample rate from 23 participants tested
on 18 distinct stimuli and their self-assessment ratings. Using this dataset, we present two approaches. The first
is a feature fusion-based method with SVM and XGBoost classifiers, and the second is a 2DCNN-XGBoost
fusion method based on spectrogram images. The combination of spectrogram image-based 2DCNN features
and the Extreme Gradient Boosting classification method provided an accuracy of 99.712% for arousal, 99.770%
for valence, and 99.770 % for dominance. This accuracy level is significantly higher than the results we obtained
from our feature fusion-based approach with the SVM classifier, which provided a mean accuracy of 94.930%
for arousal, 86.725% for valence, and 84.309% for dominance. It is also better than the results we obtained from
our feature fusion-based approach with the XGBoost classifier, which provided a mean accuracy of 95.174% for
arousal, 87.456% for valence, and 84.541% for dominance. In conclusion, our spectrogram image-based 2DCNN
features and classifying with XGBoost provided us with better results, which are significantly higher than the
results (i.e., Table 1), found in previous relevant studies done on this data set and our feature fusion-based
method. Future dimensions will also help EEG with more specific deep neural networks for greater performance
and various psychological signals.
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Figure 1. An overview of the proposed method.

Attribute Amount/details
Number of participants 25(23)
Stimuli amount 18

Video contents

Audio, video

Duration of contents 65-393 s
Age of participants 22-33
Signals EEG
Channels 14
Sampling rate 128 Hz

Rating of Valence, arousal and dominance
Range of rating 0-5
Total data (23x18) =414

» XGBoost

\4

Classification Results

Spectrogram images

(23 % 18 x 14) = 5796

Table 2. Data dimension of EEG signals from the DREAMER dataset.
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Figure 2. (a) A baseline EEG signal in time domain, (b) A baseline EEG signal in frequency domain using FFT,
(c) A stimuli EEG signal in time domain, (d) A stimuli EEG signal in frequency domain using FFT .
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Figure 3. (a) A baseline EEG signal in time domain, (b) A baseline EEG signal in frequency domain using
DCT, (c) A stimuli EEG signal in time domain, (d) A stimuli EEG signal in frequency domain using DCT.

Figure 4. EEG signal spectrograms using STFT with classification (a) high arousal, high valence, and
low dominance, (b) low arousal, high valence, and high dominance, (c) high arousal, low valence, and low
dominance.
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Stimuli Concentrated | Mean+ SD | Mean + SD | Mean + SD
Number | Emotion Valence Arousal Dominance
1 Calm 3.17+£0.72 2.26+0.75 2.09+0.73
2 Surprising 3.04+£0.88 |3.00+£1.00 |2.70+0.88
3 Amuse 457+0.73 |383+0.83 |383+0.72
4 Fear 2.04 +1.02 4.26 + 0.69 4.13 +£0.87
5 Excite 3224117 |370+£0.70 |3.52+0.95
6 Disgusting 270155 |383+0.83 |4.04+098
7 Happy 4.52+0.59 |3.17+098 |3.57+0.99
8 Angry 1.35+£0.65 |3.96+0.77 |4.35+0.65
9 Sad 1.39+£0.66 |3.00+£1.09 |3.48+0.95
10 Disgusting 217+1.15 |330+1.02 |3.61+0.89
11 Calm 3.96 +0.64 1.96 + 0.82 2.61+0.89
12 Amuse 396+0.56 |2.61+0.89 |2.70+0.82
13 Happy 4.39+0.66 |3.70£097 |3.74+0.96
14 Angry 235+0.65 |222+0.85 |2.39+0.72
15 Fear 248+0.85 |3.09+1.00 |3.22+0.9
16 Excite 3.65+0.65 |335+1.07 |3.26+1.14
17 Sad 1.52+£059 |3.00+0.74 |3.96+0.77
18 Surprising 2.65+0.78 391+0.85 3.57 +£1.04

Table 3. Mean and standard deviation of self assessment ratings of arousal, valence and dominance.
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Figure 7. Overall class distribution after conversion to a two-class rating score for arousal, valence and
dominance.
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Figure 8. Impact factor of features on (a) arousal, (b) valence and (¢) dominance using parallel co-ordinate
plot.
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Figure 9. The architecture of the implemented CNN model.

Accuracy Arousal (%) | Valence (%) | Dominance (%)
Minimum 92.857 85.366 82.927
Mean 94.930 86.725 84.309
Maximum 95.238 87.805 85.366

Table 4. Minimum, mean and maximum accuracy of feature fusion-based SVM method.

Accuracy Arousal (%) | Valence (%) | Dominance (%)
Minimum 92.857 83.333 82.927
Mean 95.174 87.456 84.541
Maximum 97.561 90.244 85.714

Table 5. Minimum, mean and maximum accuracy of feature fusion-based XGBoost method.
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Figure 10. Accuracy comparison between minimum, mean and maximum of the feature fusion-based SVM
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Figure 11. Accuracy comparison between minimum, mean and maximum of the feature fusion-based

XGBoost method.
Score Arousal (%) Valence (%) Dominance (%)
Accuracy 99.712 99.770 99.770
AUC 99.607 99.713 99.587

Table 6. Accuracy and AUC scores of arousal, valence and dominance of the suggested spectrogram image-
based CNN-XGBoost fusion method.
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Figure 12. Confusion matrix of (a) arousal, (b) valence and (c) dominance of the proposed spectrogram image
based CNN-XGBoost fusion method.
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Figure 13. Mean accuracy comparison of arousal, valence and dominance among (i) feature fusion-based SVM
method (ii) feature fusion-based XGBoost method, and (iii) the proposed spectrogram image-based CNN-
XGBoost fusion method.

Data availability
The DREAMER dataset is available at http://ahcse.uws.ac.uk/index.php?page=projects&project=dreamer.
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