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Abstract— Road safety is tackled and an intelligent deep learn-
ing framework is proposed in this work, which includes outlier
detection, vehicle detection, and accident estimation. The road
state is first collected, while an intelligent filter, based on SIFT
extractor and a Chinese restaurant process is used to remove
noise. The extended region-based convolution neural network is
then applied to identify the closest vehicles to the given driver.
The residual network will benefit from the vehicle detection
process to make a binary classification on whether the current
road state might cause an accident or not. Finally, we propose
a novel optimization model for optimizing hyper-parameters in
deep learning methodologies by using evolutionary computation.
The proposed solution has been tested using benchmark vehicle
detection and accident estimation datasets. The results are very
promising and show superiority over many current state-of-
the-art solutions in terms of runtime and accuracy, where the
proposed solution has more than 5% of improved accident
estimation rate compared to the conventional methods.

Index Terms—Deep learning, vehicle detection, accident esti-
mation, region convolution neural network, outlier detection,
smart roads.

I. INTRODUCTION

ODERN technologies such as wireless sensing, the
Internet of Things (IoT), and Machine Learning (ML)
are revolutionizing traffic management policies and making
our roads and cities smart [1]. Many applications benefited
from this revolution, i.e., road safety [2]-[4]. The ultimate
goal of such an application is to propose intelligent systems

Manuscript received 19 July 2021; revised 23 November 2021 and
10 January 2022; accepted 30 March 2022. Date of publication 14 April
2022; date of current version 5 December 2022. This work was supported
in part by the National Centre for Research and Development through the
Project Automated Guided Vehicles integrated with Collaborative Robots for
Smart Industry Perspective under Contract NOR/POLNOR/CoBotAGV/0027/
2019-00. The Associate Editor for this article was H. Lu. (Corresponding
author: Jerry Chun-Wei Lin.)

Youcef Djenouri is with SINTEF Digital, 0314 Oslo, Norway.

Gautam Srivastava is with the Department of Mathematics and Computer
Science, Brandon University, Brandon, MB R7A 6A9, Canada, and also with
the Research Centre for Interneural Computing, China Medical University,
Taichung 40402, Taiwan.

Djamel Djenouri is with CSRC, Department of Computer Science and
Creative Technologies, University of the West of England, Bristol BS16 1QY,
U.K.

Asma Belhadi is with the Department of Technology, Kristiania University
College, 0107 Oslo, Norway.

Jerry Chun-Wei Lin is with the Department of Computing, Mathematics
and Physics, Western Norway University of Applied Sciences, 5063 Bergen,
Norway (e-mail: jerrylin@ieee.org).

Digital Object Identifier 10.1109/TITS.2022.3165156

to assess accidents before they occur. Deep learning (DL) is a
trend that could help achieve this goal. Some solutions based
on DL are already proposed [5]-[7], but they are not mature
for real-world deployment due to their low accuracy. Dealing
with this problem is the subject herein, where we give an
end-to-end hybrid DL methodology for accident estimation
while targeting high accuracy and reasonable runtime.

A. Motivation

Hybrid deep learning and analytics [8], [9] is a hot topic in
intelligent transportation applications such as group anomaly
detection, object detection, and accident estimation. Vehicle
detection is the task of retrieving the cars in a given urban
road scene [10], [11]. Vehicle detection can be very useful
for accident estimation, where the detected closer vehicles of
the given car in the current road scene might be beneficial for
predicting whether the current road scene caused the accident
or not. Motivated by the success of object detection and
accident estimation models in accurately detecting the various
objects and estimating the accident, this paper presents an
end-to-end framework for accident estimation based on the
detected closer vehicles of the given car.

B. Contributions

We developed HR2CNN (Hybrid RESNET and Convolu-
tion Neural Network for Accident Estimation) in this work,
an intelligent hybrid framework for accident estimation. The
framework uses several tasks, including outlier detection,
vehicle detection, and accident estimation. First, road states
are collected, using an intelligent filter based on SIFT extractor
and Chinese restaurant process to remove noise. The enhanced
convolutional neural network is then used to identify the closer
vehicles of each driver. The rest of the network benefits from
vehicle detection to classify whether the current road condition
could cause an accident or not. Finally, we implement a novel
optimization model with hyperparameters using evolutionary
computation that can be used for parameter tuning of an indi-
cated deep learning methodology. The proposed framework,
HR2CNN (Hybrid RESNET and Convolution Neural Network
for Accident Estimation), makes the following contributions.

1) A novel filtering algorithm based on SIFT extractor and

Chinese restaurant process used to remove noise from
the image database.
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2) An extended vehicle detection algorithm based on region
convolution neural network is presented. The algorithm
employs hard negative exploration and multi-scale train-
ing. In addition, a residual blocking model is used to
estimate the likelihood of road states causing accidents.

3) An intelligent evolutionary computation algorithm to
accurately explore the hyper-parameters space for opti-
mal intrinsic parameters is designed.

4) HR2CNN is evaluated through extensive experiments
on well-known data for vehicle detection and accident
estimation. The results show that our methodology per-
forms better than baseline algorithms when looking at
accuracy, as well as runtime performance.

Section II gives an in-depth review of the main works for
vehicle detection and accident estimation, followed by details
of HR2CNN in Section III. Next, Section IV evaluates our
framework. Lastly, Section V gives some brief concluding
remarks.

II. RELATED WORK

Hybrid deep learning has recently been used in different
topics related to applications of intelligent transportation such
as group anomaly detection, object detection, and accident
estimation [8]. Vehicle detection is a fundamental compo-
nent essential in most applications. It can be defined as
the task of retrieving the cars in a given urban road scene
[10], [11]. Detecting close vehicles in a road scene might be
beneficial for predicting if the current scene will cause an
accident. Mostofa et al. [12] proposed an up-scaling genera-
tive adversarial network for identifying multi-scale vehicles
by learning the hierarchical features. Wu et al. [13] suggested
a transfer learning approach for multi-source vehicle detec-
tion while incorporating fine-tuning unsupervised learning
for creating the ground-truth intelligent transportation data.
Arabi et al. [14] presented an intelligent system for detecting
construction vehicles. It adopted a pre-trained approach called
MobileNet for running the model on mobile and embedded
devices. Tran and Tsai [15] used convolution operators to
extract the urban traffic features in a streaming way for vehicle
detection. Chetouane et al. [16] studied different object detec-
tion architectures for identifying good and relevant bounding
boxes for vehicles by exploring the Gaussian mixture analysis
with Kalman filter and optical flow strategy.

Chen et al. [17] considered lightweight detection where
they developed a solution based on a deep convolution neural
network, which reduces the memory footprint. Three new
guidelines were also developed to find the optimal number
of group convolution operators. Yang et al. [18] developed a
solution based on a faster region convolution neural network to
simultaneously detect both 2D and 3D vehicles from a single
scene. It is a multi-task solution that also integrates orienta-
tion estimation and key point detection into a generic deep
convolution neural network. Hassaballah et al. [19] proposed
a vehicle detection method that handles emergence restriction
in-camera functionalities, e.g., weather conditions. It is a
multi-scale based convolution Gaussian network that combines
Gaussian mixture probability with the convolution neural net-
work. Fan et al. [20] investigated the use of approximate joint

training to learn the vehicle detection model using faster region
convolution neural network architecture [21]. Wang et al. [22]
developed a weighted ensemble learning method which com-
bines the region convolution neural network [23] and the “you
only look once” [24] algorithms. Chen et al. [25] developed
the cascade pyramid region proposal convolution neural net-
work, which learns from pseudo-images for vehicle detection.
It also integrated hybrid learning using the sparse points and
residual network.

Dinh er al. [26] transformed the vehicle bounding boxes
to a binary map that is injected into the convolution
neural network. The evolutionary algorithm is also integrated
into the entire system to determine the correlation among
the camera parameters of the different videos of vehicles.
Kumar er al. [27] developed a deep learning network to iden-
tify vehicles captured in fisheye images. It explores different
tasks such as depth estimation, visual odometry, semantic
and motion segmentation, and vehicle lens soiling detection.
In the same context, Rashed et al. [28] explored the oriented
bounding box, the ellipse, and the generic polygon for deter-
mining vehicles in fisheye by designing a curvature adaptive
perimeter sampling strategy for deriving the polygon vertices.
Li et al. [29] proposed a convolution neural network based
on light enhancement to increase the ability to identify cars
at night. It also developed a generic system that is capable to
convert daytime images to low-light images and then using
the resulting images in the training phase as ground-truth
data. Chen et al. [30] developed an intelligent agent solu-
tion based on an explainable reinforcement learning process
for vehicle detection. The semantic bird-eye mask is first
deduced using the sequential latent model. The trained model
is combined with the reinforcement learning process to explain
the learning outputs. Zhao et al. [31] adopted the single-shot
multi-box detector to make the trade-off between the runtime
and accuracy for detecting vehicles in real-time. Both the
relevant features and receptive fields are merged to identify
the candidate bounding boxes. The cascade detection strategy
with the convolution neural network is deployed to strengthen
the positioning capability of the model. Wang et al. [32] han-
dled with 3D object detection and developed a voxel-based
representation to process 3D shapes. It models the height and
the number of points for each voxel as Gaussian distribution.
The bounding box uncertainty is calculated with a multivariate
Gaussian loss function. Li er al. [33] proposed the logistic
regression solution to identify vehicles in the context of emer-
gency lane congestion context. It also computes the impact of
the convolution kernels in the convolution neural network for
detecting different vehicles in the emergency lane.

The existing solutions for vehicle detection suffer from
several drawbacks. The first one is the scalability in terms of
accuracy and computational cost while handling real setting
scenarios. The second one is that these solutions are incom-
plete, while only the detection model is learned, there is no
end-to-end safety approach for an autonomous driving sce-
nario. Motivated by the success of the recent object detection
models in accurately capturing the different objects, this paper
explores an intelligent and end-to-end framework for vehicle
detection that can serve autonomous driving settings.
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Fig. 1. HR2CNN framework.

III. HR2CNN
A. Framework Overview

A detailed explanation of the HR2ZCNN (Hybrid RESNET
and Region Convolution Neural Network for Accident Esti-
mation) framework is given in this part which is illustrated
in Fig. 1. HR2CNN includes four stages: 1) Removing
noise: This stage aims to remove noises before the image
processing. In this context, the outlier detection algorithm is
used to identify images that deviate from the whole input
image. 2) Vehicle Detection: In this stage, an extension of
the region convolution neural network architecture is made
to accurately identify the closest vehicles of the given car.
3) Accident Estimation: After the vehicle detection process,
the RESNET classifier is integrated into the entire system
to estimate whether every configuration is likely to cause an
accident or not. 4) Hyper-parameters Optimization: In this
stage, we propose an intelligent mechanism to automatically
identify the best hyper-parameters for all the previous stages
of the HR2CNN framework. Notice the proposed framework
requires a large number of tuned parameters.

B. Removing Noise

Images captured from sensors and cameras in the intel-
ligent transportation environment have high resolution with
an immense number of pixels. The number of pixels per
image can be highly variables, from 250,000 to more than
4,000, 000 pixels. Moreover, noise may be observed due to
errors in data acquisition. Data analysis before processing is
thus crucial, especially for mitigating the generation of a high
number of regions proposals (which can exceed billion of
regions). This makes the vehicle detection process costly in
terms of time and memory. This stage has the goal of removing
abnormal images from the whole image database.

We first consider the set of n images I = {I, I, ..., I,}.
The outlier detection task aims to remove images from / that
deviate from the normal images. The SIFT (Scale-Invariant
Feature Transform) extractor [34] is first used to figure out
the relevant features of the images. The scale-space function,
S(1;, o), is calculated for each image /;, and with a parameter
threshold o . This function is based on the Gaussian kernel, K,
and defined as:

S(Ii,O')ZK(Ii,O')XIi. (1)

The spatial information of each candidate keypoint is then
identified based on the interpolation procedure. The spatial
interpolated information is computed, which allows the stabil-
ity of the extracted features. The Taylor function Y (/;, o) is
defined by the interpolation function, which can be defined as:

T 2
Y(I;,6) =D + %11- + 0.517%

1i, )

where d, and d? are the first and the second derivative
functions on x.

The descriptor vector for the key points is then calculated by
generating different orientation histograms of 4 x4 pixel neigh-
borhoods. After this procedure, the SIFT features for each and
every I;, say Fj, is determined. Furthermore, we propose a
novel statistical analysis-based outlier detection algorithm for
images. This algorithm adopts the Dirichlet process mixture
model for identifying outliers from /. The set of all features
F ={F, F, ..., FjF} is transformed to k-dimensional space,
where each point P; is represented by {P;, Piy1, ..., Piti}.
For instance, consider the features of ten different images,
F = {F, F,...,Fio} with k = 3. Various points are
generated, and each of which contains three different features.
The first point contains the features {Fj, F», F3}, the second



one is {F;, F3, F4}, the third one is {F3, F4, F5}, and so on
until reaching the last point {Fg, Fy, Fip}. The features are
then reduced to two dimensions using principal components
analysis (PCA). The two derived dimensions will be entered
into the Dirichlet process for finding noises. Highly correlated
groups are determined using the Chinese restaurant process.
The features are divided into groups, and every image is
assigned to the previously created group if a distance between
such image and the center of the groups exceeds a given
threshold, otherwise, it is assigned to a new group. All images
of the largest group are considered normal and used in the next
process. The others are considered as noises and removed from
the image database.

C. Vehicle Detection

The vehicle detection algorithm is executed to identify the
closer vehicles from the driver. We adopt the granular region
convolution neural network [35] for this purpose. It is appro-
priate for the uncertainty of the scenario of the vehicle, where
vehicles can appear and disappear at any time. It incorporates
a probabilistic model represented by the derivative knowledge.
The transfer learning is also integrated by using the pre-trained
models on the ImageNet data'. The main operations of the
vehicle detection stage are:

1) Bounding Boxes Creation: The goal of this operation
is to generate the bounding box candidates. The con-
volution neural network is explored to accurately find
the bounding box candidates. The refinement process is
then executed with the regression model.

2) Hard Negative Exploration: The purpose of this oper-
ation is to reduce the model error. The hard negative
bounding boxes are re-processed using reinforcement
learning. This operation enhances the detection ratio
and eliminates the false-negative by learning unexpected
behaviours of the drivers. Note that if the intersection
over union between the generated bounding box, and
the ground truth is 25% or less, then we can consider it
as a hard negative.

3) Multi Scale Training: This operation aims to create
bounding boxes with different sizes that simulate the
real scenario of the vehicles. Thus, the vehicles and
cars can have different lengths and widths. This could
cause the regional convolutional neural network based
vehicle detection models to be inaccurate. To address
this, different types of bounding boxes are generated,
and each type considers the bounding of boxes with the
same height and the same width.

D. Accident Estimation

After detecting the closer car, the next step is to estimate
whether the given state of the road could cause an accident.
The RESNET classifier is used to perform binary classifica-
tion, i.e., whether the current state may cause an accident or
not. The input of the RESNET classifier is the current state of
the road with the bounding box of each car, and the output is

1 http://www.image-net.org/

the class of this state, “0” for a non-accident, and “1” for
an accident. The traditional deep neural architectures, e.g.,
AlexNet, and VGG perform the training in the entire layers.
This reduces the performance of the model, particularly for
deeper architecture such as VGG19. RESNET is developed to
address this issue by integrating a new concept called “micro-
architectures”. We used 50 layers where each 2-layer block is
connected by a bottleneck block which results in more than
3.8 billion parameters being optimized. The whole layers are
organized in residual blocks that process different operators
such as convolution, pooling, and batch normalization. Even
though RESNET is much deeper than VGG16 and VGG19,
this block partition-based allows to effectively learn the dif-
ferent weights of such model. The residual blocks also allow
learning different patterns inside the data, which is missing in
the state-of-the-art deep learning architecture.

E. Hyper-Parameters Optimization

Let P = {P1,P2,...,Pp} be the set of all parameters
used by the HR2CNN framework, and let us denote by D(P;),
the domain space of the parameter P;, which contains the
possible values of P;. The configuration space C is represented
by the possible configurations, while each configuration is
the set of values of all parameters in P. Determining the
optimal values of all parameters in P requires the exploration
of all configurations in C, which needs high computational and
memory resources, particularly for those parameters having
continuous values such as the error rate. Moreover, the number
of all configurations is very immense as it is proportional to

the number of all parameters and the domain values of each
|P]
parameter. It is set to [] |D(P;)|. For example, if we only

consider 1, 000 differeﬁfl\/alues for epoch parameter (varied
epoch from 1 to 1,000) 100 different value for error rate
(varied error rate from 0.01 to 1.00), and 2,000 different
values for the number of bounding boxes (from 1 to 2, 000),
the number of all configurations in C will be 20 million
configurations. Therefore, the traditional enumeration-based
methods including branch and bound [36], and A* [37] will
be bluntly blocked when processing the above use case.
To solve this problem, we propose an efficient evolutionary
computation-based method for exploring the configurations in
C. The elementary operations of the suggested approach are
defined in the following:

1) Population Initialization: Any evolutionary computa-
tion algorithm is based on the initial population rep-
resented by the set of individuals. Each individual is
defined by the possible values of each parameter in
‘P. For instance, if we consider the previous example,
(20, 0.75,740) is a solution that represents the configu-
ration where epochs are set to 20, the error rate is set to
0.75, and the number of bounding boxes is set to 740.
The population of the proposed evolutionary computa-
tion algorithm should have a fixed size, i.e., the same
number of individuals. For a better exploration of the
configuration space, the individuals in one population
should be heterogeneous. To ensure such diversity, the



initial population is created by generating individuals
while maximizing the distance among them. Thus, the
distance between two solutions (individuals) S, and S,
is defined as follows:

[P
D(S1,$2) = D IS1—S5| 3)

i=1

Note that Si and Sé are the i’ value of the solutions
S1, and $>, respectively. |P| is the population size.

2) Crossover: Crossover operator allows to intensively
explore one region in the configuration space. The
following crossover operator is applied in pair of indi-
viduals of the current population: The crossover point is
randomly selected from 1 to |P| which allows dividing
every individual into two parts, left side, and right
side. The first child takes the left side of the first
individual and the right side of the second individual,
while the second child takes the right side of the first
individual and the left side of the second individual. For
instance, if we consider two individuals, (20, 0.75, 740)
and (10, 0.65, 820), and if the crossover point is set
to 2, two other individuals are generated, the first one is
(20, 0.75, 820), and the second one is (10, 0.65, 740).

3) Mutation: The mutation operator allows for the diver-
sification process, i.e., it generates individuals far from
the current region. A given parameter of each individual
is randomly selected and updated. For instance, consider
the following individual generated by the crossover oper-
ator (20, 0.75, 820). The mutation operator generates the
following individual (15, 0.75, 125) by updating the first
and the third elements and keeping the second element
as it is.

First, the initial population is randomly generated and each
individual is created based on the population initialization.
The crossover and mutation operators are then applied for
exploring the configuration space. To maintain consistent
population size, each and every individual is evaluated making
use of the object detection and classification accuracy. The best
individual is kept and the others are removed. This process
is repeated in multiple iterations until the max number of
iterations is reached.

Algorithm 1 presents the pseudo-code of the designed
HR2CNN. The input data is the set of n road scenes in the
training and the set of k new road scenes in the inference. The
process starts by removing outliers and noises using the outlier
detection step explained in Section II.B. The cleaned road
scenes are trained in the object detection model as explained
in Section III.C. The bounding boxes of the second step are
trained to learn the accident estimation process as explained
in Section IIL.D. As a result of the training phase, the weights
of the two models, noted My, and Mg are adjusted. In the
inference step, the propagation of weights of My o, and Msg
is performed for each new road scene, to predict whether it
causes an outlier. We remark that the training phase, performed
only once independently from the number of road scenes in the
inference, is a high time-consuming task that includes several
training models, and processing. However, the inference step

Algorithm 1 HR2CNN Algorithm

I: Input: R ={Ry, R2, ..., Ry}: the set of n road scenes in
the training. Rpey = {Rnew, new, . }: the set of k
new road scenes in the inference.

2: Output: P(R,.p): prediction of the new road scenes
whether they cause accident or not.

3: ******>l<>l<>l<***Training*****************

4: R < Outlier Detection(R);

5: (Myo, BB) < VehicleDetection(R);

6: Mag < Accident Estimation(BB);

7

8

9

new

L ekl olok T flere o sk el sk ot ke ok
: P(Rpew < 9;
. for R!

new

€ Ryew do
10: BBrllew <~ MVO(Rnew)
11: P(Rnew) <~ P(Rnew) U MAE(BB
12: end for
13: return P (Ryep).

new).

contains only one loop and needs simple propagation of the
learned models in the training phase.

IV. PERFORMANCE EVALUATION

To validate the proposed HR2CNN framework, intensive
experiments have been carried out for outlier detection, vehicle
detection, and accident estimation. Several datasets were used
in this research as described in the following:

1) Kitti2: It is collected from cameras of 15 drivers and
30 different pedestrians walking around the Karlsruhe
city. It is used for vehicle detection, image retrieval, and
place recognition tasks.

2) BOXY vehicle data [38]: It is a large vehicle detection
dataset with almost two million annotated vehicles for
training and evaluating object detection methods for
self-driving cars on freeways.

3) Car object detection data’: It contains cars and vehicles
in all views and rotation. It is designed for the object
detection task.

4) Safe drive dataset*: It is related to the safe drive
product which is used by the people who ride a bike
or drive a car. It provides a warning to the user
when an accident may take place based on a particular
scenario.

5) Accident dataset’: It contains the road status of
3, 210 different cases, which illustrates whether the road
state might have caused an accident or not.

6) Self-Driving Cars®: This data contains different road
statuses for a given car in a self-driving environment.

To evaluate the proposed framework, the mAP (mean Aver-
age Precision) is used as metric of comparison. mAP is largely
used to test outlier detection, object detection, and accident

2http://www.cvlibs.net/datasets/kitti/

3 https://www.kaggle.com/sshikamaru/car-object-detection
4https :/lwww.kaggle.com/satishtilwani/safe-drive-dataset
3 https://www.kaggle.com/jerrinbright/accident

6https J/Iwww.kaggle.com/alincijov/self-driving-cars
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machine fitted with an Intel-Core i7 processor and combined
with NVIDIA GeForce GTX 1070 GPU. The HR2CNN is
compared with recent outlier detection, vehicle detection, and
4) accident estimation solutions under a varied number of images

as input.

where n is considered as the corrected objects handled among

all objects, and Avg P (i) is calculated as the precision results
at i-rank. For outlier detection, the corrected objects han-
dled are the corrected outliers. For vehicle detection, the
corrected objects handled are the vehicle detected. For accident
estimation, the corrected objects handled are the number of
corrected accidents. The models are implemented on a

A. Outlier Detection Step

We compare the outlier detection step of the HR2CNN with
the following baseline outlier detection solutions:

o LOF (Local Outlier Factor) [39]: It is a state-of-the-art
outlier detection algorithm based on distance reachability.
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Fig. 3. Accuracy and runtime of vehicle detection step of HR2ZCNN compared to the state-of-the-art vehicle detection solutions.

It considers the set of images as point space, and the local
outlier score is determined for each image. This score is
based on neighbourhood computation. If the local outlier
score is close to 1, then the image is considered as normal,

and outlier otherwise.

« mRMRD (Minimum-Redundancy-Maximum-Relevance
to-Density) [40]: This is a recent algorithm for outlier
detection used for high dimensional data. It fits the image
data when a high number of pixels is considered for
each image. It is an unsupervised density-based subspace
selection method, which first groups the set of features

subspace.

on several sub-spaces. Instead of calculating the outlier
score on each data point, it is determined for each

Fig. 2 shows the accuracy and the runtime of the algorithms.

The results reveal that the proposed solution outperforms the

two baseline algorithms in terms of processing accuracy and
processing runtime. The mA P of the HR2CNN reached 73%
for handling 100% of the Kitti data, whereas the mAP of
the mRMRD does not exceed 71%, and the mAP of the
LOF algorithm is below 65% for dealing with the same
configuration. Regarding the runtime, the HR2CNN does not
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Fig. 4. Accuracy and runtime of accident estimation step of HR2CNN compared to the state-of-the-art accident estimation solutions.

exceed 50 ms for processing 100% of the Kitti data, whereas
the runtime for the other algorithms reached 150 ms for
handling the same configuration. These results are obtained
thanks to the efficient strategy used in the outlier detection
process which is based on an intelligent clustering process,
whereas the other algorithms are based on traditional methods

in determining the outliers.

B. Vehicle Detection Step

We compare the vehicle detection step of the HR2CNN

framework, with the following baseline solutions:

e O-YOLO-v2 (Optimized You Only Look Once Version 2)
[41]: It is based on the YOLO algorithm which is a
state-of-the-art object detection algorithms. The residual
blocks are added to the YOLO-v2 for solving the gradient
dispersion issue. In addition, convolution layers are added
at different locations for better feature extraction and

addressing the accuracy of the YOLO-based methods.
o Improved Faster RCNN (Improved Faster Region Convo-
lution Neural Network) [20]: It is an extended version of

the Faster RCNN algorithm by proposing an approximate

joint training strategy to learn the original images using



the Faster RCNN architecture. An improvement of the
size and the proportion of anchors is also investigated.

Fig. 3 reveals that the proposed solution outperforms the
two baseline algorithms in terms of accuracy and it is very
competitive with O-YOLO-v2 in terms of processing runtime.
The mAP of the HR2ZCNN reached 84% for handling 100%
of the Kitti data, whereas the m AP for the other algorithms
goes under 75% for dealing with the same configuration.
Regarding the runtime, HR2CNN, and O-YOLO-v2 do not
exceed 45 ms for processing 100% of the Kitti data, whereas
the runtime for the improved RCNN algorithm reached 85 ms
for handling the same configuration as input. These results
are obtained thanks to the proposed operations during the
vehicle detection process such as the bounding boxes creation,
the hard negative exploration, and the multi-scale training.
However, the other algorithms do not consider the size-varied
of the objects which is common in intelligent transportation
applications, and vehicle detection in particular.

C. Accident Estimation Step

We compare the accident estimation step of the HR2CNN
framework, with the following baseline solutions:

o DSTGCN (Deep Spatio-Temporal Graph Convolutional
Network) [2]: It is based on a graph convolution neural
network and includes three steps. The first is the learning
of the different correlations among the spatial informa-
tion based on graph convolution operators. The second
employs the standard convolution to learn both the spatial
and temporal dimensions. The third step is the inter-
pretation of the semantic representation of contextual
knowledge by adding an embedded layer in the whole
architecture.

o RFAP (Random Forest for Accident Prediction) [42]: It
is based on the random forest which is composed of the
set of the decision trees. Every tree gives a local decision
on the current status of the road. An aggregation function
is used to merge the local decisions of the trees and find
the final prediction results on whether the current status
of the road causes an accident or not.

The results reported in Fig. 4 reveal that the proposed
solution outperforms the two baseline algorithms in terms of
accuracy and that it is very competitive in terms of processing
runtime. The m A P of the HR2CNN reached 91% for handling
100% of the Kitti data, whereas the mAP for the other
algorithms goes under 86% for dealing the same configuration.
The gap for the runtime between the HR2CNN, and the other
algorithms does not exceed 3 ms for processing 100% of
the Kitti data. The proposed framework needs more time
compared to the two other algorithms because the HR2CNN is
an end-to-end framework composed of three steps. However,
the two other algorithms are based on a single pass, which has
low accuracy, whereas HR2CNN integrates several steps, i.e,
removing the noises, finding the vehicles closer to the given
driver, and estimating the accidents from the detected cars.

The last experiments aim to compare the performance of
the HR2CNN solutions versus advanced deep learning archi-
tectures. We adopted Xception and SqueezeNet for accident

TABLE I
HR2CNN V.S. ADVANCED ACCIDENT ESTIMATION SOLUTIONS

BOXY X HR2CNN Xception SqueezeNet
CPU(ms) | mAP | CPU(ms) | mAP | CPU(ms) | mAP
5 90 86 74 69 71 67
10 97 85 77 70 73 68
20 95 87 79 72 74 69

estimation. Table I shows both the runtime in mile seconds,
and the accident estimation accuracy of the HR2CNN, Xcep-
tion, and SqueezeNet using different sizes of the BOXY
dataset. The results reveal the superiority of HR2ZCNN com-
pared to the two other solutions in terms of accident estimation
accuracy for all cases. However, there is a gap in terms of
inference runtime which needs more investigation in the future
to make the proposed framework suitable for deployment in
mobile devices as the case of the SqueezeNet.

V. CONCLUSION

In this research, outlier detection is first performed to
remove noise from the set of original urban traffic data images.
A Hybrid SIFT extractor with a Chinese restaurant process is
developed to efficiently filter the noise. The extended region
convolution neural network is then launched to detect the
closer vehicles of the given driver. Different improvements
have been suggested on the region convolution neural net-
work model including, bounding box creation, hard negative
exploration, and multi-scale training. The RESNET algorithm
was used for this purpose. Finally, and to better find the
optimal parameter values of the proposed framework, an intel-
ligent evolutionary computation algorithm was incorporated
by developing diversification and intensification strategies for
exploring the configuration space. Experimental evaluation
was carried out to validate the applicability of the proposed
framework using the well-known vehicle detection and acci-
dent estimation data. The results are strong and give reason to
believe that the proposed model can outperform all baseline
vehicle detection as given and the accident estimation solutions
in many factors including detection, computational runtime,
as well as estimation accuracy. In retrospect, we envision going
through rigorous extensions of the proposed framework so
that it can deal with large and big vehicle data in real-time
by exploring high-performance computing tools, and it can
also deal with technologies such as drone systems [43]. Han-
dling 3D vehicle object data by exploring brain intelligence
methods [44] is also on our future agenda.
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