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Abstract

The perfectly matched layer (PML) formulation is a prominent way of handling radiation problems in unbounded domain and
as gained interest due to its simple implementation in finite element codes. However, its simplicity can be advanced further
sing the isogeometric framework. This work presents a spline based PML formulation which avoids additional coordinate
ransformation as the formulation is based on the same space in which the numerical solution is sought. The procedure can
e automated for any convex artificial boundary. This removes restrictions on the domain construction using PML and can
herefore reduce computational cost and improve mesh quality. The usage of spline basis functions with higher continuity also
mproves the accuracy of the PML-approximation and the numerical solution.

2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Isogeometric analysis; Acoustic scattering; Perfectly matched layers

1. Introduction

Scattering problems involve unbounded exterior domains, Ω+ (see Fig. 1). Boundary Element Method (BEM) is
popular approach for solving such problems [1–4]. Alternatively, a common approach for solving such problems
ith the finite element method (FEM) is to introduce an artificial boundary that encloses the scatterer. On the

rtificial boundary some sort of absorbing boundary condition (ABC) is prescribed. The problem is then reduced
o a finite domain, the bounded domain between the scatterer and the artificial boundary can then be discretized
ith finite elements. Several methods exist for handling the exterior Helmholtz problem (on unbounded domain),

ncluding (a) the perfectly matched layer (PML) method after Bérenger [5–7], (b) Dirichlet to Neumann-operators
DtN-operators) [8], (c) local differential ABC operators [9–12], and (d) the infinite element method (IEM) [13–15].

In earlier works we have developed isogeometric (IGA) methods [16] for the IEM [17] and the BEM [18]
pproaches and achieved significant improved accuracy compared to use of C0 continuous FEM due to the increased
nter-element continuity of the splines basis functions.

Regarding IGA for acoustic scatterings most authors have developed methods for BEM. Simpson and coworkers
oined the word IGABEM for isogeometric methods for BEM in [19] and presented their first paper on IGABEM
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Fig. 1. Two convex boundaries Γa and Γb defines the PML around the scatterer defined by Γ such that the exterior domain Ω+ is decomposed
by the three domains Ωa (which is bounded by Γ and Γa), Ωb (which is bounded by Γa and Γb) and Ω+

b . Thus, Ω+
= Ωa ∪ Ωb ∪ Ω+

b .

or acoustic scattering two years later [20]. However, the first paper on isogeometric BEM [21] was published a year
efore by M. J. Peake during his PhD-study at University of Durham (UK) under supervision of Prof. J. Trevelyn and
rof. G. Coates. Here, the so-called eXtended Isogeometric Boundary Element Method (XIBEM) was introduced
nd further developed in the two follow up papers [22,23]. Inspired by these initial papers several investigations of
GABEM applied to acoustics have been pursued by different authors [18,24–29]. Recently, acoustic optimization
nd IGABEM has been pursued with success by a few groups, see e.g., [30–38].

The boundary element method (BEM) avoids introducing an artificial boundary as it only relies on a com-
utational domain on the surface of the scatterer. Moreover, solid domains are usually represented by surfaces in
AD-systems, such that if modeling of an elastic scatterer using IGA with the same spline basis as the CAD-model,

he BEM does not need a surface-to-volume parametrization. This represents a significant advantage compared to
he other approaches regarding interoperability between design and analysis. Thus, the popularity among the IGA
ommunity to develop isogeometric methods for BEM (IGABEM) is understandable.

However, we experienced significant challenges related to numerical integration, fictitious eigenfrequencies, and
emory requirements and solution times of the resulting algebraic system. These topics are current research areas,

nd we refer to [39] for references. Furthermore, the frequency spectra of excitation generally have a broad frequency
and and thus multi-frequency analysis is often required. Because of the frequency-dependent property, both the
raditional BEM and fast multipole BEM must be applied to recalculate all the entries in the system. One way to
ircumvent the difficulty incurred by acoustic frequency sweeps is to use reduced order models (ROM) [40–42], but
or BEM we must overcome the following two challenges (1) how to construct an orthonormal basis and (2) how
o avoid the assembly of system matrices for each frequency before projection. Reduced order modeling of BEM
or acoustic scattering is recently addressed in [39] but are still not yet a matured computational methodology.

Thus, use of IGABEM for addressing acoustic scattering is a versatile but challenging computational methodol-
gy. In particular, for efficient handling of frequency sweeps by means of reduced order models (ROM) it seems
o be of interest to investigate alternative classical isogeometric finite element methods.

The IEM is very efficient for cases where we can locate the artificial boundary close to the scatterer and represent
t with ellipsoidal coordinate systems. We developed isogeometric methods for IEM (hereafter denoted IGAIEM
n [17]1 and achieved significant improved accuracy compared to use of C0 continuous FEM. However, in general
he need for a surface-to-volume parametrization between the scatterer and the artificial boundary is a disadvantage.
urthermore, we experienced severe challenges with high condition numbers of the system matrix when the number
f radial shape functions in the infinite elements is large. This becomes a problem for more complex geometries as
he number of radial shape functions must be increased to achieve higher precision. Again, there might be remedies
or reducing the conditioning number, see e.g. [43] where this have been addressed for C0-Lagrange FE, and that
s something we will address in an upcoming paper on IGAIEM.

1 To the best of our knowledge, our paper seems to be the only one combining isogeometric methods with infinite elements.
2
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Compared to IEM the PML approach is not prone to ill-conditioning of the system matrix. For most applications
he accuracy of the PML is comparable to IEM (for engineering precision; 1% relative error in energy norm).

Unfortunately, the effective implementation of the PML for convex domains of general shape has not been
traight forward because of the geometric parameters that has been required to define the PML-domain. However,
ériot and Modave [44] have recently presented a method for C0-Lagrange finite elements that simplifies the

mplementations significantly. It builds upon the idea of locally conformal PML layers [45,46]. In the present work
e will investigate the use of IGA inspired by this idea to develop what we denote as IGAPML. Thus, the IGAPML
eveloped herein enables us to choose the artificial boundary to be an arbitrary convex boundary represented by a
URBS parametrization. That is, we are not restricted to domains defined by the ellipsoidal, cylindrical, or Cartesian

oordinate system.
In recent papers [47,48] PML in the isogeometric framework has been presented. The present approach enables

generalization to the NURBS parametrization for the PML layer and considers different stretching functions. The
tretching function recommended in the present work not only gives improved results but also reduces the number
f PML parameters to tune.

A challenge for the present approach is the required surface-to-volume parametrizations from boundary represen-
ations of complex industrial CAD-models. This problem might contain trimmed NURBS patches and non-watertight

odels subject to a CAD cleanup, see [49] for a comprehensive review. However, this challenge is ongoing research
e.g. [50,51]) and is considered out of scope for this article. The present work has focused on the automated
onstruction of the PML-layer given such a volumetric parametrization.

. Perfectly matched layer (PML) for exterior Helmholtz problems

We partition the unbounded domain Ω+ into three domains by the boundaries Γa and Γb; Ωa, Ωb and Ω+

b , see
ig. 1. Due to the absorbing property of the PML layer, Ωb, only Ωa and Ωb need to be discretized by finite elements.

The exterior Helmholtz problem is given by (with wavenumber k)

∇
2 p + k2 p = 0 in Ω+, (1)

∂n p = g on Γ , (2)
∂ p
∂r

− ikp = o
(
r−1) with r = |x| (3)

where the Sommerfeld condition [52] in Eq. (3) restricts the field in the limit r → ∞ uniformly in x̂ =
x
r , such

that no scattered waves, p, originate from infinity. The Neumann condition given by the function g will in the case
of rigid scattering be given by the incident wave pinc. Zero displacement of the fluid normal on the scatterer (rigid
scattering) implies that ∂n(p + pinc) = 0 where ∂n denotes the partial derivative in the normal direction on the
surface Γ (pointing “out” from Ω+), which implies that

g = −
∂ pinc

∂n
. (4)

n this work we consider plane incident waves (with amplitude Pinc) traveling in the direction ds, which can be
ritten as

pinc = Pinceikds·x . (5)

.1. Far field pattern

The quantity of interest is the target strength defined by

TS = 20 log10

(
|p0(x̂)|
|Pinc|

)
(6)

where the far field pattern of the scattered pressure, p, is given by

p0(x̂) = lim re−ikr p(r x̂), (7)

r→∞

3
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ith r = |x| and x̂ = x/|x| being the far field observation point. The observation point can be represented in terms
of the aspect angle α and elevation angle β

x̂ =

⎡⎣cos β cos α

cos β sin α

sin β

⎤⎦ .

We also use this convention in describing the direction of the incident wave

ds =

⎡⎣cos βs cos αs
cos βs sin αs

sin βs

⎤⎦ .

The far field pattern can be computed by (cf. [53, p. 32])

p0(x̂) = −
1

4π

∫
Γ

[
ikp( y)x̂ · n( y) +

∂ p( y)
∂n( y)

]
e−ik x̂· y dΓ ( y). (8)

rom which the target strength in Eq. (6) may be computed.

.2. Weak formulation for the Helmholtz equation

The weak formulation is given by (the involved spaces are described in [53])

Find p ∈ H 1+

w (Ω+) such that B(q, p) = L(q), ∀q ∈ H 1
w∗ (Ω+), (9)

here the bilinear form is given by

B(q, p) =

∫
Ω+

[
∇q · ∇ p − k2qp

]
dΩ

nd the corresponding linear form is given by

L(q) =

∫
Γ

qg dΓ .

.3. Truly perfectly matched layers

We will here develop a general spline-based (GSB) PML method which avoids intermediate transformation to
pherical/cylindrical/Cartesian coordinates. The idea is to construct the spline patches such that the directions we
ant to have a decaying property is represented by parametric directions of the spline patch. As NURBS can

epresent spherical and cylindrical patches in addition to the trivial Cartesian patches, it can resolve the standard
ehavior obtained by the classical PML-formulations using the appurtenant coordinate systems.

The NURBS basis is constructed using B-splines. Therefore, an understanding of B-splines is crucial to
nderstanding NURBS [54]. We extend the classical [54] definition (using the Cox–de Boor formula) to evaluations
n the complex parametric space as follows. Let p̌ be the polynomial order,2 let n be the number of basis functions
nd define a knot vector t = {ξ1, ξ2, . . . , ξn+ p̌+1} to be an ordered vector with non-decreasing elements, called
nots. Then, the n B-splines,

{
Bi, p̌,t

}
i∈[1,n], are recursively defined by

Bi, p̌,t (ξ ) =
ξ − ξi

ξi+ p̌ − ξi
Bi, p̌−1,t1 (ξ ) +

ξi+ p̌+1 − ξ

ξi+ p̌+1 − ξi+1
Bi+1, p̌−1,t1 (ξ )

starting with (the only alteration to the classical Cox–de Boor formula is that we here take the real part of the
parameter ξ )

Bi,0,t1 (ξ ) =

{
1 if ξi ≤ Re ξ < ξi+1

0 otherwise.
(10)

2 The usage of a check sign above the polynomial order p is to avoid ambiguity between the polynomial order and the scattered pressure.
4



J.V. Venås and T. Kvamsdal Computer Methods in Applied Mechanics and Engineering 401 (2022) 115647

W
b

T

T
v
ξ

(

w

A

w
N
o

fi

o

t
i

ith B-splines in our arsenal, we are ready to present Non-Uniform Rational B-Splines (NURBS). Let {wi }i∈[1,n]

e a set of weights, and define the weighting function by

W (ξ ) =

n∑
ĩ=1

Bĩ, p̌,t (ξ )wĩ .

he one-dimensional NURBS basis functions can now be defined by

Ri (ξ ) =
Bi, p̌,t (ξ )wi

W (ξ )
.

he extensions to bivariate NURBS surfaces and trivariate NURBS volumes are straightforward. For NURBS
olumes, let

{
Bi1, p̌1,t1

}
i1∈[1,n1],

{
Bi2, p̌2,t2

}
i2∈[1,n2] and

{
Bi3, p̌3,t3

}
i3∈[1,n3] be the sets of B-spline basis functions in ξ1-,

2- and ξ3-direction, respectively. These sets have their own order ( p̌1, p̌2 and p̌3, respectively) and knot vectors
t1, t2 and t3, respectively). The trivariate NURBS basis functions are then defined by

Ri1,i2,i3 (ξ ) =
Bi1, p̌1,t1 (ξ1)Bi2, p̌2,t2 (ξ2)Bi3, p̌3,t3 (ξ3)wi1,i2,i3

W (ξ )
, ξ = [ξ1, ξ2, ξ3]⊤ (11)

here the weighting function is now given by

W (ξ ) =

n1∑
ĩ1=1

n2∑
ĩ2=1

n3∑
ĩ3=1

Bĩ1, p̌1,t1
(ξ1)Bĩ2, p̌2,t2

(ξ2)Bĩ3, p̌3,t3
(ξ3)wĩ1,ĩ2,ĩ3

.

NURBS patch can be represented by the transformation

X : [0, 1]3
→ Ωb ⊂ R3, ξ ↦→

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

Ri1,i2,i3 (ξ )P i1,i2,i3 (12)

ith P i1,i2,i3 being the control points of the patch. For brevity the PML formulation will be derived for a single
URBS patch representing Ωb, but the generalization to a multipatch representation is straight forward. Without loss
f generalization, we have here assumed normalized knots in the patch in which we want the PML transformation.

Whenever Γa is a smooth convex surface we can construct the NURBS patches representing the PML by first
nding a NURBS parametrization Xb(ξ1, ξ2) which is a distance tPML away from Xa(ξ1, ξ2) (achieved by minimizing

Xb − Xa − tPMLna where na is the normal vector at Xa) and then computing a linear lofting between Xa and Xb to
btain the volumetric NURBS patches.

Starting from a boundary representation of the scatterer Γ assume now that a surface-to-volume parametrization,
X , has been found for Ωa such that we have a NURBS representation of Xa through Xa = X|Γa . That is, we know
he control points Pa,i1,i2 and can compute the normal vector, na, on Γa (assuming, without loss of generality, that
t is well oriented) through

Xa(ξ1, ξ2) =

n1∑
i1=1

n2∑
i2=1

Ri1,i2 (ξ1, ξ2)Pa,i1,i2 , na =
1
c0

∂ Xa

∂ξ1
×

∂ Xa

∂ξ2
, c0 =

∂ Xa

∂ξ1
×

∂ Xa

∂ξ2


2
.

Find Xb(ξ1, ξ2) from the following minimization problem

min
Pb,i1,i2

∫
Γa

∥Xb − Xa − tPMLna∥
2
2 dΩ (13)

where na is the outward point normal vector at Γa and

Xb(ξ1, ξ2) =

n1∑
i1=1

n2∑
i2=1

Ri1,i2 (ξ1, ξ2)Pb,i1,i2 .
5
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o find the minima we differentiate Eq. (13) w.r.t. the components, Pb,i1,i2,i (for i = 1, 2, 3), of Pb,i1,i2 and set this
xpression to zero∫

Γa

2Ri1,i2 (ξ1, ξ2)Xb − 2Ri1,i2 (ξ1, ξ2)(Xa + tPMLna) dΩ = 0, (14)

⇒

n1∑
j1=1

n2∑
j2=1

Pb, j1, j2, j

∫
Γa

Ri1,i2 (ξ1, ξ2)R j1, j2 (ξ1, ξ2) dΩ =

∫
Γa

Ri1,i2 (ξ1, ξ2)(Xa + tPMLna) dΩ (15)

or i1 = 1, . . . , n1, i2 = 1, . . . , n2, i = 1, 2, 3 which results in a system of equations on the form M P = b where
M is the mass matrix, P contains the coefficients Pb,i1,i2,i and b is the “force” vector formed from the right hand
ide of Eq. (15). Note that we could in principle used different weights wi1,i2 in the NURBS representation of Xb

elative to that of Xa. However, this would result in a non-linear problem, and we here choose to use the same
eights for both surfaces for simplicity.
As we in the limit ndofs → ∞ we have Xb = Xa + tPMLna we can state that this method converges to a

epresentation that for each point on Γb is a distance tPML normally directed from Γa. The PML layer is then
dentical to the conformal PML (see [44] for details). A simple linear lofting between Xa and Xb then yields the
olumetric representation of the PML layer.3 That is, the NURBS parametrization of the PML is given by

X(ξ ) = (1 − ξ3)Xa(ξ1, ξ2) + ξ3 Xb(ξ1, ξ2) = Xa(ξ1, ξ2) + ξ3(Xb(ξ1, ξ2) − Xa(ξ1, ξ2)). (16)

ith some regularity assumptions we can show that this third parametric direction (the absorption direction) is
ormal not just to Γa but also Γb. This is important in order to avoid exponential growth of waves of grazing
ncidence that is improperly aligned with the absorption direction. That is, it is important for waves not to have any
irectional component directed opposite to the absorption direction. More precisely, if a wave locally has direction
ector k and the absorption direction at the same location is d3, then we must have k · d3 > 0. This should hold
hroughout the domain Ωb. An outline of the argument for why nb = na goes as follows.

Assume that na is differentiable w.r.t. ξi , i = 1, 2. As ∥na∥ = 1 we have ∂ ∥na∥2

∂ξi
= 2na ·

∂ na
∂ξi

. That is, both ∂ na
∂ξ1

nd ∂ na
∂ξ2

are tangential vectors on Γa. Thus, ∂ na
∂ξ1

×
∂ na
∂ξ2

= c1na for some function c1. As ∂ Xa
∂ξ1

and ∂ Xa
∂ξ2

are tangent

vectors on Γa as well, ∂ na
∂ξ1

and ∂ na
∂ξ2

can locally be represented as a linear combination of these. That is,

∂ na

∂ξ1
= c11

∂ Xa

∂ξ1
+ c12

∂ Xa

∂ξ2
∂ na

∂ξ2
= c21

∂ Xa

∂ξ1
+ c22

∂ Xa

∂ξ2

for some functions ci j , i, j = 1, 2. Thus, we have

∂ na

∂ξ1
×

∂ Xa

∂ξ2
= c11

∂ Xa

∂ξ1
×

∂ Xa

∂ξ2  
=c0na

+c12
∂ Xa

∂ξ2
×

∂ Xa

∂ξ2  
=0

= c0c11na

∂ Xa

∂ξ1
×

∂ na

∂ξ2
= c21

∂ Xa

∂ξ1
×

∂ Xa

∂ξ1  
=0

+c22
∂ Xa

∂ξ1
×

∂ Xa

∂ξ2  
=c0na

= c0c22na.

We can now compute

∂ Xb

∂ξ1
×

∂ Xb

∂ξ2
=

(
∂ Xa

∂ξ1
+ tPML

∂ na

∂ξ1

)
×

(
∂ Xa

∂ξ2
+ tPML

∂ na

∂ξ2

)
=

[
c0 + tPMLc0(c11 + c22) + t2

PMLc1
]

na

3 This linear approach of achieving the volumetric PML layer is chosen throughout this work and is arguably the simplest and most
rigorous approach.
6
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Fig. 2. A cross section of the meshes around a ellipsoidal scatterer in the first quadrant of the xy-plane. The red curves are the exact
trigonometric parametrization of Xa and Xb in Eqs. (18) and (19), respectively. The gray arrows show the direction of the absorption in
the (green) PML layer. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

which implies

nb =

∂ Xb
∂ξ1

×
∂ Xb
∂ξ2 ∂ Xb

∂ξ1
×

∂ Xb
∂ξ2


2

= na.

or some boundaries represented by Xa the procedure for finding Xb satisfy the equality Xb = Xa + tPMLna exactly,
even on the coarsest mesh. This includes spherical, cylindrical, and Cartesian PML layers. The former two are
satisfied due to the exact geometry representation of conic sections provided by IGA. For other boundaries we may
have (for a finite ndofs) only the approximation Xb ≈ Xa + tPMLna. Thus, the decay direction being normal to the
boundaries Γa and Γb is not exact (only approximated), but this is also the case for the classical FEM formulations
provided for PML for non-trivial boundaries. To illustrate this, consider Γa to be an ellipsoid

Γa =

⎧⎨⎩x =

⎡⎣x1
x2
x3

⎤⎦ ∈ R3
:

(
x1

a1

)2

+

(
x2

a2

)2

+

(
x3

a3

)2

= 1

⎫⎬⎭ (17)

here ai is the semi major/minor axis of the ellipsoid in the Cartesian direction i . The spherical parametrization
an be extended for this with the parametrization

Xa(ϑ, ϕ) =

⎡⎣a1 sin ϑ cos ϕ

a2 sin ϑ sin ϕ

a3 cos ϑ

⎤⎦ , ϑ ∈ [0, π] ϕ ∈ [0, 2π ]. (18)

rom this we find

Xb(ϑ, ϕ) = Xa(ϑ, ϕ) +
t

q(ϑ, ϕ)

⎡⎣a2a3 sin ϑ cos ϕ

a1a3 sin ϑ sin ϕ

a1a2 cos ϑ

⎤⎦ (19)

here

q(ϑ, ϕ) =

√
a2

1a2
2 cos2 ϑ + sin2 ϑ

(
a2

1a2
3 sin2 ϕ + a2

2a2
3 cos2 ϕ

)
.

NURBS representations of Xa exists (c.f. [55]) but it is not clear if it exists for Xb (at least it requires some work
to find) and so we need to approximate this surface using IGA.

Consider an ellipsoidal scatterer with a1 = 3 m, a2 = 1 m and a3 = 2 m. We construct the artificial boundary
Γa through a larger ellipsoidal with a1 = 3.3 m, a2 = 1.3 m and a3 = 2.3 m. Both of these surfaces can be
exactly parametrized with NURBS and so we find the volumetric parametrization for Ωa with a simple linear lofting
between Γ and Γa. Note that this does not yields “radial” mesh lines normal to the surfaces. We now investigate
the construction of a PML layer with thickness t . As we can see from Fig. 2, IGA is able to exactly represent Γ
PML

7
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Fig. 3. The boundary of Γb approximated with IGA and linear FEM. The coloring is made with the error between the normal vector and
he absorption direction. In the L2-norm this error computes to 1.03% and 7.16% for IGA and linear FEM, respectively, even though linear
EM here uses 1.77 times as many dofs. (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)

nd Γa but not Γb. However, the latter is still much better approximated using IGA compared to linear FEM even
with much less degrees of freedom used. This results in a better approximation of mesh lines being normal to the
boundaries compared to that of linear FEM. This is illustrated even better in Fig. 3(b) where the expected pattern for
the linear FEM emerges; the normal vectors at the approximated boundary Γb will here be equal to the absorption
direction ∂ X

∂ξ3
only in the center of each element. The results for IGA using interpolation at Greville abscissae gave

errors roughly in the same range as that of the least squares.The comparison is illustrated more rigorously in Fig. 4.
The complex coordinate transformation representing the PML coordinate stretching is given by

S : [0, 1]3
→ C3, ξ ↦→ S(ξ ) = ξ̃ , ξ̃ = [ξ̃1, ξ̃2, ξ̃3] (20)

here

ξ̃i = ξi + iIi (ξi ), Ii (ξi ) =

∫ ξi

0
σi (ξ ) dξ (21)

nd σi is a monotonically increasing function satisfying σi ≥ 0.
Instead of using the bilinear form defined in the physical space (x ∈ Ω+

⊂ R3), we use the bilinear form over
the space Ω̃+

= {T (x) : x ∈ Ω+
} where

T : R3
→ C3, x̃ = T (x) = X(S(X−1(x))). (22)

The bilinear form is then given by

B(p, q) =

∫
Ω̃+

∇̃q · ∇̃ p − k2qp dΩ̃ . (23)

e then need the Jacobian matrix, J̃ =
∂ x̃
∂x , in order to compute ∇̃ p from ∇̃ p J̃ = ∇ p. Applying the chain rule

with J =
∂ X
∂ξ

and D =
∂ ξ̃

∂ξ
= I + i diag (σ1(ξ1), σ2(ξ2), σ3(ξ3))) yields

J̃ =
∂ X̃ ∂ ξ̃ ∂ ξ

= J(ξ̃ )D(ξ ) J−1(x). (24)

∂ ξ̃ ∂ξ ∂ X

8
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Fig. 4. The relative L2-error between the normal vector, n, and the absorption direction ∂ X
∂ξ3

/  ∂ X
∂ξ3


2

is plotted against the number of

egrees of freedom at Γb. Notice the “left shift” obtained for the C p̌−1-IGA-curves compared to the C0-FEM-curves due to higher regularity
hich implies that C p̌−1-IGA is more accurate per degrees of freedom than C0-FEM. This effect increases with increasing polynomial order.
urthermore, the use of Iso-parametric FEM is as expected superior to Sub-parametric FEM.

ince ∇ p J(ξ ) = ∇ξ p we have ∇̃ p = ∇ξ p D−1 J(ξ̃ )−1, which inserted into the bilinear form yields (for a single
atch)

B(p, q) =

∫
[0,1]3

[(
J(ξ̃ )−⊤ D−1

∇
⊤

ξ q
)

·

(
J(ξ̃ )−⊤ D−1

∇
⊤

ξ p
)

− k2qp
]

det
(

J(ξ̃ )
)

det (D) dξ . (25)

his reduces to the standard bilinear form whenever σi = 0, ∀i . Compare this bilinear form to the bilinear form
or spherical coordinates, (r, ϑ, ϕ) in [56]

B(p, q) =

∫
[0,1]3

[
( J−⊤

s D−1 J⊤

s J−⊤
∇

⊤

ξ q) · ( J−⊤

s D−1 J⊤

s J−⊤
∇

⊤

ξ p) − k2qp
]

det( J) det(D) dξ (26)

here

J s =

⎡⎣sin ϑ cos ϕ r cos ϑ cos ϕ −r sin ϑ sin ϕ

sin ϑ sin ϕ r cos ϑ sin ϕ r sin ϑ cos ϕ

cos ϑ −r sin ϑ 0

⎤⎦ , D = I + i diag
(

σ (ξ ),
1
r

I (ξ ),
1
r

I (ξ )
)

(27)

ith ξ =
r−R
S−R . In the present formulation the evaluation of trigonometric functions in the assembly procedure is

therefore replaced by NURBS-evaluations.
However, the formula for the Jacobian in Eq. (24) requires NURBS evaluations with complex parametric

rgument. For linear absorption parametrizations (e.g. Eq. (16)) this can be avoided. Starting by differentiation
f Eq. (16) w.r.t. ξ3 yields

∂ X
∂ξ3

= Xb(ξ1, ξ2) − Xa(ξ1, ξ2) (28)

which is constant in ξ3 due to the linearity in this parametric direction. Assume we now only have a single absorption
direction in the third parametric direction. From Eqs. (16) and (20) we then have

x̃ = X(ξ1, ξ2, ξ3 + iI3(ξ3)) = X(ξ ) + iI3(ξ3)(Xb(ξ1, ξ2) − Xa(ξ1, ξ2))

= X(ξ1, ξ2, ξ3) + iI3(ξ3)
∂ X

∂ξ3

9
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uch that
∂ x̃
∂ξ

= J + i
[

I3(ξ3)
∂2 X

∂ξ1∂ξ3
, I3(ξ3)

∂2 X
∂ξ2∂ξ3

, I ′

3(ξ3)
∂ X
∂ξ3

]
= J + i

[
∂2 X

∂ξ1∂ξ3
,

∂2 X
∂ξ2∂ξ3

,
∂ X
∂ξ3

]
diag (I3(ξ3), I3(ξ3), σ3(ξ3)) .

f we have absorption in the i th parametric direction, we can with the partition of unity property of NURBS write

∂2 X
∂ξ j∂ξi

=

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

1
Ri1,i2,i3 (ξ )

∂ Ri1,i2,i3

∂ξ j

∂ Ri1,i2,i3

∂ξi
P i1,i2,i3 , j ̸= i (29)

or any ξ inside an element. As the first order derivatives of the NURBS basis functions are readily available in
ll IGA codes no extra basis function evaluations are needed. The Jacobian expressions for multiple absorption
irection are slightly more cumbersome and is outlined in the Appendix. However, the main approach presented
erein only have a single absorption direction (in the ξ3-direction) which liberates us from these expressions. The
ain point here is that there is no need to evaluate NURBS functions with complex parametric arguments (as
q. (20) might indicate). However, it is convenient to have such an extension implemented for code verification.
or industrial codes the extension in Eq. (10) for these cases is thus not really needed for the linear lofting approach
uggested in the present work.

.4. Absorption functions

In [56], the following decay function (or absorption function) is used

σ (ξ ) = ξ (eγ ξ
− 1) (30)

hich gives

I (ξ ) =
eγ ξ (γ ξ − 1) + 1

γ 2 −
ξ 2

2
. (31)

his would require finding γ for each setup as it would be depending on the frequency and the PML thickness.
lternatively, the following decay function may be used [47,57,58]

σ (ξ ) = −γ ξ n ln ϵ, n = 2 (32)

hich gives

I (ξ ) = −
γ

n + 1
ξ n+1 ln ϵ. (33)

n [59,60] a decay function with unbounded integral was shown to be optimal with the assumption of Dirichlet
oundary conditions at Γb. The following function

σ (ξ ) = γ (1 − ξ )−n, 1 ≤ n < 3 (34)

ith

I (ξ ) =

{
γ

(1−ξ )1−n
−1

n−1 n > 1
−γ ln(1 − ξ ) n = 1

(35)

was found to be optimal for n = 1 and γ =
1

ktPML
(translated for the present PML formulation) for 2D acoustic

scattering. Unless otherwise stated, this function will be used in the examples herein. As noted in [59] this function
yields discontinuity at ξ = 0. Somewhat surprisingly, the continuous alternative

σ (ξ ) = γ
[
(1 − ξ )−n

− 1
]
, 1 ≤ n < 3 (36)

ith

I (ξ ) =

{
γ

[
(1−ξ )1−n

−1
n−1 − ξ

]
n > 1

−γ [ln(1 − ξ ) + ξ ] n = 1
(37)

id not give better results.
10
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3
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s
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Fig. 5. Scattering from rigid sphere: Illustration of the coarse mesh MIGAPML

1, p̌,ǩ
and the first and fifth refinement. The PML domain (green)

has the same thickness as the domain inside Γa (in light blue) which is attached to the spherical (gray) scatterer, Γ . (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Consider a plane wave at the far side of the PML where the PML (between 0 < x3 < tPML) is parametrized by
X = ξ1e1 + ξ2e2 + tPMLξ3e3 (where ei , i = 1, 2, 3 are the standard Cartesian basis vectors in R3)

pinc(x̃)|Γ̃b
= Pinceik·x̃

= Pinceik·xe−k3tPML I (1). (38)

If we want |pinc/Pinc| to decay to a value ϵ at Γb we must have

ϵ = e−k3tPML I (1). (39)

For the particular function in Eq. (32) we can compute γ to be

γ =
n + 1
k3tPML

. (40)

. Numerical examples

We initiate this section with an investigation on a sphere where analytic solution exists to the plane wave
cattering problem. Then, we consider a manufactured solution on a cylindrical domain, before ending with a
cattering problem on a more complex geometry.

.1. Scattering from rigid sphere

We start by performing the same analysis done in Figure 9 in [17] were the convergence through h-refinement is
studied on a rigid scattering problem on a sphere of radius R = 5.075 m. For completeness the mesh construction
is here repeated. The meshes will be generated from a standard discretization of a sphere using NURBS as seen
in Fig. 5. We shall denote by MIGAPML

m, p̌,ǩ
, mesh number m with polynomial order p̌ and continuity ǩ across element

boundaries.4 For the corresponding FEM meshes we denote by MFEMPML
m, p̌,s and MFEMPML

m, p̌,i the subparametric and
isoparametric FEM meshes, respectively. The initial mesh is depicted as mesh MIGAPML

1, p̌,ǩ
in Fig. 5(a) and is refined

only in the angular directions for the first 3 refinements (that is, mesh MIGAPML

4, p̌,ǩ
only have two element thickness

in the radial direction). Mesh MIGAPML

m, p̌,ǩ
, m = 5, 6, have 4 and 8 elements in the radial direction, respectively. This

is done to obtain low aspect ratios for the elements. All the meshes will then be nested and the refinements are
done uniformly. We shall use the same polynomial order in all parameter directions; p̌1 = p̌2 = p̌3. The MIGAIEM

m, p̌,ǩ
meshes used in [17] correspond to the light blue domain in Fig. 5 (with the PML-layer being replaced by infinite
elements).

4 Except for some possible C0 interfaces in the initial CAD geometry.
11
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Fig. 6. Scattering from rigid sphere: Convergence analysis on the rigid scattering case with k R = 5.075 and mesh Mm,2,1, m = 1, . . . , 6.
or the PML formulation the stretching function in Eq. (34) is used with n = 1. The relative energy error (from Eq. (41)) is plotted against

he degrees of freedom.

The energy norm is here defined by (cf. [17])

|||p|||Ωa =

√∫
Ωa

|∇ p|
2
+ k2|p|

2 dΩ . (41)

Fig. 6 illustrates the same story as observed in [17]; The increased continuity of the basis functions offered by
GA play a crucial role for improving the accuracy of the numerical solution. To obtain higher accuracy using PML
t is however important to know that the PML-thickness influences the accuracy as illustrated in Fig. 7. This in
urn increases dofs used in order to maintain the aspect ratio of the elements. This problem is here not prevalent
or the IEM [17]. Before pollution from the PML-thickness becomes dominant we see that the PML approximation
ields solution close to the best approximation. Finally, a comparison between two stretching functions are made
n Fig. 8. The stretching function in Eq. (34) gives much better results than that of Eq. (32). The PML simulation
ith the doubled PML thickness again follows closely the best approximation (here in the L2(Γ )-norm).

.2. Cylinder

In Fig. 12 we motivate the implementation of the Combined Helmholtz Integral Formulation [61] (CHIEF) on
he Collocation Conventional Boundary Integral Equation (CCBIE) [18] formulation (named CCBIEC) which will
e used to make a reference solution for this section.

Consider a cylinder5 of length L = π m and radius R = 1 m centered at the origin with domain

Ω−
=

{
x ∈ R : x2

1 + x2
2 ≤ R2 and −

L
2

≤ x3 ≤
L
2

}
.

We want to find the eigenfunctions, p(x), and eigenvalues k2 to the eigenvalue problem −∇
2 p = k2 p with

associated boundary conditions. Its interior Dirichlet problem (p(x) = 0, x ∈ ∂Ω−) has eigenfunctions6 (cf.
62, p. 52])

p(x) = sin
n3π (x3 + L/2)

L
Jn

(
x∗

nm

R
r
)

cos nθ, n3 ∈ N∗, Jn(x∗

nm) = 0, x ∈ Ω−

5 Note that the experimental simulation herein rotates the cylinder to be aligned with the x-axis. The eigenfrequencies are not altered by
his transformation.

6 Here, J is the cylindrical Bessel function of the first type.
n

12
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Fig. 7. Scattering from rigid sphere: Convergence analysis on the rigid scattering case with k R = 5.075 and mesh Mm,4,3, m = 1, . . . , 6.
or the PML formulation the stretching function in Eq. (34) is used with n = 1. The relative energy error (from Eq. (41)) is plotted against

he degrees of freedom. When doubling the PML thickness we also double the number of elements in the radial direction (which can be
een by an increase of dofs used in the final three meshes). The best approximation (BA) is in the L2-norm over the domain Ωa. Note that
he best approximation simulation lacks elements in Ωb and its curve is here thus shifted to the left. With increased PML thickness the
ML-simulations converge to the accuracy of the IEM-simulations.

Fig. 8. Scattering from rigid sphere: Convergence analysis on the rigid scattering case with k R = 5.075 and mesh Mm,4,3, m = 1, . . . , 6.
he relative L2-error is plotted against the degrees of freedom. The two stretching functions used here are given in Eqs. (32) and (34),

espectively. Here, C = α/(kntn−1
PML ) with α = 30 and n = 2. Note that α = 30 was used instead of α = 10 as in [47] as the former gave

uch better results. The best approximation (BA) is for the degrees of freedom at Γ in the L2-norm.

ith their corresponding wavenumbers (obtained by inserting the eigenfunctions in Eq. (1))

k =

√(
x∗

nm
)2

+

(n3π
)2

,

R L

13
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Fig. 9. Cylinder: Boundary element method mesh MIGABEM
4,2,1 (with 736 elements and 956 degrees of freedom).

Fig. 10. Cylinder: Two cross sectional meshes that can be revolved around the x-axis (tensorially with a NURBS representation of a circle)
o obtain the volumetric mesh used with the PML approach (i.e. Fig. 11). The PML domain is here highlighted in green. The meshes are
onstructed in a way that optimizes the aspect ratio. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

here x∗
nm excludes the trivial solutions (x∗

nm ̸= 0) and the interior Neumann problem (∂n p(x) = 0, x ∈ ∂Ω−) has
igenfunctions

p(x) = cos
n3π (x3 + L/2)

Jn

( xnm r
)

cos nθ, n3 ∈ N, J′ (xnm) = 0, x ∈ Ω−
L R n

14
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Fig. 11. Cylinder: PML mesh MIGAPML
4,2,1 (with 12144 elements and 20712 degrees of freedom).

with their corresponding wavenumbers (obtained by inserting the eigenfunctions in Eq. (1))

k =

√( xnm

R

)2
+

(n3π

L

)2
.

For the exterior problem these eigenfrequencies correspond to the fictitious eigenfrequencies for the CBIE
(conventional boundary integral equation) formulation and the HBIE (hyper-singular boundary integral equation)
formulation, respectively. The fictitious eigenfrequencies below kL = 15 are given by

kL ≈ 8.182137, 9.826300, 12.079081, 12.440854, 13.578794, 14.662586 (42)

for the CBIE formulation, and

kL ≈ 0, π, 5.784249, 2π, 6.582336, 8.540255, 3π, 9.595168, 10.096379, 11.058209, 11.469336,

12.037659, 12.440854, 4π, 13.198424, 13.449673, 13.567167, 13.578794, 13.833698, 14.617689

(43)

for the HBIE formulation.
Consider the manufactured solution (cf. [18])

p(x) =

N∑
n=1

CnΦk(x, yn), Φk(x, y) =
eik R

4π R
, where R = |x − y| and Cn = cos(n − 1). (44)

ith N = 33
= 27 source points

yn =
R
4

[ci , c j , cl], n = i + 3( j − 1) + 32(l − 1), i, j, l = 1, 2, 3

where c1 = −1, c2 = 0 and c3 = 1. A total of 43
= 64 uniformly spaced points around the origin on a regular cube

rid of side length 1/4 is used for the interior points in the CHIEF formulation. The results are given in Fig. 12
here we can see that the CCBIEC formulation follows the best approximation (BA) throughout the frequency

weep without any fictitious eigenfrequencies present in the CCBIE and CHBIE formulations. The CBM (collocation
urton–Miller) formulation removes the fictitious frequencies but has a reduces accuracy compared to the CCBIEC

ormulation. Consider now the same cylinder scattering a plane wave incident with the x-direction. Some PML
eshes are found in Fig. 10 where two meshing strategies are outlined. Both strategies yields roughly the same

ccuracy. The possibility to fill corners like this will be important to create an automatic PML mesh generator for
on-smooth artificial boundary as in this example. The near-field is plotted in Fig. 13 (for k = 100 m−1) and the
ar field (for k = 50 m−1) in Fig. 14.
15
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p
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F

Fig. 12. Manufactured solution with a cylinder: The plots show the instabilities around eigenfrequencies of the corresponding interior Dirichlet
roblem using IGABEM formulations [18]. All computations are done using the parametrization in Fig. 9 with NURBS degree 2. The dashed
ines correspond to the fictitious eigenfrequencies in Eqs. (42) and (43).

Fig. 13. Scattering from cylinder: The figure show the scattered near field at k = 100 m−1 using mesh MIGAPML
7,2,1 . The boundary Γa is

highlighted with a white line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

3.3. BeTSSi model 3

The BeTSSi model 3 is illustrated in Fig. 15. The model is strictly speaking neither convex nor smooth (G1)
due to the attachment of the smaller hemispherical cap to the intermediate cone shape, so this has been taken into
account when constructing the artificial boundary. Some meshes are visualized in Figs. 16 and 17 (with polynomial
order p̌ and continuity ǩ), and a result for the case of an αs = 240◦ and βs = 0◦ angle of incidence is illustrated in

ig. 18. The far field of the same simulation is plotted in Fig. 19 as a function of the aspect angle α. Mesh MIGAPML
5,2,1

is in good agreement with the reference solution (using BEM [18]). Mesh MIGAPML
6,2,1 is visually indistinguishable

with the reference solution. Similar results are shown in a monostatic case (with α = α and β = β = 0) in Fig. 20.
s s

16
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f

Fig. 14. Scattering from cylinder: Far field pattern as a function of the aspect angle α at k = 50 m−1. The CCBIEC formulation was used
or the BEM reference solution. The back scattering (at α = 180◦) and forward scattering (at α = 0◦) is present as expected.

Fig. 15. The BeTSSi model 3: This model is one of the benchmark models in the BeTSSi (Benchmark Target Strength Simulations [63])
community. The BeTSSi model 3 (M3) is a model given by two hemispherical end caps with radii R1 = 3 m and R2 = 5 m connected by
a cone of length L = 41 m. The speed of sound in the fluid is c = 1500 ms−1.

4. Conclusions

In this work a general spline based PML formulation has been presented to ease the construction of the PML
domain. The formulation is no longer dependent on coordinate systems like the cylindrical, ellipsoidal or the
Cartesian coordinate system. Instead, it is based directly on the spline space in which the numerical solution is
sought. This eliminates calls to trigonometric functions and enables the PML to be truly matched to any convex
and smooth artificial boundary.

For smooth artificial boundaries this work has presented an automatic PML-layer generation approach. The outer
surface of the layer located a distance t normally away from the inner surface of the PML-layer is approximated
PML

17
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Fig. 16. The BeTSSi model 3: Mesh MIGAPML

5, p̌,ǩ
illustrating the perfectly matched layer (green) domain Ωb around the (light blue) domain

Ωa. The distance to the PML layer is the same as the thickness; tpml = 0.25R2. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Fig. 17. The BeTSSi model 3: Illustration of the meshes where the refinement is performed reducing the aspect ratio of the coarse mesh.

Fig. 18. The BeTSSi model 3: Results on mesh MIGAPML
5,2,1 illustrating the scattered pressure both in the vicinity of the scatterer and in the

ML. The artificial boundary Γa is added as a transparent surface.

sing least squares. These two surfaces are then linearly lofted to get the volumetric mesh. As ndofs → ∞ this
pproach converges to an exact conformal PML formulation. This approach enables a simple adjustment to the
tandard assembly routine and requires quantities already present in standard codes without the need to evaluate

URBS-function with complex parametric arguments. The application to non-smooth artificial boundary could in

18
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Fig. 19. The BeTSSi model 3: Far field pattern as a function of the aspect angle α. The CCBIE formulation was used for the BEM reference
solution.

Fig. 20. The BeTSSi model 3: Far field pattern as a function of the aspect angle α at f = 1 kHz.
19
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rinciple also be implemented in an automatic fashion based on a wedge fill outlined in this work. This is suggested
s future work.

Only a modification of the standard Jacobian is needed in the bilinear form instead of several Jacobians from
dditional coordinate transformations. As restrictions to the computational domains are reduced, both mesh quality
nd computational efficiency can be improved by the present approach. Moreover, the usage of spline basis function
f higher continuity improves accuracy of both the PML-layer approximation and the numerical solution itself
hrough the IGA framework.

The usage of unbounded absorption function conveniently reduces the number of PML parameters to tune.
n the experiments we only need to tune the distance to the artificial boundary and the thickness of the PML
ayer. For a reasonable distance to the artificial boundary, we have used the same distance as the PML thickness
ielding reasonably good results, in which case the PML thickness is the most sensitive parameter to tune for high
ccuracies. Until pollution from the PML-thickness occurs, the PML approximation yields solution close to the best
pproximation indicating that the integrations over the unbounded absorption functions are well resolved.
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ppendix. Multiple pml absorption directions

For two absorption direction (say, the ξ2- and the ξ3-direction) we can write

X(ξ ) = X(ξ1, 0, 0) + ξ2
∂ X
∂ξ2

(ξ1, 0, 0) + ξ3
∂ X
∂ξ3

(ξ1, 0, 0) + ξ2ξ3

(
∂ X
∂ξ2

(ξ1, 0, 1) −
∂ X
∂ξ2

(ξ1, 0, 0)
)

. (A.1)

Note that we could also have used
∂ X
∂ξ2

(ξ1, 0, 1) −
∂ X
∂ξ2

(ξ1, 0, 0) =
∂ X
∂ξ3

(ξ1, 1, 0) −
∂ X
∂ξ3

(ξ1, 0, 0). (A.2)

From Eq. (A.1) we find

∂2 X
∂ξ2∂ξ3

(ξ ) =
∂ X
∂ξ2

(ξ1, 0, 1) −
∂ X
∂ξ2

(ξ1, 0, 0)

∂ X
∂ξ2

(ξ ) =
∂ X
∂ξ2

(ξ1, 0, 1) + ξ3
∂2 X

∂ξ2∂ξ3
(ξ )

∂ X
∂ξ3

(ξ ) =
∂ X
∂ξ3

(ξ1, 0, 1) + ξ2
∂2 X

∂ξ2∂ξ3
(ξ )

such that we can rewrite Eq. (A.1) as

X(ξ ) = X(ξ1, 0, 0) + ξ2
∂ X
∂ξ2

+ ξ3
∂ X
∂ξ3

− ξ2ξ3
∂2 X

∂ξ2∂ξ3
, (A.3)

hich enables us to write7

x̃ = X(ξ1, ξ2 + iI2, ξ3 + iI3)

7 We take the liberty to write I (ξ ) as I and σ (ξ ) as σ .
i i i i i i
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J.V. Venås and T. Kvamsdal Computer Methods in Applied Mechanics and Engineering 401 (2022) 115647

W

w

W

R

= X(ξ ) + iI2
∂ X
∂ξ2

+ iI3
∂ X
∂ξ3

− (iξ2 I3 + iξ3 I2 − I2 I3)
∂2 X

∂ξ2∂ξ3
.

e can then compute

∂ x̃
∂ξ

= J+i
[

I2
∂2 X

∂ξ1∂ξ2
+ I3

∂2 X
∂ξ1∂ξ3

− (ξ2 I3 + ξ3 I2 + iI2 I3)
∂3 X

∂ξ1∂ξ2∂ξ3
,

σ2
∂ X
∂ξ2

− σ2 (ξ3 + iI3)
∂2 X

∂ξ2∂ξ3
,

σ3
∂ X
∂ξ3

− σ3 (ξ2 + iI2)
∂2 X

∂ξ2∂ξ3

]
where (using the same argument as before)

∂3 X
∂ξ1∂ξ2∂ξ3

=

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

1
R2

i1,i2,i3
(ξ )

∂ Ri1,i2,i3

∂ξ1

∂ Ri1,i2,i3

∂ξ2

∂ Ri1,i2,i3

∂ξ3
P i1,i2,i3 .

Similarly for linearity in all parametric direction we can write

X(ξ ) = X(0) + ξ1
∂ X
∂ξ1

+ ξ2
∂ X
∂ξ2

+ ξ3
∂ X
∂ξ3

− ξ1ξ2
∂2 X

∂ξ1∂ξ2
− ξ1ξ3

∂2 X
∂ξ1∂ξ3

− ξ2ξ3
∂2 X

∂ξ2∂ξ3
+ ξ1ξ2ξ3

∂3 X
∂ξ1∂ξ2∂ξ3

, (A.4)

hich enables us to write

x̃ = X(ξ1 + iI1, ξ2 + iI2, ξ3 + iI3)

= X(ξ ) + iI1
∂ X
∂ξ1

+ iI2
∂ X
∂ξ2

+ iI3
∂ X
∂ξ3

− (iξ1 I2 + iξ2 I1 − I1 I2)
∂2 X

∂ξ1∂ξ2

− (iξ1 I3 + iξ3 I1 − I1 I3)
∂2 X

∂ξ1∂ξ3
− (iξ2 I3 + iξ3 I2 − I2 I3)

∂2 X
∂ξ2∂ξ3

+ [(ξ1 + iI1)(ξ2 + iI2)(ξ3 + iI3) − ξ1ξ2ξ3]
∂3 X

∂ξ1∂ξ2∂ξ3
.

e can then compute

∂ x̃
∂ξ

= J+i
[
∂ X
∂ξ1

− (ξ2 + iI2)
∂2 X

∂ξ1∂ξ2
− (ξ3 + iI3)

∂2 X
∂ξ1∂ξ3

+ (ξ2 + iI2)(ξ3 + iI3)
∂3 X

∂ξ1∂ξ2∂ξ3
,

∂ X
∂ξ2

− (ξ1 + iI1)
∂2 X

∂ξ1∂ξ2
− (ξ3 + iI3)

∂2 X
∂ξ2∂ξ3

+ (ξ1 + iI1)(ξ3 + iI3)
∂3 X

∂ξ1∂ξ2∂ξ3
,

∂ X
∂ξ3

− (ξ2 + iI2)
∂2 X

∂ξ2∂ξ3
− (ξ1 + iI1)

∂2 X
∂ξ1∂ξ3

+ (ξ1 + iI1)(ξ2 + iI2)
∂3 X

∂ξ1∂ξ2∂ξ3

]
diag (σ1, σ2, σ3)
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