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Abstract: The aim of this study was to find strains in embedded reinforcement by monitoring surface
deformations. Compared with analytical methods, application of the machine learning regression
technique imparts a noteworthy reduction in modeling complexity caused by the tension stiffening
effect. The present research aimed to achieve a hybrid learning approach for non-contact prediction
of embedded strains based on surface deformations monitored by digital image correlation (DIC).
However, due to the small training dataset collected by the installed strain gauges, the input dataset
was enriched by a semi-empirical equation proposed in a previous study. Therefore, the present study
discussed (i) instrumentation by strain gauge and DIC as well as data acquisition and post-processing
of the data, accounting for strain gradients on the concrete surface and embedded reinforcement;
(ii) input dataset generation for training machine learning regression models approaching hybrid
learning; (iii) data regression to predict strains in embedded reinforcement based on monitored surface
deformations; and (iv) the results, validation, and post-processing responses to make the method
more robust. Finally, the developed model was evaluated through numerous statistical performance
measures. The results showed that the proposed method can reasonably predict strain in embedded
reinforcement, providing an innovative type of sensing application with highly improved performance.

Keywords: machine learning; hybrid learning; digital image correlation; neural network; Gaussian
process regression; decision tree; ensemble model; strain gauge; reinforced concrete; strain

1. Introduction

Concrete cracking is usually an indicator of RC structure performance; therefore, crack
mapping and assessment in RC members is an important step in concrete infrastructure
inspection. In addition to cracks, reinforcement strain, which is usually accompanied by
bond–slip and concrete cracking, has particular importance in evaluating a structure’s
status and safety. Observed strains that are close to the yielding strain of the reinforcement
indicate structure overloading or that a failure is about to occur.

Electrical resistance strain gauges (SGs) and fiber optic sensors (FOSs) are commonly
used to measure reinforcement strain, but they need to be attached to the reinforcement for
monitoring. In existing structures, this usually requires removing the concrete cover and
exposing the reinforcement. In this case, sensors are referred to as being post-installed. However,
for new structures, sensors can be pre-installed on the reinforcement in the construction phase.

Regardless of the installation method, i.e., pre-installed or post-installed, SGs have a
number of drawbacks; for instance, measurements recorded by SGs represent local strains
averaged over the gauge’s length, while the highest reinforcement strain is at the location
of cracks. These cracks are not always immediately obvious, and it is not feasible to predict
the exact location of cracks in a structure before they occur. This means cracks will appear
at scattered locations depending on locally weak sections.

However, optical methods such as the digital image correlation (DIC) system overcome
the limitation of only providing local measurements and allow us to monitor the surface in
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a two- or three-dimensional system. According to Hoult et al. [1], DIC has the potential
to be a new alternative to traditional technologies used to assess RC structures. DIC is a
technique that was initiated in the 1980s [2] and has been used in several recent studies,
such as embedded rebar assessment using surface deformation [3–5].

2. Prior Work and Research Need

Advancements in optical technique algorithms have led engineers to achieve rapid
implementation and convenience in structural inspection. Therefore, there is increasing
interest in image-based inspection for structural health monitoring (SHM). However, one
of the challenges associated with assessing existing infrastructure is correlating externally
measured parameters, such as surface strains, with in-depth parameters, such as reinforce-
ment strains, which depends on a number of independent input variables. The correlation
between surface deformation and strain in embedded reinforcement has been studied in
some research [3,4,6,7], showing the feasibility of embedded strain prediction using surface
measurements. Therefore, the authors studied the idea of strain measurement in embedded
reinforcement by generating a semi-empirical equation in a previously published article [5].
As a result, good correlation was observed between the strain in embedded reinforce-
ment and surface deformation, which were monitored by installed strain gauges and a
digital image correlation system, respectively. However, the proposed method still needs
improvement because (1) the data collected by existing pre-installed strain gauges were
limited (in few locations), and (2) the proposed equation had many variables, which made
computation difficult. Here, the application of machine learning aimed to find a regression
between all the collected independent input variables and monitored strains in embedded
reinforcement, without the complexities that exist in the application of empirical equations.

2.1. Research Description and Significance

In a previous study by the authors [5], strain gauges were installed in only a few
locations through the embedded reinforcement. Therefore, there were not enough available
data to meticulously train the ML regression model. Thus, the use of hybrid learning
was proposed in this study to feed the model with both experimental data and synthetic
data generated by a previously published semi-empirical equation [5]. To this end, data
collected from installed strain gauges usually located between the appearing cracks with
no bond–slip were combined with additional synthetic data for the crack zones and around
the debonding/slip zones. The theory behind this equation was based on the tension
stiffening effect, which can simulate the debonding and bond–slip zone around the cracks.
Then, machine learning (ML) regression models were generated and trained, approaching
a hybrid learning method. The developed models were evaluated through numerous
statistical performance measures to find the most efficient trained model. Finally, if we
were satisfied with the performance of the trained model, it was deployed on a new sample
with no previously observed data. Otherwise, the input dataset needed to be checked
and prepared for training by the new optimized regression models. Figure 1 shows the
proposed workflow, which will be defined in detail in this paper.
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This study aimed to deploy innovative and intelligent instruments for strain estimation
along embedded rebar for SHM purposes in civil engineering structures.

2.2. Theoretical Approach in Tensile Behavior of RC Members

The constitutive law adopted to simulate the tensile behavior of the RC member is
called CEB Model [8], which was developed for non-linear plastic behavior resulting from
the tension stiffening effect. The tension stiffening effect is described as the contribution
of the surrounding concrete to the tensile stiffness of the reinforcing bars. This stiffness is
provided by uncracked and bond–slip zones generated by the strain localization process [9].
The conceptual model of RC members subjected to monotonic tensile loading, shown in
Figure 2, presents different behaviors of RC members, including (1) uncracked concrete
with elastic behavior, (2) the cracking phase, and (3) stabilized cracking, while there is still
debonding development around the cracks.
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Figure 2. Conceptual model of tensile behavior, including identification of the most relevant stages.
Discussed by ref. [10] in detail.

The first step in elastic behavior, hardening of the zone until a planar crack forms,
occurs just before the maximum principal stress (σsr) is reached. It can be calculated by
Equation (1) [11]:

σsr =
1 + ηρ

ρ
fct, (1)

where the reinforcement ratio is ρ = As/Ac
, η = Es/Ec

, and fct is the concrete tensile
strength. By increasing the tensile stress, bond–slip and crack propagation form at random
locations according to locally weak sections. Crack planes are perpendicular to the direction
of pure tension and may slide if the direction of principal stress changes.

Crack propagation takes place in the cracking phase with observed crack opening
strain, εcr, on detected cracks. Then, after a complete cracking process zone, no new cracks
appear in the stabilized cracking phase, and only the opening strain in existing cracks
increases. Accordingly, bonding deterioration around the cracks develops, namely the
debonding length, Ldebonding, given by Equation (4). The change in crack width ∆w is
calculated as the total crack opening displacement within the debonding length:

∆w = εcrLdebonding, (2)
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σ = Esεcr, (3)

Ldebonding =
Es∆w

σ
, (4)

where εcr is the crack opening strain, while a concrete crack is initiated if the strain exceeds
0.010% to 0.012% [12]. The axial stiffness of the RC member proceeds toward the naked rebar
via crack propagation, developing debonding zones and decreasing concrete collaboration
in transferring tensile stress, as shown in Figure 2. Therefore, this behavior, called the
tension stiffening effect, can be defined as a non-linear model. As illustrated in Figure 3, the
contribution of concrete to tension is a non-linear function of the concrete’s strength, geometry,
reinforcement ratio, bond properties of the reinforcement, and the modular ratio [13]. ‘
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Accordingly, a semi-empirical equation was proposed by the authors in a previous
study [5], which concurred with the non-linearity resulting from the tension stiffening effect.
Therefore, the local strain (εLS, i) in embedded rebar can be estimated by the local surface
strain (εLC, i) in the cracking and stabilized cracking phases, as given by Equation (5):

∑n
i=0 εLS, i =

(
fct(1 + ηρ)

ρσs

)α

∑n
i=0 εLC, i +

[
1−

(
fct(1 + ηρ)

ρσs

)α] σs

Es
, (5)

In the plastic behavior zone (i f σs > σsr), the local strain (i = n) in the embedded rebar
is εLS, i =

∆LS, i
LLS, i

and the local strain (i = n) on the surface of the concrete is εLC, i =
∆LC, i
LLC, i

.

σs =
Es

(
ε− σsr

ERC

)2ε− εcr︸︷︷︸
( σsr

ERC
)

+

 σsr
Es
− εcr︸︷︷︸

( σsr
ERC

)


+ σsr, (6)

where σs is the average stress level in the intended part, formulated by Khalfallah and
Guerdouh [11]; ε is the average strain along the surface, which is patterned and monitored
by DIC; ERC is the elastic modulus of the reinforced concrete; and α is a constant value based
on the concrete material and geometry presented earlier. This α value was experimentally
calculated for two types of concrete and geometry [5].

Since Equation (5) has many variables, which makes it complex to apply in the field,
ML regression models were trained using two datasets obtained by (1) strain gauges in
bonding zones and (2) a semi-empirical equation in slip/debonding zones combined with
the SG dataset, thus approaching hybrid learning.

2.3. Machine Learning and Approach of Hybrid Learning

In recent years, machine learning models have been employed as a tool that uses
mathematical formulations to construct a brain-type learning system operation based on
the relationships that exist between observed inputs and target outputs. In other words,
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regression analysis refers to the method of studying the correlations between independent
input variables and dependent target values.

One of the challenges in this study was the small amount of data collected by the strain
gauges installed in limited positions in order to train the ML regression models. Accordingly,
implementing state-of-the-art synthetic data generators can provide us with a bigger dataset
meant to develop larger and improved training datasets without depreciating the original
application. This synthetic dataset was provided using the semi-empirical equation proposed
by Mirzazade et al. [5] for zones in the debonding length around the appearing cracks. Then,
by learning the complex distribution of a dataset, approaching hybrid learning, the ML
regression models were trained to predict strain in embedded reinforcement.

3. Operational Principle and Experimental Set-Up for Data Accumulation

The experimental tests were carried out to meticulously collect part of the input
training datasets in the bonding zone. The main objective of this section is to describe the
details of the operational principle of the experiment and collection of data to implement
the ML regression models.

3.1. Material and Experimental Procedures

The prepared specimens were casted using two different concrete properties, Normal
Concrete (NC) and High-Performance Concrete (HPC), in two different cross-sectional
areas: 100 × 100 mm2 and 150 × 150 mm2. All the recipes for the four prepared batches in
both NC and HPC are presented in Table 1.

Table 1. Normal concrete and HPC recipes.

Concrete Recipes for Batches 1–3 of NC HPC Recipe

Batch 1 2,3 Batch 4
Volume [L] 45 30 Volume [L] 32

Cement [kg] 17.10 11.40 Cement [kg] 32
Water [kg] 8.725 5.817 Silica fume [kg] 6.4

Aggregate 0–4 mm [kg] 58.05 38.70 Quartz [kg] 9.6
Aggregate 4–8 mm [kg] 19.35 12.90 Water [kg] 7.36

Filler [kg] 1.800 1.200 Superplasticizer [kg] 0.48
Superplasticizer [kg] 0.1125 0.075 Sand Type I 1 [kg] 11.2

Sand Type II 1 [kg] 11.2
1 ‘Sand Type I’ and ‘Sand Type II’ are two different sand types; type I is finer.

In this test, the reinforcement was a hot rolled ribbed 16 mm bar, type B500B, with
500 MPa yield strength (Re), 1.08 tensile/yield strength ratio (Rm/Re), and 200 GPa
Young’s modulus. The RC members were thereafter cast and left to cure for 28 days. The
compressive test was carried out on prepared test cubes after 28 days of curing, and the
obtained mechanical characteristics are shown in Table 2.

Table 2. Mechanical properties of normal concrete and HPC.

W/C Compressive Strength 1

[MPa] (fck)
Tensile Strength 2

[MPa] (fct)
Young Modulus 2

[GPa] (Ecm)

Normal Concrete 0.5 50.63 2.0 35
HPC 0.23 115.20 4.5 70

1 Measured at 28 days on cubes according to standard EN 12390-1. 2 Measured at 28 days on cubes according to
standard EN 1992-1-1: 2005.

3.2. Instrumentation
3.2.1. Strain Gauges

Initially, the rebars were cut to a length of 1500 mm. The tension concrete prism
had an 800 mm long reinforcement in the middle of the cross-section while the bars
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extended outside the concrete prism by 350 mm on each side, as shown in Figure 4. Eight
prepared specimens were equipped with eight embedded SGs and two other specimens
were equipped with 15 SGs. In the rebars with eight SGs, the first one was located at
approximately 50 mm from the edge of the concrete and the distance between the gauges
was approximately 100 mm. In the rebars with 15 SGs, the distance between them was
approximately 50 mm, as shown in Figure 4. All attached strain gauges were connected to
a computer in the laboratory and recorded at a rate of 10 Hz by a data acquisition system.
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Figure 4. Geometry of specimens with locations of installed strain gauges.

To install the SGs, a belt grinder was used to grind the areas where the SGs were
located, and sandpaper was used to further smooth the surface. The strain gauge was
removed from the protective plastic and normal tape was applied to the top of the strain
gauge. The tape was used to apply the gauge straight along the rebar and lift one side of
the SG. Then, adhesive (Rapid Adhesive Z70 by HBM) was applied to the strain gauge and
connecting cables, as shown in Figure 5.
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Overall, 10 specimens were prepared in three different groups based on concrete type
and cross-sectional area, comprising: (1) NC—100 × 100 mm2, (2) NC—150 × 150 mm2,
(3) HPC—100 × 100 mm2. The specimens, with the exact location of the installed SGs
from the edge of the concrete (0–800 mm), are summarized in Table 3. After casting the



Infrastructures 2023, 8, 71 7 of 20

specimens and testing the installed SGs, there was no response from the installed SGs on
5N100, meaning that no data were retrieved from 5N100.

Table 3. Tested specimens.

ID Group
Dimension

[mm2] No. SGs Type
SG Locations [mm]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1N150 2 150 × 150 15 NC 51 100 151 200 253 301 352 402 452 502 550 605 655 704 754
2N100 1 100 × 100 15 NC 46 97 146 195 246 299 349 397 447 499 548 598 647 698 748
3N150 2 150 × 150 8 NC 50 - 153 - 253 - 353 - 454 - 551 - 656 - 756
4N150 2 150 × 150 8 NC 49 - 149 - 248 - 349 - 449 - 549 - 648 - 747
5N100 1 100 × 100 8 NC - - - - - - - - - - - - - - -
6N100 1 100 × 100 8 NC 43 - 145 - 247 - 348 - 449 - 549 - 648 - 747
7N100 1 100 × 100 8 NC 53 - 154 - 253 - 353 - 452 - 552 - 651 - 752
8U100 3 100 × 100 8 HPC 51 - 151 - 251 - 351 - 450 - 550 - 652 - 752
9U100 3 100 × 100 8 HPC 48 - 148 - 248 - 349 - 450 - 550 - 650 - 750
10U100 3 100 × 100 8 HPC 47 - 149 - 249 - 350 - 448 - 550 - 649 - 747

3.2.2. Surface Preparation (DIC)

Digital image correlation (DIC) is a non-contact measurement technique that uses
digital images to obtain surface deformations. For this aim, the surface of the specimen
must be prepared. Holes on the surfaces can disturb image correlation, be recognized as
speckles, and may have an impact on the result. To prevent this, holes on the surface were
filled using wall putty. The surface was then painted using matte white spray paint. Once
the white spray paint had dried, a speckle pattern was painted on the surface using black
spray paint. According to Reu [2], each speckle should have a diameter of at least 3 pixels.
The other important parameter is coverage, which is the ratio of black-to-white pixels in
the entire pattern and should be between 40–70% according to Mazzoleni [14], but ideally
around 50% according to Reu [2]. For this test, the speckle diameter in the pattern was
7.14 pixels and the coverage was 59.0%, which was recognized as the most suitable pattern
for this test. The schematic of the experimental setup is shown in Figure 6. The used DIC
system captured images in 2448 × 2050 pixel resolution and the measured area focused on
the specimen in 1005 × 880 mm in the current set up.
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3.3. Test Set-Up and Obtained Results
3.3.1. Uniaxial Tension Test

The prepared specimens were tested under pure tension using a 600 kN testing
machine, where the reinforcement on both sides of the specimen was secured. Specimens
were aligned in the machine; thus, the surface of the specimen was perpendicularly aligned
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to the DIC system. To enable the software to measure the total displacement of the machine,
the component “Stroke” was created defining the distance between the plates attached to
the bottom and top grip of the machine, as shown in Figure 7. On the plates of the testing
machine connected to the fixed reinforcement, two components were created, “ReinfTop”
and “ReinfBot”, and the component “AvgBarStrain” was defined to visualize the rebar
average strain in the DIC system, as shown in Figure 7.
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Figure 7. Installed specimen on uniaxial testing machine with defined components.

The specimens were tested using cyclic load sequences with an amplitude of about
200 µm/m in each. Therefore, in a rebar with a diameter of 16 mm, a load variation of 10 kN
was calculated by combining Hooke’s law and Navier’s formula. Then, three different
loading patterns for each group of specimens were applied, as shown in Figure 8.
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Figure 8. Load sequences for: (1) 100 × 100 mm2—Normal concrete, (2) 150 × 150 mm2—Normal
concrete, and (3) 100 × 100 mm2—HPC.

3.3.2. Experimental Results

The testing machine applied monotonic tensile loading according to the designed
loading patterns. Meanwhile, strains on the embedded reinforcement and surface defor-
mations were monitored by the installed strain gauges and DIC system, respectively. As
an example, Figure 9 illustrates the surface strain and displacement monitored by DIC on
sample 2N100 under 94.14 kN tensile load.
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Figure 9. Monitored surface strain and displacement on sample 2N100 under 94.14 kN tensile load.

Appearing cracks can be detected as a jump in the surface displacement [15]. Figure 10
presents the location of four propagating cracks on 2N100, in order of propagation, under six
different loading levels. Accordingly, Table 4 summarizes the loading levels reached by the
testing machine at the time that cracks formed for all specimens. As can be seen, due to the
higher friability of HPC samples compared to NC samples, more cracks appeared at higher
loading levels.
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Figure 10. Surface displacement and order of crack appearance for specimen 2N100 under different
loading levels.



Infrastructures 2023, 8, 71 10 of 20

Table 4. Cracking loads registered in the data acquisition system for all specimens.

ID 1st Crack 2nd Crack 3rd Crack 4th Crack 5th Crack 6th Crack 7th Crack 8th Crack

N
or

m
al

C
on

cr
et

e 1N150 43.6 50.7 - - - - - -
2N100 23.0 26.0 28.8 41.8 48.9 - - -
3N150 49.9 - - - - - - -
4N150 38.2 - - - - - - -
5N100 25.7 27.4 33.7 44.7 - - - -
6N100 19.6 20.9 25.5 29.4 - - - -
7N100 23.5 25.2 41.1 - - - - -

H
PC

8U100 6.8 21.6 26.8 31.0 33.9 88.5 - -
9U100 21.5 21.5 33.1 33.1 35.4 40.9 43.1 73.5

10U100 20.7 26.1 26.1 33.9 31.1 38.5 - -

Figure 11 shows the surface displacement and location of jumps as detected cracks (red
boxes), together with strains monitored by the SGs installed on the embedded reinforcement
for 2N100. As follows, debonding (failure) length, Ldebonding, around the detected cracks
was estimated by Equation (4). As can be seen, the estimated debonding zones around the
cracks (orange boxes) developed with increasing loading level and affected the strain on
rebar by cutting off concrete collaboration in those areas.
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Figure 11. Surface displacement, debonding zones around detected cracks, and strain on embedded
reinforcement under different loading levels.

Figure 12 illustrates the strains on the embedded reinforcement monitored by the
SGs, those predicted by the proposed equation [5], together with surface deformations
monitored by DIC on 2N100 under different loading levels.

After data collection was finished, the collected datasets from DIC, the installed SGs,
and the proposed equation were arranged to generate the training dataset. Since the input
dataset plays a vital role in developing a well-trained model, special care has been taken
when generating the input datasets. For this purpose, two different groups of training
datasets were generated, comprising: (a) data collected from only the installed strain gauges,
called the experimental dataset, (b) combination of data collected from the strain gauges
and generated synthetic data in debonding zones, called the hybrid dataset. Therefore, in
the length of failure and slip zones, the synthetic dataset was calculated and combined
with data collected from the strain gauges for the rest of the areas. After deriving both the
experimental and hybrid training datasets over the RC members, the desired datasets were
obtained to train the models with a hybrid learning approach.
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Figure 12. Surface deformation in cracking loads for 2-N100, together with strain in the embedded
rebar and that predicted by the proposed equation.

4. Training ML Regression Models with Hybrid Learning Approach

Machine learning regression is a versatile tool for uncovering complex correlations
between obvious and embedded data; however, generated datasets play a key role in
developing regression models. In this study, the parameters that served as the input
dataset were: surface deformations monitored by DIC, the reinforcement ratio ρ = As/Ac

,

η = Es/Ec
, and fct as the tensile strength of concrete. The output was the response for local

strain on the embedded rebar.
Four machine learning regression algorithms, including neural network (NN), Gaus-

sian process regression (GPR), decision tree, and ensemble model, were used to generate
regression models and predict strains on embedded reinforcement. Before training the
models, the prepared datasets were divided into training and test groups at an 80/20 ratio
to find the most efficient algorithm. It needs to be mentioned that the whole dataset col-
lected from 2N100 was not observed in the training phase and was kept with test dataset to
evaluate the performance of the model trained by the hybrid learning approach. Finally,
the prepared dataset was pre-processed with data normalization along with shuffling to
avoid bias towards a specific dataset.

4.1. Dataset Normalization

Normalizing the prepared dataset to zero mean and unit variance allowed all input
dimensions to be treated equally and facilitated better convergence. In this study, the range
of the prepared dataset was drastically different, e.g., surface deformation was normally at
the micro strain level, the reinforcement ratio was in percent scale, and tensile strength was
in tenth scale. Therefore, data normalization was necessary to avoid bias towards a specific
input variable, which ultimately affects the results. However, after solving the problem,
the obtained results were again converted to achieve the actual data. Thus, the following
normalization technique was used to keep all the parameters between 0 and 1.

Variablei
Normalized =

Variablei −min(Variable1, Variable2, . . . ., Variablei)

max(Variable1, Variable2, . . . ., Variablei)−min(Variable1, Variable2, . . . ., Variablei)
, (7)

Variablei is any original input parameter; min(Variable1, Variable2, . . . ., Variablei) is
the minimum value of the similar parameter; max(Variable1, Variable2, . . . ., Variablei) is
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the maximum value of the parameter; and Variablei
Normalized is the normalized value of

the parameter.

4.2. Verification of Trained Models, Hyperparameter Optimization, and Statistical Performance Measures

Machine learning models feature several hyperparameters that can be tweaked to alter
the algorithm’s performance. Thus, the accuracy of training models mainly depends on
how well the hyperparameters have been tuned. However, even with the same ML model,
one combination of hyperparameters is not always the best for different training datasets.

Neural networks (NN) consist of fully connected layers, including hyperparameters
such as the number of layers, size of layers, and activation function. Therefore, the applica-
tion of NN in data regression analysis with different preset hyperparameters approaches
the lowest feasible values of the root-mean-square error (RMSE) by optimizing the model.
The defined loss function was the mean square error (MSE), as in most regression models
in the literature review, and the “Adam” optimizer was used for “gradient descent back-
propagation” with a learning rate of 0.0001. Then, the designed models were trained for
1000 iterations. Table 5 illustrates the RMSE values corresponding to different NN models
to find the lowest obtained RMSE in both the validation and test datasets generated by the
SGs andhybrid approach. For the experimental training dataset, an NN with three fully
connected layers, ten nodes in each, and “tanh” as the activation function was found as
the optimized model. In addition, for the hybrid training dataset, an NN with three fully
connected layers with 100 nodes in each and “ReLU” as the activation function was found
as the optimized model.

Table 5. Obtained RMSE values corresponding to different trained NN models with both experimental
and hybrid datasets.

Hyperparameters
RMSE

SG Dataset Hybrid Dataset

No. layers Size of
layers

Activation
function Validation Test Validation Test

2

10/10 ReLU 0.12103 0.12819 0.05591 0.055688
10/10 sigmoid 0.12307 0.14326 0.05647 0.05614
10/10 tanh 0.11657 0.13889 0.055903 0.05558

100/100 ReLU 0.13841 0.14727 0.055305 0.053617
100/100 sigmoid 0.12314 0.13028 0.058698 0.058416
100/100 tanh 0.11951 0.13182 0.056387 0.055251

3

10/10/10 ReLU 0.11806 0.1224 0.055578 0.055638
10/10/10 sigmoid 0.11567 0.13109 0.056542 0.056549
10/10/10 tanh 0.1125 0.12234 0.055978 0.055739

100/100/100 ReLU 0.13675 0.13626 0.054921 0.053619
100/100/100 sigmoid 0.12083 0.12517 0.058223 0.056089
100/100/100 tanh 0.12193 0.12869 0.056161 0.055888

Searching for the best combination of hyperparameters is time-consuming and tedious.
That is why, regarding the state-of-the-art technique, only NNs with two and three fully
connected layers were studied to find the optimized hyperparameters. For the other three
algorithms, Bayesian optimization [16], which is a sequential design strategy for global
optimization of black-box functions, was applied because it is more efficient.

Decision Tree (DT) is a hierarchical series of binary decisions in a tree-structured
model. It contains three types of nodes, including root, interior, and leaf nodes, with
hyperparameters including depth of tree and minimum leaf size (also called max leaf
nodes). Minimum leaf size will allow the branches of a tree to have varying depths, which
is a way to control the model’s complexity. Therefore, to obtain optimized hyperparameters,
the best minimum leaf size was searched using the Bayesian optimization method in the
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range of 1 to number o f input data
2 , approaching minimum MSE. Figure 13 shows the minimum

leaf size obtained using the Bayesian optimization method for both prepared datasets.
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It needs to be mentioned that “observed minimum MSE” means the observed min-
imum MSE computed so far by the optimization process. “Estimated minimum MSE”
corresponds to an estimate of the minimum MSE computed by the optimization process
considering all the sets of hyperparameter values tried so far and including the current
iteration. In addition, “best point hyperparameters” indicates the iteration corresponding
to the optimized hyperparameters, and “minimum error hyperparameters” indicates the
iteration corresponding to the hyperparameters that yield the observed minimum MSE.

Gaussian Process Regression (GPR) is a nonparametric Bayesian approach for regres-
sion analysis that creates a significant impression in machine learning. There are several
benefits to GPR, including working well on small datasets and providing uncertainty mea-
surements on predictions. Existing hyperparameters need to be optimized, including basis
function, kernel function, and scale, together with the noise standard deviation used by the
algorithm, called sigma. Hyperparameter optimization was performed in 30 iterations or
less, searching ranges using the Bayesian optimization method for both the SG and hybrid
datasets, as shown in Figure 14.
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Kernel function: Nonisotropic Exponential, Nonisotropic Matern 3/2, Nonisotropic
Matern 5/2, Nonisotropic Rational Quadratic, Nonisotropic Squared Exponential, Isotropic
Exponential, Isotropic Matern 3/2, Isotropic Matern 5/2, Isotropic Rational Quadratic,
Isotropic Squared Exponential

Kernel scale: 0.001731–1.731
Ensemble model is a technique that combines multiple models and then finds the

best combination to produce improved results. For this aim, bootstrap aggregation (bag-
ging) [17] and least-squares boosting [18] models were used to train the regression models.
Then, Bayesian optimization was used to test the different combinations of hyperparam-
eters for both the SG and hybrid datasets to find the optimized hyperparameters in the
range of 10–500 learners, with a learning rate in the range of 0.001–1 and a minimum leaf
size in the range of 1 to number o f observations

2 , as shown in Figure 15.
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The predictions by the four optimized models compared with true values in both the
experimental (SG) and hybrid datasets, according to statistical parameters. Figure 16 shows
the graphs comparing the true and predicted responses by the four optimized regression
models, and Table 6 presents the summary of the validation and accuracy tests to find the
most efficient models trained by each experimental and hybrid training dataset.
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Figure 16. True and predicted responses by four optimized regression models trained by SG and
hybrid datasets.
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Table 6. Performance measures of each model considering both approaches in training and test phases.

Models Neural Network GPR Decision Tree Ensemble

Learning approach SG Hybrid SG Hybrid SG Hybrid SG Hybrid

RMSE =

√
∑n

i=1(∆ε i, pre−∆ε i, tru)
2

n

Validation 0.120 0.055 0.108 0.053 0.112 0.057 0.104 0.053

Test 0.125 0.054 0.116 0.051 0.119 0.059 0.112 0.052

R2 = 1− ∑n
i=1(∆ε i, tru−∆ε i, pre)

2

∑n
i=1(∆ε i, tru−mean(∆ε i, tru))

2

Validation 0.680 0.510 0.740 0.550 0.720 0.470 0.760 0.540

Test 0.530 0.570 0.600 0.600 0.570 0.480 0.620 0.590

MSE =
∑n

i=1(∆ε i, pre−∆ε i, tru)
2

n

Validation 0.014 0.003 0.012 0.003 0.013 0.003 0.011 0.003

Test 0.015 0.003 0.013 0.003 0.014 0.003 0.012 0.003

MAE =
∑n

i=1|∆ε i, pre−∆ε i, tru|
n

Validation 0.088 0.042 0.078 0.040 0.080 0.043 0.076 0.041

Test 0.088 0.041 0.076 0.039 0.081 0.044 0.078 0.041

As presented in Table 6, the ensemble model and GPR showed better performance on
the training datasets generated experimentally (SG) and by the hybrid learning approach,
respectively. To compare the performance of these two ML regression approaches, the
residuals in normalized strain predictions are illustrated in Figure 17. Residuals represent
the difference between any data point and the regression line, which can be called “errors,”
and are expressed as the difference between the predicted and observed values.
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Figure 17. Obtained residuals in normalized strain predictions in the hybrid test dataset.

The role of concrete type and cross-sectional area in the predicted results was studied
using the optimized models. Figure 18 shows the box plots providing a visualization of
residuals in normalized predictions by both optimized models for each concrete type and
cross-sectional areas. The bottom and top of each box are the 25th and 75th percentiles
of the predictions, respectively. The distance between the bottom and top of each box is
the interquartile distribution range (IQR), which is the spread of the middle 50% of the
data values. The line in the middle of each box is the prediction median; in this case it was
under zero, which showed that the predictions were mostly underestimated. The whiskers
are lines extending above and below each box from the end of the interquartile range to the
furthest observation within the whisker length, which is equal to 1.5*IQR. Observations
beyond the whisker length were marked as outliers.
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Figure 18. Box plot visualization of summary statistics for residuals in normalized predictions for
each concrete type and cross-sectional area.

Overall, the GPR model trained with a hybrid learning approach showed the best
performance among all the studied models. Figure 19 shows the predicted strain by the
GPR model using a hybrid learning approach on embedded reinforcement for 2N100
under different loading levels. As a reminder, the obtained datasetfrom this specimen
was not observed in the training phase and the predicted strain presented alongside the
data collected from the installed SGs was used to verify the performance of the proposed
method. There was obviously some outlier noise in the predicted values, which could be
eliminated to improve the results by post-processing the predictions.
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Figure 20 shows the noise-removed prediction of strain in embedded reinforcement 
using the hybrid learning approach alongside that obtained by monitoring the installed SGs. 
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Figure 19. Predicted strain by hybrid learning approach on embedded reinforcement for 2N100
alongside that obtained by monitoring the installed SGs.



Infrastructures 2023, 8, 71 17 of 20

4.3. Data Improvement and Outlier Removal Using Hampel Identifier

The Hampel identifier is a statistical method used to remove outlier noise and improve
the robustness of the obtained vector of prediction. The task was to perform noise removal
on the predicted strain, represented by the strain (ε) as a sampled value along with the
spatial location (X) on the defined domain of the specimen. Of the total number of dataset
points considered “n”, the spatial location and sampled value at the jn data node are given
by Xjn and εjn , respectively.

In spatial location (X), in a sequence of X1, X2, X3, . . . , Xjn , a one-dimensional kernel
with length of (2d + 1) is defined as a sliding window. Then, Equations (8) and (9) are used
to calculate the point-to-point median (mi) and standard deviation (σi) in six surrounding
samples, with three samples (d = 3) in each side.

median in X : mi
X = median

(
εji−d , εji−d+1 , εji−d+2 , . . . , εji , . . . , εji+d−2 , εji+d−1 , εji+d

)
(8)

Standard deviation in X direction : σi
X = k median

(∣∣∣εji−d −mi

∣∣∣, . . . ,
∣∣∣ εji −mi

∣∣∣, . . . ,
∣∣∣εji+d −mi

∣∣∣) (9)

Therefore, outlier noise can be identified when the difference between the sampled
value and local median is higher than tσi

X, t = 3 [19]; then, replaced with the median,
εjn = mi

X , as given by Equation (10):

εjn =

{
εjn f or clean data,

∣∣εjn −mi
X
∣∣ ≤ tσi

X

εjn = mi
X f or outlier noises,

∣∣εjn −mi
X
∣∣ > tσi

X , (10)

Figure 20 shows the noise-removed prediction of strain in embedded reinforcement
using the hybrid learning approach alongside that obtained by monitoring the installed SGs.
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Figure 20. Noise-removed prediction of strain in embedded reinforcement alongside that obtained
by monitoring the installed SGs.
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5. Conclusions

The proposed work has established an innovative and efficacious machine learning
(ML) regression technique with a hybrid learning approach to predict strain in embedded
reinforcement. Application of ML regression can eliminate existing analytical modeling
complexities in tensile RC members, which is caused by the tension stiffening effect. To
generate a training dataset, ten specimens were prepared with different concrete types and
cross-sectional areas and tested under pure tension with different loading patterns.

Due to the small amount of data obtained from the installed SGs, some synthetic data
were additionally generated by a previously proposed semi-empirical equation. There-
fore, the experimental and synthetic input datasets consisted of 384 and 1395 observa-
tions, respectively, generated with input variables comprising εLC, F, reinforcement ratio
ρ = As/Ac

, η = Es/Ec
, and fct, together with εLS as the target value to train the model. To

approach hybrid learning, both groups of data generated experimentally and synthetically
were combined to enrich the training dataset. Then, the hyperparameters belonging to
four different ML regression methods, comprising neural network (NN), Gaussian process
regression (GPR), decision tree, and ensemble model, were optimized by the Bayesian
optimization technique. Finally, the performance of the discussed models, which were first
trained by only the experimental dataset and then by the hybrid dataset, were appraised
through several statistical performance metrics. Notably, 20% of the whole dataset, includ-
ing the data collected from 2N100, was considered as the test dataset. The prepared test
dataset was not observed in the training phase and was used to check the performance of
the trained models.

The evaluation of the proposed models was based on three different approaches. The
first approach was finding the optimized regression model showing the best performance
in strain prediction for each of the experimental and hybrid training datasets. For the
experimental training dataset, the optimized ensemble model presented slightly better per-
formance than the other studied models, which were all optimized as well. Regarding the
hybrid training dataset, GPR showed better performance than the other studied regression
models. All of the obtained statistical performance metrics were summarized in Table 6.

The second approach was assessing the performance of hybrid learning versus that
of models trained by only the experimental dataset. As presented in Table 6, the RMSE
achieved by the hybrid learning approach was roughly half of that of the models trained
by only the experimental dataset. Hence, an exceptional improvement was attained. In
addition, residual graphs for strain predictions were generated to assess the different
methods and variables, including (1) ML regression using the experimental input dataset
versus the hybrid learning approach, (2) different reinforcement ratios, and (3) different
concrete types, and the following results were obtained:

1. Residuals from the hybrid learning approach were lower than those from algorithms
trained by only the experimental dataset.

2. Lower reinforcement ratio, which means higher concrete cover, can increase the
residual in strain prediction.

3. Concrete type did not have much effect on ML regression performance, as long as the
collected training dataset was sufficient to optimize the models.

In the third approach, 2N100 was implemented as a test specimen to observe the
obtained predictions alongside strains monitored by the pre-installed strain gauges. It
needs to be mentioned that the dataset collected from this specimen was not observed be-
forehand in the training phase. The model trained by the hybrid learning approach showed
good performance after noise removal. Therefore, herein, the proposed model ensures
a successful application for non-contact strain measurement in embedded reinforcement
based on surface deformations.

In conclusion, this study successfully proposed and implemented a novel machine
learning regression technique with a hybrid learning approach for predicting strain in
embedded reinforcement. The results of the experiment showed exceptional improvement
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compared to previous studies and demonstrated the effectiveness of the proposed method
in non-contact prediction of strains on embedded rebar based on monitored surface defor-
mations. This research provides valuable insight for a solution for the construction industry,
and further studies need to be conducted to expand its applications in real-scale structures
and validate its reliability.
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NC Normal Concrete
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ML Machine Learning
GPR Gaussian Process Regression
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