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Abstract 
Four surrogate modelling techniques are compared in the context of modelling once-
through steam generators (OTSGs) for offshore combined cycle gas turbines (GTCCs): 
Linear and polynomial regression, Gaussian process regression and neural networks for 
regression. Both fully data-driven models and hybrid models based on residual modelling 
are explored. We find that speed-ups on the order of 10k are achievable while keeping 
root mean squared error at less than 1%. Our work demonstrates the feasibility of 
developing OTSG surrogate models suitable for real-time operational optimization in a 
digital twin context. This may accelerate the adoption of GTCCs in offshore industry and 
potentially contribute towards a 25% reduction in emissions from oil & gas platforms. 
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1. Introduction 
Installation of combined cycle gas turbines (GTCCs) offshore can reduce emissions from 
oil & gas platforms by up to 25% [Mazzetti et al. (2014)]. A digital twin (DT) framework 
for GTCCs may accelerate the adoption of GTCCs by increasing their reliability and 
performance. To this end, accurate and trustworthy yet computationally efficient dynamic 
models for crucial GTCC components are needed. The once-through steam generator 
(OTSG) has been identified as a particularly important component because its response 
to transients in the gas turbine load largely governs the GTCC's overall behavior. SINTEF 
Energy Research has previously developed highly accurate Modelica models for OTSGs 
[Montañés et al. (2021)]. In this work, we explore four data-driven techniques for creating 
high-speed, DT-suitable surrogate models based on the Modelica model: Linear 
regression (LReg), polynomial regression (PReg), Gaussian process regression (GPR), 
and neural networks (NNs). We use these techniques to develop both purely data-driven 
surrogate models and hybrid models utilizing the residual modelling technique. The goal 
of this work is to evaluate the feasibility of developing DT-suitable OTSG surrogate 
models, e.g., for real-time optimization and process control based on model predictive 
control schemes. The work is intended to contribute towards accelerating the adoption of 
GTCCs, thereby reducing emissions from offshore energy production. Secondarily, it is 
of general interest to analyze the relative performance of the different techniques studied. 

2. Once-Through Steam Generators 
2.1 Background and Motivation 
A waste heat recovery steam generator (HRSG) is a heat exchanger boiler system that 
recovers waste heat from a given heat source by producing steam from feedwater that is 
circulated through the heat exchanger. In the context of GTCCs, the heat source is the gas 
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turbine exhaust, and the steam produced by the HRSG is passed through a steam turbine 
to generate electricity. Consequently, in comparison to standalone gas turbines, GTCCs 
offer significantly increased efficiency, and thus a corresponding reduction in CO2 
emissions for fixed power production. 

In this work, we consider once-through steam generators (OTSGs), which are a 
particular type of HRSGs common in industrial applications. OTSG configurations are 
the preferred option in volume- and weight-constrained energy system environments, 
such as offshore oil and gas installations or floating production, storage and offloading 
systems. High-fidelity, physics-based, dynamic OTSG models facilitate simulation-based 
studies to better understand the inherent dynamics of the OTSG system, and to conduct 
control loop and control structure design studies. Traditionally, operation of OTSG 
systems has predominantly taken place under steady-state conditions. Therefore, it has 
been sufficient to consider transient conditions in the offline design phase. Faster models 
suitable for real-time operational optimization have consequently not received much 
attention. However, as intermittent renewable energy sources enter the offshore energy 
mix, computationally efficient models applicable to transient conditions are becoming 
increasingly important. This motivates the present study of surrogate models for OTSGs, 
i.e., low-fidelity OTSG models that are designed to capture the main characteristics of 
OTSG transient behavior while offering significant computational speed-up in 
comparison to traditional high-fidelity models. 
 
2.2 High-Fidelity OTSG Modelling 
Development of surrogate models generally requires data from which the main 
characteristics of the considered system can be extracted. In the present work, this data 
will stem from a previously published high-fidelity (hi-fi), dynamic OTSG model for 
offshore combined cycle applications [Montañés et al. (2021)]. The model is developed 
in the Modelica language and utilizes dynamic energy and mass balances to produce a set 
of differential algebraic equations describing the OTSG's transient behavior.  

 
Figure 1: Discretization and main states of high-fidelity OTSG model [Montañés et al. (2021)]. 

Figure 1 (adapted from [Montañés et al. (2021)]) shows the OTSG model with 
discretization and main states. The model is based on 1-D lumped pressure flow pipes 
(for gas and water/steam sides) separated from each other by a wall model (representing 
the metal wall for heat transfer in a bundle of tubes). A total of n volumes and n+1 nodes 
are used to discretize the system in the direction of the flow. Overall, the model includes 
physical phenomena related to heat transfer, hydraulics, wall model thermal inertia, 
dynamic energy and mass balances on both the gas side and the water side [Montañés et 
al. (2021)]. We consider the OTSG operated under valve-throttling pressure control 
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mode, i.e., with fixed pressure set point of the produced superheated steam [Nord and 
Montañés (2018), Zotică et al. (2022)]. Important boundary conditions for the model are 
gas turbine load (exhaust gas inlet mass flow and inlet specific enthalpy) and feed water 
mass flow rate (which is commonly a manipulated variable for OTSG operation).  

3. Surrogate Modelling Techniques 
In this section, we briefly describe the four surrogate modelling techniques considered in 
this work: linear and polynomial regression (Section 3.1), neural networks (Section 3.2) 
and Gaussian Process Regression (Section 3.3). We also describe how we generate the 
data needed to develop OTSG surrogate models using these techniques (Section 3.4) and 
how we evaluate the resulting models (Section 3.5). Common for all the surrogate models 
considered here is that their task is to predict the outlet temperature of the flue gas, as 
well as the outlet temperature and mass flow of the steam.  
 
3.1 Linear and Polynomial Regression 
Polynomial regression (PReg) amounts to approximating some target function 𝑓𝑓(∙) using 
a polynomial constructed using 𝑁𝑁𝑖𝑖 input data variables 𝐼𝐼𝑖𝑖, where 𝑖𝑖 = 1, … ,𝑁𝑁𝑖𝑖. 
Mathematically, this can be expressed as finding coefficients 𝛼𝛼𝑖𝑖,𝑛𝑛 such that 

𝑓𝑓reg ≔ 𝑎𝑎0 +�𝛼𝛼𝑖𝑖,1𝐼𝐼𝑖𝑖 + 𝛼𝛼𝑖𝑖,2𝐼𝐼𝑖𝑖2 +⋯+ 𝛼𝛼𝑖𝑖 ,𝑁𝑁𝐼𝐼𝑖𝑖𝑑𝑑
𝑖𝑖

 

is as close to the true target f as possible. We say that d is the degree of the interpolating 
polynomial. Linear regression (LReg) is simply the special case of 𝑑𝑑 = 1. We used the 
Python package lmfit [Newville et al. (2014)] to implement our regression models. 
 
3.2 Neural Networks for Regression 
Owing to their universal function approximation properties and acclaimed empirical 
successes, neural networks (NNs) are well suited for surrogate modelling. Here, we 
consider fully connected feed-forward NNs (cf. [Nielsen (2015)] for an introduction). 
Such a network with nl so-called layers can be expressed as 

𝑓𝑓NN: = 𝜑𝜑𝑛𝑛𝑙𝑙�… (𝜑𝜑2(𝜑𝜑1(𝐼𝐼𝑤𝑤2 + 𝑏𝑏1)𝑤𝑤2 + 𝑏𝑏2) … )𝑤𝑤𝑛𝑛𝑙𝑙 + 𝑏𝑏𝑛𝑛𝑙𝑙�, 
where I is the NN's input vector, the matrices 𝑤𝑤1, … ,𝑤𝑤𝑛𝑛𝑙𝑙 (weights) and vectors 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛𝑙𝑙 
(biases) are tunable parameters, and 𝜑𝜑1, … ,𝜑𝜑𝑛𝑛𝑙𝑙  are non-linear functions known as 
activation functions. Typically, stochastic gradient descent is used to tune the weights and 
biases such as to minimize the difference between 𝑓𝑓NN and the target function f. We have 
implemented our NN models using the Python package pytorch [Paszke et al. (2019]. We 
use the LeakyReLU activation function with slope parameter 0.01, pytorch's MSELoss 
cost function, the Adam optimizer, and a learning rate of 1e-5. 
 
3.3 Gaussian Process Regression 
Gaussian Processes (GPs) are non-parametric, probabilistic kernel methods [Rasmussen 
and Williams (2006)] that aim to identify an unknown function 𝑓𝑓:ℛ𝑛𝑛𝑢𝑢 →  ℛ from data. 
It is assumed that the noisy observation of 𝑓𝑓(⋅) are given by  
    𝑦𝑦 =  𝑓𝑓(𝒖𝒖)  + 𝜈𝜈,  
where the noise 𝜈𝜈 is Gaussian with zeros mean and variance 𝜎𝜎𝜈𝜈2, and 𝒖𝒖 is the input, which 
is assumed to follow a multivariate Gaussian distribution. Smoothness properties of the 
underlying function 𝑓𝑓 are enforced by the choice of mean and covariance function without 
relying on parametric assumptions [Snelson and Ghahramani (2006)]. A zero mean 
function and the automatic relevance (ARD) squared-exponential (SE) covariance 
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function are chosen. GP depends on hyperparameters, which are usually unknown and 
need to be inferred from data. The marginal likelihood is used to estimate 
hyperparameters. The predictive distribution is the marginal of the normalized joint prior 
times the likelihood. The integral can be evaluated in closed form. The GP regression 
model was implemented in Python and the maximisation of the log marginal likelihood 
was solved with help of the SciPy package [Virtanen et al.  (2020)].  
 
3.4 Data Generation 
Due to the unavailability of suitable operational data from a real GTCC, the high-fidelity 
OTSG model described in Section 2.2 will be used to create the reference data needed for 
developing and evaluating our surrogate models. As explained in Section 2.2, the gas 
turbine load is an essential boundary condition for the model and must therefore be 
prescribed. To cover a wide range of operating conditions, a randomized time series of 
one million data points at 1-second intervals, was generated. Every 100 seconds, a load 
change is occurring with 50% probability. The type of change (step or ramp), the new set 
point value and the duration of the transition (if it is a ramp) are randomized with the 
latter two drawn from uniform distributions on [40%, 100%] and [1s, 300s], respectively. 

Using the generated gas turbine load sequence, the hi-fi model is used to 
generate two time series for each of the three outlet variables we aim to predict with our 
surrogate models. One time series is created using a coarse discretization in the hi-fi 
model (we call this the low resolution (LR) data), and the other is created using a fine 
discretization (denoted high resolution (HR) data). The HR data is used as ground truth, 
both during the model tuning process and the final evaluation. The LR data serves two 
purposes. Firstly, it can be used as additional input for the surrogate models. Secondly, it 
will allow us to explore the potential benefit of residual modelling. The concept of 
residual modelling is to model the residual 𝜀𝜀 = 𝐻𝐻𝐻𝐻 − 𝐿𝐿𝐿𝐿 instead of the HR data directly 
[Willard et al. (2022)]. Predictions are then constructed as 𝐻𝐻𝐻𝐻� = 𝐿𝐿𝐿𝐿 + 𝜀𝜀̂, where 𝜀𝜀̂ is the 
model's approximation of ε. Both the HR and LR data are split into three subsets. The 
first 980k data points are included in the training set (used for tuning model parameters), 
the next 10k data points go in the validation set (used for tuning certain hyperparameters), 
and the final 10k data points constitute the test set (used for evaluating the models). 
 
3.5 Model Evaluation 
All our surrogate models depend on one or more so-called hyperparameters, i.e., 
parameters that define a model's structure but are not used directly to compute predictions. 
Examples include choice of input variables, polynomial degree (PReg), number of layers 
and neurons per layer (NN) and the number of data points to use for tuning (GPR). To 
facilitate a fair comparison between the different kinds of models, we conducted a grid 
search to identify good hyperparameter choices for all models. For each model instance 
(corresponding to a particular choice of hyperparameters), the normalized root mean 
squared error (NRMSE) of the models' predictions was computed with respect to the HR 
test data for each of the three target variables. The sum of the three NRMSEs was taken 
to represent the overall predictive accuracy of any particular model. For models using old 
HR data as input, it is important to consider that, when predicting more than one time step 
into the future, HR data from the previous time step will not be available. Then, the 
surrogate model's prediction from the previous time step must be used in its place. This 
may lead to divergent behavior, as is observed for some of our models (cf. Table 1). 
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4. Results 
4.1 Predictive Accuracy 
For each modelling technique and model input choice, Table 1 lists the lowest total 
NRMSE error observed in our grid search for both normal and residual models using the 
specified technique and input choice. The available input choices are 1) only inlet data 
(in), 2) inlet data and LR outlet data (in+LR), 3) same as 2) but also including old HR 
data (in+LR+old), and 4) same as 2), but also including the residual HR-LR (in+LR+res).  

We observe that the most accurate model is a GPR residual model using 
in+LR+old input. However, several other models achieve comparable performance, and 
the performance different between the best PReg, NN and GPR models is generally 
insignificant from a practical perspective. Even the best LReg models are found to 
perform quite well, with a NRSME significantly smaller than 1% achievable for all three 
output variables. Moreover, while the use of LR data appears to be generally beneficial, 
we observe that only inlet data is sufficient to obtain NRSME values well below 1% for 
any given output variable. (Note that, in the table, we sum the NRMSE of each predicted 
variable.) Figure 2 shows the predictions of steam outlet mass flow made by the best 
model for each modelling technique (bold in Table 1). Based on Figure 2, it is difficult to 
identify any predominant failure mode for any of the different models. 
 

 in in+LR in+LR+old in+LR+res 
Normal Residual Normal Residual Normal Residual Normal Residual 

LReg 0.0555 0.0154 0.0089 0.0089 0.0088 0.0514 19.4011 19.3999 

PReg 0.0555 0.01525 0.0056 0.0056 0.0031 NAN NAN NAN 

NN 0.0562 0.0107 0.0066 0.0061 0.0039 0.0032 0.0406 0.0107 

GPR 0.0369 0.0099 0.0045 0.0043 0.0032 0.0031 0.0036 0.0031 
Table 1: Normalized RMSE on the test set, summed over the three output variables, for given model  

type and input selection. Bold and italics are used for lowest error values in columns and 
rows, respectively. NAN indicates that the model diverged. 

 
Figure 2: Predictions of steam outlet mass flow by best model within each category, shown along 

with the corresponding LR and HR data for a short interval within the test set. 

4.2 Computational Efficiency 
We use the number of CPU seconds (wall time) per simulated second of operations 
(CPUs/s), as measured on a standard, mid-range laptop, to quantify the computational 
efficiency of the various models. Using respectively the coarse and the fine spatial 
discretization, we measure 0.00289 CPUs/s and 0.1272 CPUs/s for the hi-fi-model. Thus, 
the reduced resolution yields a speed-up of roughly 44. In comparison, our linear 
regression model with only inlet data as input uses around 8e-6 CPUs/s, which 
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corresponds to a speed-up of roughly 15k. The PReg model is roughly as fast as the LReg 
model, while the NN and GPR models are roughly 1–1.5 orders of magnitude slower than 
the LReg model. Consequently, for residual models and models using LR data as input, 
the LR hi-fi component always dominates the computational expense. 

5. Discussion 
An interesting takeaway from our numerical experiment is that blindly relying on more 
advanced techniques like neural networks and GPR to be better than simple techniques 
like regression is not advised. The relation between a model's theoretical representation 
capacity and its empirical predictive accuracy is not necessarily linear. Indeed, our results 
show that the relation is not even strictly increasing in general, as 1) our best PReg model 
outperforms our best NN model, and 2) increasing the number of neurons in the NN (and 
thereby its representation power) did not improve its accuracy on the test set.  

Our results also show that the value of hybrid modelling depends on the quality 
of the physics-based model component, and how that component is integrated into the 
fully hybrid model. In our case, using LR predictions as input was generally observed to 
be useful, while residual modelling yielded mixed results. This illustrates the obvious, but 
easily overlooked fact that residual modelling is only beneficial if the relation between 
the input data and the residual is simpler than that between the input data and the data to 
be predicted. This criterion is not always met in practice, as evidenced by our results. 

Finally, we conclude that it is feasible to construct OTSG surrogate models 
suitable for use in real-time optimization procedures within a digital twin framework. 
This motivates further work, which could include exploration of more advanced neural 
network-based techniques, such as Long Short-Term Memory networks. Additionally, we 
believe that looking into the robustness of the methods with respect to noisy data would 
be valuable from a practical perspective. 
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