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Abstract—This work concerns the modeling of ramping con-
straints on discharge in medium-term hydropower scheduling
models applied in a liberalized market context. Such models
often apply a coarse time discretization to ensure reasonable
computation times. Consequently, ramping constraints at a fine
time-resolution are challenging to represent. To address this
challenge, we derive a quadratic transition-cost term capturing
the power production shifted to time periods with less favor-
able prices due to ramping constraints. We approximate the
quadratic term by linearization so that it can be embedded
in an existing hydropower scheduling tool based on stochastic
linear programming. A prototype hydropower scheduling model,
including the approximated transition-cost term, was tested on a
realistic hydropower system in Norway. We demonstrate that the
improved modeling of ramping constraints significantly impacts
discharge patterns and comes at a significant, but not prohibitive,
increase in computation time.

Index Terms—Hydroelectric power generation, Power gen-
eration economics, Linear programming, Stochastic processes,
Environmental constraints.

I. INTRODUCTION

Environmental requirements associated with hydropower
operation are changing, e.g., through proposed revisions of
hydropower concessions and the implementation of EU Water
Framework Directive [1]. The directive strives to ensure sus-
tainable use of water resources, balancing the multiple uses
such as hydropower, irrigation, water supply, flood control,
and recreation. In this context, hydropower producers need to
adjust their operational schedules so that the environmental
constraints are respected. Consequently, the producers need
scheduling models that represent environmental constraints in
a precise and consistent manner.

This paper concerns the maximum allowed changes in water
flows in a hydropower system, often referred to as maximum
allowed ramping, or as ramping constraints. We focus on
ramping constraints on discharge through power stations. Such
constraints serve to reduce negative effects of rapid and
frequent changes in the flow downstream of the hydropower
outlets. This type of constraints has been studied in the existing
literature [2], [3], but the approximation techniques presented
here have, to the best of the authors’ knowledge, not been
studied before.
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We contribute to the existing literature by presenting a
new technique for approximating constraints on discharge
ramping within a medium-term hydropower scheduling model.
The applied model is based on the stochastic dual dynamic
programming (SDDP) method, and is suited for optimizing
hydropower systems while treating inflow and power price as
exogenous stochastic variables [4].

II. MODEL

A. Hydropower Scheduling Model

In this work we are concerned with medium-term hy-
dropower scheduling in a liberalized market context. We as-
sume that the hydropower producer is a risk-neutral price-taker
trying to optimize the expected profit from sales of electricity
in the day-ahead power market. For this purpose we use a
prototype of the software ProdRisk [5] which is based on the
SDDP algorithm [6], where stochastic market prices are treated
in an outer layer based on stochastic dynamic programming
(SDP). This combined SDDP/SDP model for medium-term
scheduling was originally described in [7], and has later been
discussed in [4], and subject to recent research, e.g., related
to multiple market prices [8] and maintenance scheduling [9].
In the following we present a high-level description of the
optimization problem, before emphasizing the treatment of
ramping constraints. Note that several technical features in
ProdRisk are omitted in the presentation for brevity. We refer
to these previous works [4], [7]–[9] for a comprehensive
description of the combined SDDP/SDP algorithm.

A simplified version of the optimization problem to be
solved is formulated as

maxE

{
T∑

t=1

λ⊺
t xt +Φ(sT )

}
, (1)

where E denotes the expectation operator, considering uncer-
tainty in inflows and market prices, and Φ(sT ) the end of
horizon valuation of state variables in sT . For all stages t in
the planning horizon 1 · · ·T , a vector xt is defined, comprising
all decision variables for that stage. Associated with xt there
is a price vector λt.

The problem in (1) is a multi-stage stochastic optimization
problem, in which we assume all functional relationships to
be linear or linearly approximated. The combined SDDP/SDP
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algorithm facilitates decomposition into linear programming
(LP) problems per decision stage t, according to (2).

Zt =max
NK∑
k=1

τkλkphk + αt (2a)

vhk − vh,k−1 + Γw (qhk + shk) = Ihk ∀h, k (2b)

qhk =
NS∑
s=1

qhks ∀h, k (2c)

phk =
NS∑
s=1

ηsqhks ∀h, k (2d)

αt −
NH∑
h=1

πhcvhk ≤ βc k = NK,∀c (2e)

In this work the decision stage t covers one week where
inflows and market prices are perfectly known. Each decision
stage t comprises a sequence of time steps k = 1, .., NK. A
hydropower system represented by h = 1, .., NH hydropower
modules (combination of reservoir and plant) is optimally
scheduled by maximizing the balance between here-and-now
profit and future expected profit. The here-and-now profit is
represented by the product of power price λk (in e /MWh)
and the scheduled generation phk (in MW) summed over all
hydropower modules and all time steps within the week, and
multiplied by the duration of each time step τk (in hours). The
future expected profit is represented by αt (in e ).

The reservoir balance in (2b) ensures that the reservoir
storage volume vhk (in Mm3) is balanced with discharge qhk
(in m3/s), spillage shk (in m3/s) and inflow Ihk (in Mm3).
Γw converts from m3/s to Mm3. A hydropower production
function is presented in (2d), converting discharge qhks at
segments s = 1, .., NS to power (in MW). The efficiency
coefficients ηs (in MW/m3/s) are assumed to be decreasing
with increasing s to present production as a concave function
of discharge. Benders cuts in (2e), including cut coefficients
πhc (in e /Mm3) and right-hand side βc (in e ), represent the
expected future profit αt. Additional constraints and variable
bounds may be included depending on the type of system and
study.

B. Ramping Constraints

Ramping constraints on discharge are formulated as

−τk∆
−
R ≤ qk − qk−1 ≤ τk∆

+
R , (3)

where ∆−
R and ∆+

R are the maximum allowed ramping rates
for downward (-) and upward (+) ramping (in m3/s/h). From
(3) it is clear that the allowed band for ramping increases with
increasing duration of the time steps τk. As an example, if ∆+

R

= 10 m3/s/h and τk = 6 hours, the model allows ramping up
60 m3/s between two consecutive time steps.

With small time steps, ramping according to ∆R can be
controlled at a desired precision level. However, there are
practical and computational challenges associated with it.
Since the input data series, e.g., for electricity prices, typically

have hourly time resolution, there are no other reasons for
adopting τk < 1 hour. Moreover, the weekly decision problems
grow with the number of time steps, leading to prohibitive
computation times. Certain types of ramping constraints, on
the other hand, would require time resolutions of 10-15 min
for sufficient accuracy.

Next, we discuss possible measures for dealing with the
above-mentioned challenges with ramping constraints. A dif-
ferent take on ramping is presented in [10], where the schedul-
ing is made in continuous time. Concepts from the continuous
time methodology may be worthwhile further exploration in
this context, but we consider it out of scope in this work.
The constraint of type (3) is formulated as an inequality and
is therefore not necessarily binding. Relaxation of equation
(3) provides a possibility for computational speed-up. By
relaxation we refer to the process of first solving the LP prob-
lem without the constraints (they are ’relaxed’). Subsequently,
from the solution of the relaxed LP problem, we identify
the inequalities being violated, and add these before the LP
problem is re-solved. This procedure is repeated until no more
constraint violations are detected. Relaxation is already used
in our scheduling model when treating cuts in the weekly
decision problem. Relaxation can be combined with more or
less sophisticated methods for predicting which constraints to
include but was not further considered in this work.

III. TRANSITION COST

With discrete time, the transition from a discharge rate in
one time step to the next is assumed to be instantaneous, as a
step-function. In reality, this transition requires some time due
to the laws of physics. Regardless of the existence of ramping
constraints, we therefore argue that the time discretization con-
tributes to overestimating the capability of adjusting generation
to price. Since the price is treated exogenously, it is possible to
estimate a transition cost that covers the adaption of discharge
from one time step to the next. This concept is described in
detail next.

A. Deriving the Transition Cost

To supplement ramping constraints in limiting the ramping
according to the provided requirements, we introduce the
concept of transition cost (TC). The concept will be explained
with references to Fig. 1. Consider a power station with a
discharge ramping constraint, illustrated as the dotted line in
Fig. 1. The figure shows two time steps with low (λk−1) and
high (λk) prices (in e /MWh) and a corresponding discharge q.
The LP problem formulated in the previous section, including
ramping constraints in (3) allows discharge to instantaneously
transit from a low rate in the one time step to a higher rate in
the next, according to the solid-drawn line in Fig. 1.

We assume that the continuous ramping is symmetric
around the shift between time steps and needs at least a
minimum time to ramp of 2∆t. The change of discharge
rate will therefore start ∆t hours before time step k and will
complete ∆t hours after step k has started, as illustrated by the
dotted line in Fig. 1. Due to the limited ramping, an additional
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Fig. 1. Illustration of discharge ramping between two consecutive time steps.

volume A will be discharged at price λk−1, while the discharge
at λk is reduced by a volume A. Since prices are known a
priori, the economic loss (or the transition cost) of changing
discharge rate between the two time steps can be estimated.
We start by estimating the volume A (in m3) in (4).

∆t =
qk − qk−1

2∆R
(4a)

∆q =
qk − qk−1

2
(4b)

A =
Γh∆q∆t

2
=

Γh (qk − qk−1)
2

8∆R
(4c)

where Γh converts m3/s to m3/h.
The cost (or lost revenue) associated with the misplaced

volume can be found by multiplying the volume A with the
price difference and the water-to-power efficiency:

yk = Aη|λk − λk−1| = C (qk − qk−1)
2
, (5)

where C = η|λk−λk−1|
∆R

. We assume that η corresponds to the
best efficiency point so that the cost (yk) is an upper bound
on the ”true” cost.

Note that we do not account for the misplaced volume in
(2) and (3): yk is solely an additional cost element reflecting
the lost revenue due to ramping limitations in between time
steps. We add the cost elements in (5) to the objective so that
(2a) is replaced with (6).

Zt = max
NK∑
k=1

(
τkλkphk − yk

)
+ αt (6)

B. Approximating the Transition Cost

The LP problem formulated in Section II now becomes a
quadratic optimization problem due to (5). For computational
efficiency, it is crucial for the scheduling model to maintain the
weekly decision problems as LP problems. Thus, we linearize
the cost component, as described below and illustrated in
Fig. 2.

First the range of N possible ∆q values are defined, as
illustrated by the dots along the horizontal axis in Fig. 2. For
each discrete point we compute both the exact transition cost
y∗, according to (5), and the derivative ∂y

∂∆q |∆q∗ . By forming

Fig. 2. Linear approximation of the transition cost.

a first-order Taylor expansion around this operating point, a
linear constraint can be formulated:

yk ≥ y∗k +
∂y

∂∆q
|∆q∗

(
∆q −∆q∗

)
. (7)

We refer to (7) as transition cost cuts (TC-cuts) in the
following. A total of N TC-cuts can be computed for each
price period prior to solving the LP problems. As shown in
Fig. 2, the TC cuts approximate yk from below. Note that the
bound yk ≥ 0 ensures a non-negative y.

C. Comments on Accuracy and Simplifications

The ’true’ cost of the ramping constraint can be found by
formulating an optimization model with ramping constraints
and infinitesimal time discretization. Apart from the underes-
timation due to discretization errors related to the TC cuts, we
argue that the presented approach tends to overestimate the
’true’ cost for two reasons. First, we require that the transition
from one discharge rate to the next is centered around the
time-shift between the two time steps, as illustrated in Fig. 1.
This is more restrictive than a finely discretized optimization
model with ramping constraints, since the latter can decide on
the ramping trajectory more freely. Second, we assume that
the best efficiency point is used in (5), leading to an upper
bound on the cost yk.

The presented approach is based on the assumption that the
ramping direction follows the change in power price between
two consecutive time steps. For complex systems there may be
situations where this assumption does no hold true, i.e., that
the model finds that ramping up (resp. down) as a response to a
decreasing (resp. increasing) price is favorable. Such situations
where not discovered in our case study in Section IV.

IV. CASE STUDY

A prototype of the SDDP-based ProdRisk scheduling model
was prepared with the implementation of ramping constraints
and TC-cuts. The model uses CPLEX as the optimization
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Fig. 3. Hydropower system topology and technical characteristics.

solver and was run with parallel processing. In our presenta-
tion, we will mainly focus on the numerical results and briefly
report on computations times.

A. System and Case Description

The hydropower system in Røssåga is located in Northern
Norway and comprises two large power stations with signifi-
cant upstream reservoir capacity. An illustration of the system
topology, including the major reservoirs and power stations,
is provided in Fig. 3. A minimum discharge constraint of 30
m3/s applies downstream the power stations.

We consider a ramping requirement associated with the
outlet of the downstream power station labeled 2⃝ in Fig. 3.
The constraint limits ramping to be at most 7.5 m3/s per 15
min. This translates to 30 m3/s per hour and 90 m3/s per 3-
hour block. The maximum discharge through power station 2
is 160 m3/s.

The system is optimized for a horizon of 156 weeks, using
56 3-hour time steps within the week. This is a reasonable
time discretization for a medium-term scheduling, for which
a reasonable balance between result quality and computation
time is sought. The ramping constraint is therefore 90 m3/s
per 3-hour block. Four cases were run, as listed in Table I.
The cases NoRamp and Ramp are without and with ramping
constraints, respectively. The cases Ramp-TC20 and Ramp-
TC100 are both with ramping constraints and include 20 and
100 TC-cuts, respectively.

B. Results

The converged objective function values (profit maximiza-
tion) and the total computation times are shown in Table I.
While the ramping constraints alone seem to reduce the
objective marginally in case Ramp compared to NoRamp, the
cases with TC-cuts provide significant reductions. Moreover,
we find that the use of TC-cuts increases the computation time,
but not dramatically, as shown in the third column in Table I.

TABLE I
OBJECTIVE AND SOLUTION TIME.

Case Objective [Me ] Time [hr:min]
NoRamp 7221 2:14

Ramp 7220 3:11
Ramp-TC20 7169 4:14
Ramp-TC100 7159 7:34
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Fig. 4. Simulated reservoir trajectories for the largest reservoir.

The simulated reservoir trajectories for the largest reservoir
from case Ramp are shown in Fig. 4. The trajectories obtained
from the other cases differ only marginally from those in case
Ramp.

We calculated time series of ramping on discharge through
power station 2⃝, and plot the duration curves for ramping
obtained in cases Ramp, Ramp-TC20 and Ramp-TC100 in
Fig. 5. The figure shows that the frequency of ramping (up
and down) is significantly reduced when using TC-cuts. While
the duration curves are similar for the two cases with TC-
cuts, the Ramp-TC100 case provides a better approximation of
the transition cost than Ramp-TC20, and hence the smoother
curve.

Fig. 6 shows a sequence of discharge decisions for power
station 2⃝ for three chosen weeks. The vertical gray, dotted
lines indicate the end of each week. The use of TC-cuts in
cases Ramp-TC20 and Ramp-TC100 leads to less fluctuations
between the minimum discharge, best efficiency point, and
maximum discharge.

V. CONCLUSIONS

A new method for approximating the cost of following
ramping constraints in medium-term hydropower scheduling
models was presented. Since power prices are exogenous, the
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Fig. 5. Duration curves for discharge ramping.

0 50 100 150

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

Time step

D
is

c
h
a
rg

e
 [
m

3
/s

]

Ramp

Ramp−TC20

Ramp−TC100

Fig. 6. Discharge for a selected sequence of three weeks.

cost can be explicitly computed and approximated by linear
constraints, and this fits well within a framework based on
stochastic linear programming.

A realistic case study was presented, demonstrating the
impact of following ramping constraints on discharge patterns.
The approximation by linear constraints contributed to sig-
nificant, but not prohibitive, increases in computation times.
Further work may improve the approximation procedure, e.g.,
by approximating the transition cost components dynamically.
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