
Joint Post-proceedings of the
First and Second International
Conference on Microservices

Microservices 2017, October 2017, University of Southern
Denmark, Odense, Denmark
Microservices 2019, February 2019, University of Applied
Sciences and Arts Dortmund, Dortmund, Germany

Edited by

Luís Cruz-Filipe
Saverio Giallorenzo
Fabrizio Montesi
Marco Peressotti
Florian Rademacher
Sabine Sachweh

OASIcs – Vo l . 78 – Mic rose rv i ces 2017/2019 www.dagstuh l .de/oas i c s

Editors

Luís Cruz-Filipe
University of Southern Denmark, Denmark
lcf@imada.sdu.dk

Saverio Giallorenzo
University of Southern Denmark, Denmark
saverio@imada.sdu.dk

Fabrizio Montesi
University of Southern Denmark, Denmark
fmontesi@imada.sdu.dk

Marco Peressotti
University of Southern Denmark, Denmark
Peressotti@imada.sdu.dk

Florian Rademacher
University of Applied Sciences and Arts Dortmund, Germany
florian.rademacher@fh-dortmund.de

Sabine Sachweh
University of Applied Sciences and Arts Dortmund, Germany
sabine.sachweh@fh-dortmund.de

ACM Classification 2012
Applied computing → Service-oriented architectures; Software and its engineering → Software architec-
tures; Information systems → RESTful web services; Software and its engineering → Cloud computing;
Software and its engineering → Organizing principles for web applications; Software and its engineering
→ Development frameworks and environments

ISBN 978-3-95977-137-5
Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-137-5.

Publication date
February 2020

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.Microservices.2017-2019.0
ISBN 978-3-95977-137-5 ISSN 1868-8969 https://www.dagstuhl.de/oasics

mailto:lcf@imada.sdu.dk
mailto:saverio@imada.sdu.dk
mailto:fmontesi@imada.sdu.dk
mailto:Peressotti@imada.sdu.dk
https://orcid.org/0000-0003-0784-9245
mailto:florian.rademacher@fh-dortmund.de
mailto:sabine.sachweh@fh-dortmund.de
https://www.dagstuhl.de/dagpub/978-3-95977-137-5
https://www.dagstuhl.de/dagpub/978-3-95977-137-5
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.0
https://www.dagstuhl.de/dagpub/978-3-95977-137-5
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

Microservices 2017/2019

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

Contents

Preface
Luís Cruz-Filipe, Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian
Rademacher, and Sabine Sachweh . 0:vii–0:viii

Microservices 2017
. 0:ix–0:x

Microservices 2019
. 0:xi–0:xiii

Regular Papers

Using Microservices to Customize Multi-Tenant SaaS: From Intrusive to
Non-Intrusive

Hui Song, Phu H. Nguyen, and Franck Chauvel . 1:1–1:18

Experience Report: First Steps towards a Microservice Architecture for Virtual
Power Plants in the Energy Sector

Manuel Wickert, Sven Liebehentze, and Albert Zündorf . 2:1–2:10

Exploring Maintainability Assurance Research for Service- and Microservice-Based
Systems: Directions and Differences

Justus Bogner, Adrian Weller, Stefan Wagner, and Alfred Zimmermann 3:1–3:22

Introduction to Microservice API Patterns (MAP)
Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, and Uwe Zdun 4:1–4:17

PREvant (Preview Servant): Composing Microservices into Reviewable and
Testable Applications

Marc Schreiber . 5:1–5:16

Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019).
Editors: Luís Cruz-Filipe, Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and Sabine
Sachweh

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Preface

About the Microservices Community and the Microservices Conference Series. The
Microservices Community1 is one of the largest non-profit organisations purposed at sharing
the knowledge and fostering collaborations on microservices. The organisation counts a
broad composition of members from research institutions, private companies, universities,
and public organisations.

The International Conference on Microservices (shortened, Microservices) is a conference
series aimed at bring together industry and academia, to foster discussion on the practice
and research of all aspects of microservices: their design, programming, and operations.
Microservices is the flagship conference among the many dissemination events supported by
the Microservices Community.

Microservices 2017, October 2017, Odense, Denmark. The First International Confer-
ence on Microservices2 took place in Odense, Denmark from October 25–26, 2017, and was
organised in collaboration between the University of Southern Denmark and the University
of Bologna.

The program committee (PC) consisted of 16 members and the conference received the
submission of 18 extended abstracts, of which 16 were accepted for presentation. The program
also featured invited keynotes by Steve Ross-Talbot and Claudio Guidi. The conference
counted 40+ participants, of which 58% were from industry (e.g., Red Hat Inc., Yoti Ltd.,
etc.) and 42% from academia.

Microservices 2019, February 2019, Dortmund, Germany. The Second International
Conference on Microservices3 took place in Dortmund, Germany from February 19–21,
2019. It was organised in collaboration between the Dortmund University of Applied Sciences
and Arts and the University of Southern Denmark.

Microservices 2019 built upon the success of the previous edition. The PC consisted
of 26 members and the conference received the submission of 32 extended abstracts, of
which 28 where accepted for presentation. The contributions covered a broad spectrum of
topics related to the three main themes around Microservices: design, development, and
deployment/operations. Thus, each of the three conference days could be dedicated to one
of those themes. The program featured invited keynotes by Olaf Zimmermann, Fabrizio
Montesi, Ramón Medrano Llamas, Jörn Esdohr, and Peter Rossbach. The conference counted
70+ participants, of which 36% were from industry (e.g., Google LLC, Siemens AG, NGINX
Inc., IBM Inc., etc.) and 64% from academia.

Post-proceedings of Microservices 2017/2019. The present volume compiles contributions
from attendees of Microservices 2017 and 2019. The volume received 9 submissions of which
5 were accepted for inclusion after peer review and rebuttal.

In addition to the contributed papers, this volume includes the abstracts of the keynotes
presented at the first two editions of Microservices.

1 https://www.microservices.community
2 https://www.conf-micro.services/2017
3 https://www.conf-micro.services/2019

Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019).
Editors: Luís Cruz-Filipe, Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and Sabine
Sachweh

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.microservices.community
https://www.conf-micro.services/2017
https://www.conf-micro.services/2019
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:viii Preface

We thank the authors of all submitted proposals for their work in preparing and presenting
their contributions. We hope that they found the feedback from the reviewing process helpful.
We also thank the members of the program committees of Microservices 2017, Microservices
2019, and these post-proceedings for their excellent work and enthusiasm.

Finally, we want to thank all the donors that provided financial support to the conference
and these proceedings: Adesso AG, InnoQ GmbH, Materna SE, italianaSoftware S.r.l,
Vanderlande BV, the Department of Mathematics and Computer Science of the University
of Southern Denmark, and the Institute for the Digital Transformation of Application and
Living Domains of the University of Applied Sciences and Arts Dortmund.

Let Industry and Academia meet.

Luís Cruz-Filipe
Saverio Giallorenzo
Fabrizio Montesi
Marco Peressotti
Florian Rademacher
Sabine Sachweh

Microservices 2017

Microservices 2017 Organisation

Program Chairs Luís Cruz-Filipe (University of Southern Denmark)
Fabrizio Montesi (University of Southern Denmark)

Local Organisers Barbara Tvede Andersen (University of Southern Denmark)
Ronald Jabangwe (University of Southern Denmark)
Marco Peressotti (University of Southern Denmark)

Publicity Chair Saverio Giallorenzo (University of Bologna / INRIA)
Program Committee Farhad Arbab (Leiden University and CWI)

Pierre-Malo Deniélou (Google)
Nicola Dragoni (Technical Univ. of Denmark / Örebro University)
Schahram Dustdar (TU Wien)
Saverio Giallorenzo (University of Bologna / INRIA)
Claudio Guidi (italianaSoftware)
Alberto Lluch Lafuente (Technical University of Denmark)
Einar Broch Johnsen (University of Oslo)
Sung-Shik Jongmans (Open University of the Netherlands)
Manuel Mazzara (Innopolis University)
Kevin Ottens (KDAB)
Steve Ross-Talbot (Estafet)
Gwen Salaün (Inria Grenoble - Rhône-Alpes)
Nobuko Yoshida (Imperial College London)
Ingrid Chieh Yu (University of Oslo)
Olaf Zimmermann (Univ. of Appl. Sciences of Eastern Switzerland)

Microservices 2017 Keynote Abstracts

A Linguistic Approach to Microservices, Claudio Guidi, italianaSoftware S.r.l.

Microservices are usually considered the be technology agnostic, thus they are approached in
terms of architectures or models to be applied on distributed systems. Nevertheless, their
basic mechanisms can be crystallized within a unique programming language by offering a new
mindset for developers and engineers, In the past years we dealt with such an objective starting
from the theoretical foundations of service oriented computing. In this presentation I’ll show
our experience and our results in approaching microservices with a specific programming
language called Jolie.

The problem with Microservices, Steve Ross-Talbot, Estafet

Are microservices really the next Big Thing? Whilst they currently dominate conferences and
the language of product vendors — often linked to APIs, Continuous Delivery, Containers
and PaaS — the deluge of information often confuses rather than clarifies. This has led to
sub-optimal microservices architectures and some spectacular failures.

In this talk, we will discuss both data-centric and interaction-centric approaches, looking
at what happens when people “code-first-and-ask-questions-later”. How much up-front
thinking do you need?, and how can you exert sufficient control over implementations once
Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019).
Editors: Luís Cruz-Filipe, Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and Sabine
Sachweh

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:x Microservices 2017

they are live? The future may well include policy-driven microservices architecture, but
you need to ask some tough questions now if you are going to deliver to the business on a
continued and scaled basis.

Microservices 2019

Microservices 2019 Organisation

Program Chairs Saverio Giallorenzo (University of Southern Denmark)
Marco Peressotti (University of Southern Denmark)
Florian Rademacher (Univ. of Appl. Sciences and Arts Dortmund)
Sabine Sachweh (Univ. of Applied Sciences and Arts Dortmund)

Local Organisers Philipp Heisig (University of Applied Sciences and Arts Dortmund)
Philip Wizenty (Univ. of Applied Sciences and Arts Dortmund)

Publicity Chairs Barbara Tvede Andersen (University of Southern Denmark)
Jonas Sorgalla (University of Applied Sciences and Arts Dortmund)

Program Committee Farhad Arbab (Leiden University and CWI)
Luís Cruz-Filipe (University of Southern Denmark)
Pierre-Malo Deniélou (Google)
Claudio Guidi (italianaSoftware)
Marcel Hahn (University of Kassel)
Philipp Heisig (University of Applied Sciences and Arts Dortmund)
Thomas Hildebrandt (University of Copenhagen)
Pooyan Jamshidi (University of South Carolina)
Sung-Shik Jongmans (Open University of the Netherlands)
Michalis Kargakis (Red Hat)
Ivan Lanese (University of Bologna)
Sanja Lazarova-Molnar (Maersk Mc-Kinney Moller Institute)
Fei Li (Siemens)
Ramón Medrano Llamas (Google)
Jacopo Mauro (University of Southern Denmark)
Martin Peters (com2m GmbH)
Marco Prandini (University of Bologna)
Steve Ross-Talbot (Estafet)
Alessandro Rossini (PwC Consulting)
Larisa Safina (Innopolis University)
Gwen Salaün (Inria Grenoble, Rhône-Alpes)
Jonas Sorgalla (Univ. of Applied Sciences and Arts Dortmund)
Balakrishna Subramoney (SunBio IT Solutions)
Stefan Tilkov (innoQ Deutschland GmbH)
Olaf Zimmermann (Univ. of Appl. Sciences of Eastern Switzerland)
Albert Zündorf (University of Kassel)

Additional reviewers Mirco Lammert (Univ. of Applied Sciences and Arts Dortmund)
Andreas Püsche (Univ. of Applied Sciences and Arts Dortmund)
Philip Wizenty (Univ. of Applied Sciences and Arts Dortmund)
Stefano Pio Zingaro (University of Bologna)

Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019).
Editors: Luís Cruz-Filipe, Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and Sabine
Sachweh

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:xii Microservices 2019

Microservices 2019 Keynote Abstracts

Domain-Specific Service Decomposition with Microservices API
Patterns, Olaf Zimmermann

Service orientation is a key enabler for cloud-native application development. Microservices
have emerged as a state-of-the-art implementation approach for the realization of the
Service-Oriented Architecture (SOA) style, promoting modern software engineering and
deployment practices such as containerization, continuous delivery, and DevOps. Designing
(micro-)services interfaces’ to be expressive, responsive, and evolvable is challenging. For
instance, deciding for suited granularities is a complex task resolving many conflicting forces;
one size does not fit all. Domain-Driven Design (DDD) can be applied to identify and
specify service boundaries. However, service designers seek concrete, actionable guidance
going beyond high-level advice such as “turn each bounded context into a microservice”.
Interface signatures and message representations need particular attention as their structures
influence the service quality characteristics. This presentation first recapitulates prevalent
SOA principles, microservices tenets and DDD patterns. It then reports on the ongoing
compilation of complementary Microservices API Patterns (MAP) and proposes a set of
pattern-based API refactorings for service decomposition. Finally, the presentation highlights
some of the related research and development challenges.

Understandable Microservices, Fabrizio Montesi

Microservices come at a price: they have to be integrated to get a meaningful application.
This motivated the creation of tools that make integration easier. Today, we spend more
time developing integration than actual applications, so this development could not have
come at a better time. Enter Jolie, a microservice-oriented programming language. By
offering native linguistic features for composing microservices, Jolie has become a swiss
army knife that can be used by integration ninjas and wise software designers that plan for
maintanable software. To explore how microservices and Jolie can make us productive with
integration, we’ll develop microservices for a concrete business idea: a publishing platform
for sharing Chuck Norris jokes. Technically, we’ll create an API gateway for two different
third-party Internet websites, integrate their behaviours, and ultimately get what we want
without having to host either of them. Would you write object-oriented software without an
object-oriented language? Ask yourself again, but for microservices, after you see this talk.

Engineering Reliability, Ramón Medrano Llamas

How do you scale up a service, so it can serve millions (or billions!) of users around the
globe, make it reliable and fast while maintaining development speed and change safety?
This talk introduces Site Reliability Engineering (SRE) at Google, explaining its purpose
and describing the techniques it uses and the challenges it addresses. SRE teams manage
Google’s many services and properties, plus all the brand new Cloud infrastructure from our
offices worldwide. They draw upon Linux based computing resources that are distributed in
several data centres around the globe to deploy, manage, and serve globally available services
four billions of users.

Microservices 2019 0:xiii

Factory of Things - Using Microservices for Data Processing and IoT,
Jörn Esdohr

Industrial devices and machines, ranging from lights over elevators to complete factories,
are producing large amounts of data. Some of it is used to grant simple ad-hoc monitoring
and control capabilities, but a lot of this valuable resource ends up discarded due to the
lack of a comprehensive data processing infrastructure. Microservices provide a reliable and
performant architecture for the Internet of Things (IoT) to connect devices on a large scale,
which provides a path to collect and analyse the flood of accumulating application data. At
com2m, a containerized microservice-based IoT platform was developed leveraging graph and
document databases, and modern web technologies. We present the Factory of Things as a
showcase that demonstrates the real-world integration of a manufacturing line powered by
programmable logic controllers. The IoT platform enables new data processing possibilities
to monitor devices and enables the development of rich data-based services.

Build Fashionable Container Systems with Microservices,
Clouds, and Kubernetes, Peter Rossbach
Transform your organization and systems so that they no longer need an end-state. Modern
clouds and the container technology help you to build self-healing autonomous scalable
systems around the globe. The Cloud Native Computing Foundation ecosystem offers you
many features to setup and manage complex cloud-native container systems. Serverless or
microservice architectures need a lot of glue infrastructure components. In this talk I will
show you some automation practices, such as infrastructure as code, release automation,
and container orchestration. We build container systems in conjunction with Kubernetes
and Clouds. As a developer you will learn how you can easily control your stage environ-
ments, reuse setups, and how to release your complete application stack with cloud-native
technologies.

Scientific Committee of the post-proceedings

Einar Broch Johnsen (University of Oslo)
Claudio Guidi (italianaSoftware)
Philipp Heisig (University of Applied Sciences and Arts Dortmund)
Sung-Shik Jongmans (Open University of the Netherlands)
Ivan Lanese (University of Bologna)
Fei Li (Siemens)
Jacopo Mauro (University of Southern Denmark)
Manuel Mazzara (Innopolis University)
Marco Prandini (University of Bologna)
Larisa Safina (Innopolis University)
Gwen Salaün (Inria Grenoble, Rhône-Alpes)
Jonas Sorgalla (University of Applied Sciences and Arts Dortmund)
Stefan Tilkov (innoQ Deutschland GmbH)
Olaf Zimmermann (University of Applied Sciences of Eastern Switzerland)
Stefano Pio Zingaro (University of Bologna)
Albert Zündorf (University of Kassel)

Microservices 2017/2019

Using Microservices to Customize Multi-Tenant
SaaS: From Intrusive to Non-Intrusive
Hui Song
SINTEF, Oslo, Norway
hui.song@sintef.no

Phu H. Nguyen1

SINTEF, Oslo, Norway
phu.nguyen@sintef.no

Franck Chauvel
SINTEF, Oslo, Norway
franck.chauvel@sintef.no

Abstract
Customization is a widely adopted practice on enterprise software applications such as Enterprise
resource planning (ERP) or Customer relation management (CRM). Software vendors deploy their
enterprise software product on the premises of a customer, which is then often customized for
different specific needs of the customer. When enterprise applications are moving to the cloud as
mutli-tenant Software-as-a-Service (SaaS), the traditional way of on-premises customization faces
new challenges because a customer no longer has an exclusive control to the application. To empower
businesses with specific requirements on top of the shared standard SaaS, vendors need a novel
approach to support the customization on the multi-tenant SaaS. In this paper, we summarize our
two approaches for customizing multi-tenant SaaS using microservices: intrusive and non-intrusive.
The paper clarifies the key concepts related to the problem of multi-tenant customization, and
describes a design with a reference architecture and high-level principles. We also discuss the key
technical challenges and the feasible solutions to implement this architecture. Our microservice-based
customization solution is promising to meet the general customization requirements, and achieves a
balance between isolation, assimilation and economy of scale.

2012 ACM Subject Classification Software and its engineering → Software as a service orchestration
systems; Software and its engineering → Cloud computing; Applied computing → Service-oriented
architectures

Keywords and phrases Customization, Software-as-a-Service (SaaS), Microservices, Multi-tenancy,
Cloud, Reference Architecture

Digital Object Identifier 10.4230/OASIcs.Microservices.2017-2019.1

Funding This work is funded by the Research Council of Norway under the grant agreement number
256594 (the Cirrus project).

Acknowledgements We want to thank our colleagues at Supper Office and Visma for the fruitful
collaboration in the Cirrus project.

1 Introduction

Most companies rely on enterprise software applications to drive their daily business, such
as Enterprise resource planning (ERP) or Customer relation management (CRM). Because
every company is unique, a standard product application cannot fit all the requirements
of any company, and therefore often needs to be customized for individual customers. In

1 Corresponding author

© Hui Song, Phu H. Nguyen, and Franck Chauvel;
licensed under Creative Commons License CC-BY

Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices
2017/2019).
Editors: Luís Cruz-Filipe, Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and
Sabine Sachweh; Article No. 1; pp. 1:1–1:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hui.song@sintef.no
https://orcid.org/0000-0003-1773-8581
mailto:phu.nguyen@sintef.no
mailto:franck.chauvel@sintef.no
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

1:2 Using Microservices to Customize Multi-Tenant SaaS

practice, a customer can easily spend ten times the cost on customization than the licence
they bought for the original application [3]. Software customization is traditionally done
by re-defining work flows, developing add-in applications, or even directly modifying the
source code of the standard product application. In this paper, we differentiate customization
from configuration: The former involves software development work whereas the latter only
involves changing some values of the predefined parameters. Advanced customers often
require features that are not predictable for vendors, making customization inevitable, since
configuration is limited within the features that are already implemented by the vendors.

Following the trend of cloud computing, enterprise software vendors are moving from
single-tenant on-premises applications to multi-tenant (Cloud-based) Software as a Service
(SaaS) [6]. Customer companies no longer buy a license from the vendor and install it in
their own premises. Instead, they subscribe to an online service, which is also used by other
customers, known as tenants of the service. The SaaS model brings new challenges to the
software vendors with regard to enabling customization. It is not possible for any tenant to
directly edit the source code of the same product service shared by other tenants. Software
vendors must enhance the SaaS model with the ability to enable tenant-specific customization
in the multi-tenant context. Under such setup, customization on multi-tenant SaaS must
meet three basic requirements. These requirements have been defined together with the two
software vendors who are the industrial partners in the Cirrus project.

Isolation: The customization for one tenant must not affect the other tenants. Tenant
isolation, especially in terms of security is of paramount importance.
Assimilation: Customization should not harm the performance and user experience of
the SaaS. In other words, the “look and feel” of the SaaS with customization should not
change compared to the original SaaS.
Economy of scale: With more customers subscribe to customize the SaaS, the average
cost per customer should decrease. The SaaS business model allows to make full use of
the economy of scale, as multiple tenants (customers) share the same application and
database instance [1]. Enabling customization for multi-tenant SaaS should still ensure
the economy of scale brought by the SaaS business model.

The state of the art and practice on enabling customization for multi-tenant SaaS may
still be at an early stage discussed as follows. There are enterprise software vendors that
move their products to SaaS without supporting the same level of customization capabilities
as their customers used to have on their own premises. As a result, a significant number
of their customers are not following to the cloud [7]. Without customization capabilities,
the customers lost an important weapon for tailoring the services according to their real
requirements, and for continuous business innovation. Some vendors choose to support
either lightweight, in-product customization by providing customers with scripting or work
flow languages [24]. In this way, the customization capability is stronger than parameter
configuration but still limited by the languages. It is also not ideal in terms of isolation,
as the scripts are running inside the main product. Other vendors, especially the big ones
such as Salesforce, choose a heavyweight direction, transforming themselves from a product
into a development platform for customers to implement their own applications [21]. In this
way, the customization in terms of standalone applications does not meet the assimilation
requirements, as the external applications will break the consistent user experience of the
product service, and also drag down the response time. More importantly, this solution
requires huge investment from vendors and strong expertise from customization developers.

Using microservices is a promising direction to customize multi-tenant SaaS because
microservices architectures offer several benefits. First, microservices for customization
purposes can be packaged and deployed in isolation from the main product, which is an
important requirement for multi-tenant context. Moreover, independent development and

H. Song, P.H. Nguyen, and F. Chauvel 1:3

deployment of microservices ease the adoption of continuous integration and delivery, and
reduce, in turn, the time to market for each service. Independence also allows engineers to
choose the technology that best suits one and only one service, while other services may
use different programming languages, database, etc. Each service can also be operated
independently, including upgrades, scaling, etc. In this paper, we discuss our two approaches
of using microservices to enable customization for multi-tenant SaaS: intrusive and non-
intrusive. The intrusive approach [22, 2] prescribes that the main body of customization code
runs in a separate microservice, isolated from the main service (of the main product), whilst
specific parts of the customization code are sent back to the main product and dynamically
compiled and executed within the execution context of the main service. While intrusive
customization using microservices is technically sound, its practical adoption by industry
may be hindered by the intrusive way of customization code, which would be developed by
“third-parties” that cannot be trusted by the software vendor to be dynamically compiled
and executed within the execution context of the main service. Thus, we have evolved
our approach to become non-intrusive [14, 15]. The non-intrusive approach avoids using
intrusive call-back code for customization and rather orchestrates customization using the
API Gateway pattern [19]. Via API Gateway(s), the APIs of the main product and the APIs
of the microservices implementing customization are exposed for tenant-specific authorized
access. We have demonstrated the two proposed approaches by two experimental use cases
of transforming two Microsoft’s reference .Net Core web applications into customizable SaaS:
MusicStore [12] and eShopOnContainers [11].

Based on these two approaches, we generalize our approaches by providing a reference
architecture of customizing multi-tenant SaaS by microservices, together with the general
principles to achieve the requirements of isolation, assimilation and economy of scale. Whether
intrusive or non-intrusive, our work has provided the designs and experiments towards novel,
cloud-native architectures for customizing multi-tenant SaaS by tenant-specific microservices.
A customization for a particular tenant is running as a standalone service and dynamically
registered to the product service for this tenant. At runtime, the customization microservices
are triggered by the product service when the latter reaches a registered extension point.
They communicate with each other via REST APIs. The customization microservices are
hosted by the same vendor cloud as the product service.

This paper is a report based on the investigation, design and experiments under the
collaboration among a research institute and two software vendors. The objective of this
paper is to provide: 1) a sample solution in the direction of using microservices in a high
abstraction level, aiming at inspiring other vendors having the same customization problem
for multi-tenant SaaS; and 2) a reference for researchers interested in the problem of multi-
tenant customization, with a clarification of relevant concepts and research challenges. The
contributions of this paper can be summarized as follows.

We clarify the problem of muti-tenant SaaS customization with a conceptual architecture,
which defines the high-level concepts involved in the problem and the relationships
between these concepts.
We provide a reference architecture of customizing multi-tenant SaaS by microservices,
together with the general principles to achieve the requirements of isolation, assimilation
and economy of scale.
We identify a set of technical challenges towards implementing this reference architecture,
and propose technical solutions towards these challenges.
The remainder of this paper is organized as follows: In Section 2, we give a motivational

example to demonstrate the challenges of deep customization. Then, Section 3 provides a
conceptual architecture of multi-tenant SaaS. Sections 4 and 5 describe our intrusive and non-
intrusive approaches for enabling the customization of multi-tenant SaaS using microservices.

Microservices 2017/2019

1:4 Using Microservices to Customize Multi-Tenant SaaS

We generalize our solutions and provide a reference architecture for customization using
microservices in Section 6. After that, Section 7 discusses the technical details in the proposed
reference architecture. Section 8 presents the related work. Finally, we give our conclusions
and future work in Section 9.

2 A Motivational Example

Let us consider MuTeShop.com (Multi-Tenant Shops) as a made-up example that captures
the requirement of customization. MuTeShop.com offers web-based online shopping SaaS:
Customers can quickly set up their own shopping website. From the MuTeShop.com software
vendor’s point of view, each customer is a tenant with a separate website for their end-users
to browse and buy goods.

MuTeShop.com has to be customizable. For example, one of their key customer/tenant,
e.g., Music.MuTeShop.com, requires that their shopping cart includes a charity donation
option. Whenever an end-user adds an album into her shopping cart, she can donate
some money to a designated charity, which eventually adds-up on the total checkout price.
Music.MuTeShop.com hires a third-party consultant to implement this customization, which
involves the following changes to the standard MuTeShop.com product. They need to change:
(i) the database storage to be able to record the amount of donation for each item in the
shopping cart, (ii) the business logic to account for these donations, and (iii) finally the user
interface for end-users to choose/see how much they donate.

As a multi-tenant SaaS, MuTeShop.com cannot allow the consultant to modify their
product source code to implement such customization, because the same database schema
and the price accounting source code are shared by multiple tenants. Modifying the code for
one tenant would interfere with the service to other tenants. Instead, the product service
of MuTeShop.com should only provide the standard features that are common for all the
tenants. The customization required specifically by Music.MuTeShop.com should be running
in an isolated way, outside of the product service. When registered to the product service,
this customization should modify the behaviour of the product service as stated above if and
only if the user requests are bound to this tenant.

The example illustrates the problem that many SaaS vendors face: Their services are
successful for some customers only if they can do deep customization. But the vendor cannot
allow the same way of deep customization as for on-premises products, because they have to
keep the service multi-tenant. In summary, they need a customization solution that achieves
both isolation and assimilation.

3 A Conceptual Model of Customization for Multi-Tenant SaaS

Figure 1 summarizes the main concepts related to the customization of multi-tenant SaaS.
There are three different roles in the ecosystem of multi-tenant SaaS customization, i.e., the
Vendors who provide the main SaaS, the Customers who subscribe to the service, and the
Consultants who are hired by the customers to customize the SaaS. In practice, the three roles
are not necessarily taken by different companies, e.g., a customer company may have their
own IT team and developers that are competent for doing customization. A vendor company
may also have its own consult team who sells their own service and does customization under
the customer’s request.

The Product is the software produced by the vendor. It may have multiple versions.
A Product Service is a running instance of a specific product version, hosted by a Product
Environment, together with the Product Data. A product environment is a specific Environment,

H. Song, P.H. Nguyen, and F. Chauvel 1:5

User Tenant

Product

Product
Version

Product
Environment

Identity
Management

Environment

Tenant
management

Customization
Environment

Customization
Service

Customization
App

Customization
App version

Product
Service

Customization
Data

0..*

1..*

1..1

0..*

1..* 1..1

0..*

1..1

1..1

1..1

1..1
0..*

1..1

1..1

1..1

0..*

0..* 1..1

1..* 1..1
1..1

1..1

1..1
0..1

App StoreResource

0..*
1..1

Library

0..*
1..*0..*

hosted by

Product Data
1..1

1..1

Customer
1..10..*

Consultant

Vendor

developers

operates

Figure 1 A conceptual model of customization for multi-tenant SaaS.

which is a self-contained computation unit with software, Libraries and Resources, such as
a Docker container or a virtual machine. A product service typically runs in an exclusive
environment, meaning that one environment is for one and only one instance. An environment
may be hosted by another environment, e.g., a Docker container may be hosted by a virtual
machine, and the latter is hosted by a cloud infrastructure.

One product service serves multiple Tenants, and at the same time, the vendor manages
the product environment. A vendor usually operates multiple product services (and therefore
multiple product environments) at the same time: They may need to maintain instances
for several versions of the product for their customers. For the same version, they usually
run one main instance for the production usage, one staging instance for user testing, and
one development instance for testing and debugging. Even within the product usage, there
may need several product instances due to load capacity or region constraints. Under such
setup, a customer may have the subscription of multiple product instances, each of which
is subscribed via a different tenant. In other words, every tenant belongs to one and only
one product instance. This simplifies the billing and management for the vendors. Each
tenant covers a number of Users, which are the persons who have the right to access the
product instance via this tenant. They are typically employees of the customer behind this
tenant, but a tenant may also include users from the consult company who help the customer
through training, maintenance or customization.

A Customization App is software code that implements customization to the product. It
may have several versions. A Customization Service is a running instance of one version of
the Customization App. A customization service is hosted by a Customization Environment.
Similar to a product environment, a customization environment also provides necessary
resources, libraries and database to run the customization service. Database is optional as
some lightweight customization services can be stateless. A customization service is registered
to a tenant, and it only changes the behaviour of the product for this particular tenant.

4 Intrusive Customization Using Microservices

In our previous work, we have experimented with an approach to using (semi-)intrusive
microservices for the customization of multi-tenant SaaS [22, 2]. We allow the tenants to
replace the fine-grained structures, i.e., any part of user interface (UI), business logic (BL),
or database (DB) in the original product by external microservices. The main customization

Microservices 2017/2019

1:6 Using Microservices to Customize Multi-Tenant SaaS

Figure 2 Intrusive customization code.

logic is running in those microservices, as parallel stacks outside of the main product. However,
when a customization logic needs to access the product data or to manipulate the state of the
product, it sends the so-called “call-back code” to the product, and the latter will interpret
the call-back code dynamically during runtime. Since the call-back code is running under the
same context as the replaced main product code, in theory it has the equivalent power as the
main product code, which means that it can access any data and change any the states that
are reachable by the product code. Therefore, this achieves the deep customization because
what can be customized is not limited by the APIs of the main product. This way does not
require the main product to provide any dedicated APIs for customization purpose.

A proof-of-concept implementation on multi-tenant customization based on intrusive
microservices was conducted to an open source online shopping product, the Microsoft
MusicStore [12]. The Microsoft MusicStore can be considered as an implementation of the
MuTeShop.com example in Section 2. We first transformed it into a customizable mutli-
tenant SaaS (Section 4.1). Then, we tested its customization capability by programming
a simple microservice realizing the customization scenario as described in Section 2. The
following proof-of-concept implementation described in Section 4.2 demonstrates the usage
of synchronous triggering, intrusive invocation, separate NoSQL database, and Docker-based
environments. The experiment in Section 4.2 shows that, within a reasonable cost, it is
possible to enable microservice-based customization on originally un-customizable product.

4.1 Adapting the SaaS to be Customizable
We adapted the source code of MusicStore to enable microservice-based customization by
adding a generic library and perform a code rewriting. A simple tenant manager is used to
register the mapping from original methods of the main code to customization code. Figure
2 shows how the customization code interacts with the main code flow of the main product.
A generic interceptor drives the synchronous triggering between the main product and the
customization code. The interceptor sends the current execution context from the main
product to the corresponding customization microservice for executing customization logic.
After executing customization logic, the customization microservice sends callback code
to the main product to apply the customization and even request for other context from
the main product if follow-up customization logic is necessary. A callback code interpreter
executes the intrusive callback code on the local context to apply the customization in the
main code.

Before building and deploying the MusicStore application as a service, we performed an
automatic code rewriting to enable the triggering and callback code mechanisms. In particular,
we add three pieces of code in the beginning of each method. Listing 1 below shows an

H. Song, P.H. Nguyen, and F. Chauvel 1:7

example of such added code for the method AddToCart in the class ShoppingCartController.
The first initializes a local context as a Dictionary object and fills it with the method
parameters. This context dictionary will be used later on by the callback code interpreter.
The second invokes the generic interceptor with the context and the method name. The
third checks if a return value is available to decide whether to skip the original method body
and return the customization results.

Listing 1 Triggering customization.
// first piece of code
var context = new Dictionary <string , object >()
{

["id"] = id ,
["cart"] = cart ,
["this"] = this

};
// second piece of code
ReturnValue rv = Interceptor . Intercept (

Controllers . TenantController . currentUser ,
" MusicStore . Controllers . ShoppingCartController . AddToCart ",
false ,
context

);
// third piece of code
if(rv != null)
{

return rv.Value;
}

According to our implementation practice, very light effort is required to realize the deep
customization support on a legacy software application. The effort is focused on generic
mechanisms, without specific consideration of the actual customization requirements or
features.

4.2 Sample Customization
On the customizable MusicStore, we performed three customization use cases.

Donation: as described in Section 2, we need to add a new page for end-users to choose
the donation, a new column in the shopping cart table to show the donations and a new
business logic computing total price for the shopping cart.
Visit Counting: We want to record how many times each album has been visited. The
feature needs to be triggered every time an album detail view is loaded.
Real Cover: We want to use the album title to search the cover picture from Bing Image2
and replace the original place-holder picture. A pop-up comment shows the picture source
when the mouse cursor is hovered on the picture.

We design these use cases deliberately to achieve a good coverage of the general require-
ments of customization on Web-based enterprise systems. In the user interface level, they
cover the changes within a web page, i.e., adding, removing or changing the position of
HTML controls (UI components such as text, button, list, image, etc.), and adding a new

2 https://www.bing.com/images/

Microservices 2017/2019

https://www.bing.com/images/

1:8 Using Microservices to Customize Multi-Tenant SaaS

page. The third use case also changed the browser-executed logics. In the business logic level,
they cover the need to add or override server-side logics, override the action to particular
events, change the bindings between UI controls and the data, and execute the services that
are provided by a third party. In the database level, they require new tables, as well as
new fields to an existing table. These requirements are summarized based on the actual
customization cases on the on-premises products provided by the two companies.

We implemented the three customization scenarios in TypeScript, using the Node.js
HTTP server to host the customization microservice [22, 2]. The first two scenarios request
data storage, and we used MongoDB as the customer database. Node.js and MongoDB are
running in two Docker containers, hosted on the same node as the product service. The
entire customization code includes 384 lines of code in five TypeScript files (one file for each
scenario, plus two common files to configure and launch the HTTP server) and 175 lines of
new code in four Razor HTML templates (of which, two templates are new and the other
two are copy-and-pasted from MusicStore, with 176 lines of code that are not changed).

The effect of the customized MusicStore can be seen by a screen-shot video3. In the video,
we are using a MusicStore service through a fictional tenant. We first see the standard way to
buy a music album through the MusicStore, i.e., browsing the album, add it to the shopping
cart, and check the overview. After that, we deploy the customization code as a microservice
and registered it into the MusicStore tenant manager. The effect of the customization is
instant: When we repeat the process, we first see a new cover image of the album. When we
add the album to shopping cart, we are led to a new page to select the donation amount,
and shown a shopping cart overview with donations and a different total price. Finally, we
open a new page to check the statistics about the album visits. At the end of the video, we
log off the tenant, and the service immediately goes back to the standard behaviour.

The video also shows some non-functional features of the customization. First, the
customization code is deployed and registered to the MusicStore at runtime, without rebooting
the product service, and affects only the particular tenant. Second, the customized behaviour
is seamlessly integrated into the product service: The new pages and the modified ones all
keep the same UI style as the original MusicStore. From the end-user’s perspective, it is not
difficult to notice that the application has been customized.

The customization microservices have reasonable resource consumption, and is able to
scale. A further examination shows that a customized page takes in average 100 millisecond
longer to load, comparing to the original page. However, considering that the average page
loading time in MusicStore is over two seconds, the slow down is tolerable. The footprint
for a customization microservice under this scenario and the technical stack (i.e., Node.js,
MongoDB, Docker) is minimal. The two Docker containers used 20 and 50 megabytes of
memory at runtime.

5 Non-Intrusive Customization Using Microservices

Despite the ultimate assimilation, which means that the tenants are able to do anything for
customization, just as if they are developers of the main product - our intrusive microservice
approach for customization was finally not adopted by the software vendors who commissioned
this research. The main concern is security. Since the partners are virtually capable of doing
everything to the main product during run-time, it requires strict inspection by the vendors
on the customization code, which is not pragmatic at the moment. As a result, we have
turned to non-intrusive way for microservices-based customization, which should allow the
vendors to keep the customization code of tenants under control [14, 15].

3 https://youtu.be/IIuCeTHbcxc

https://youtu.be/IIuCeTHbcxc

H. Song, P.H. Nguyen, and F. Chauvel 1:9

To make non-intrusive customization possible, there is a main prerequisite for the web-
based SaaS’ architecture, i.e., the clear separation of the user interface (UI) part from the
back-end business logic (BL) part [15]. This means that a web-based SaaS must be split into
a WebUI part and back-end BL service(s). By separating the UI and the BL of the main
product, we can introduce microservices implementing tenant-specific customization for the
main product at UI, BL, and database (DB) levels. Note that we focus on web-based SaaS
because of its popularity. Figure 3 shows an overview of the non-intrusive approach. Each
customization for a tenant is running as a standalone microservice and dynamically registered
to the main product service for this tenant. The APIs of the customization microservice are
available for authorized access via API gateway. At runtime, whenever the main product
service reaches a registered customization point for a tenant, the main product service triggers
the corresponding customization for that tenant by calling the REST APIs of the tenant’s
customization microservices via the API gateway. Note that the customization microservices
have been registered with the tenant manager in advance.

The WebMVC Customizer is a local component that is introduced into the main product’s
WebApp MVC to intercept the flows of the main product. The WebMVC Customizer is
similar to the Interceptor of the intrusive approach in Section 4.1. Tenant Manager is a
service that manages the customization(s) for every tenant, which is also similar to the
intrusive approach. The main difference between the intrusive approach and the non-
intrusive approach comes from the introduction of the API Gateways, the Identity and
Access Management (IAM) service, and the Event Bus. In our non-intrusive approach, we
follow the API gateway pattern [19] to decouple the client applications (e.g., the WebMVC
application) from the internal microservices (for customization or main-stream BL). The key
point in the non-intrusive approach is that it enables the authorized access of the tenants’
customization microservices to the main product BL via the API gateways. In this way,
the tenants’ customization microservices can have access to the necessary execution context
of the main product BL if needed and allowed. The non-intrusive approach can provide
deep customization because it allows a customization service to replace a BL component
of the main product for the corresponding tenant if authorized. The authorized access of
the tenants’ customization microservices to the main product BL components makes the
deep customization manageable. This differs from the intrusive way of sending “call-back”
code from customization microservices to the main product to be dynamically compiled and
executed within the execution context of the main service. The IAM Service built on an
OpenID Connect4 or OAuth 2.05 Identity provider can make tenant-specific customization
authorized. Using standardized and powerful authentication and authorization mechanisms
such as OAuth 2.0 is very important for tenant-isolation at the application level, especially
regarding customization. Last but not least, the Event Bus allows the customization
microservices to have asynchronous event-based communication with the main product BL
components for customization purposes. We have implemented a proof-of-concept of our non-
intrusive approach for enabling deep customization of a reference application for microservices
architecture, eShopOnContainers [11]. The MusicStore could be re-engineered to enable non-
intrusive customization but we chose the eShopOnContainers because the eShopOnContainers’
architecture already satisfies our prerequisites for non-intrusive customization. Due to space
reason, we refer readers to [15] for more details of the proof-of-concept on eShopOnContainers.

4 https://openid.net/connect/
5 https://oauth.net/2/

Microservices 2017/2019

https://openid.net/connect/
https://oauth.net/2/

1:10 Using Microservices to Customize Multi-Tenant SaaS

Figure 3 An overview of the non-intrusive approach [15].

6 A Reference Architecture for Customization by Microservices

This section generalizes the two customization approaches using microservices. We present
the main principles for the microservice-based style for customization, and a reference
architecture that follows these principles.

6.1 Principles
We adopt a microservice-based style for customization, driven by a set of high-level principles,
or design decisions, in order to meet the requirements of isolation, assimilation and economy
of scale. The first set of principles meets the following requirements of isolation.

Every customization is a service. A customization should be a stand-alone running
entity, with its own life-cycle independent of the product. Such a solution avoids a failure
in the customization (such as dead loop) from impacting the normal operation of the main
product. The interaction of customization services with the main product is monitored
and administrated.
A customization service serves one and only one tenant. This principle also
indicates that no more than one product service connects to a same customization service,
since each tenant belongs to only one product service.
Each customization service runs on its own environment. This prevents custom-
ization services from influencing each other at runtime. It also simplifies the management
of customization, such as monitoring and billing.
A customization service has its own database. A customization should not be
allowed to modify the schema of the product database. It uses its exclusive database to
store the customization-specific data. A customization service does not have direct access
to either the product database or the other customization database.
A customization service communicates with the product service and other
customization services only via REST API. Other ways of communication, such
as shared database, shared memory or files, will make the services more tightly coupled.

H. Song, P.H. Nguyen, and F. Chauvel 1:11

These principles that favour isolation have negative effects on either assimilation or the
economy of scale. The more isolation, the less likely that customization can be assimilated
with the main product. Similarly, the more isolation leads to more use of resources, which
means less favor for the economy of scale. We make the following design decisions to reduce
such negative effects and bring a better balance regarding isolation, assimilation and economy
of scale.

A customization environment is “close to” its product environment. If a
product environment is hosted by a cloud provider, such as Amazon AWS, the customiza-
tion environments related to it should be deployed into an infrastructure from the same
cloud provider, in the same region. This ensures the low latency of their communication.
The external URL to access a customization service is consistent with the
product URLs. Most of the customization services are not visible to end users, but
only used indirectly when the users invoke the product. When a customization service is
exposed directly to the end user, the URL to access this service should be in the same
style as the product URL, so that the users do not feel the separation.
The vendor should provide a unified identity management for both product
and customization, so that users do not need separate login to use the customization
services.
Customization environments should have minimal footprint, so that the vendors
can host a large scale of customers for each product service. In other words, customization
services should be lightweight microservices that have minimal resource consumption.
The vendor should manage all the environments in an elastic way. This will
reduce the total cost of resources, especially when there is a large number of lightweight,
infrequently used customization services.
The vendor should facilitate the reuse-by-code for customization Apps. When
a customization solution fits multiple customers (this normally happens when the cus-
tomers hire the same consultant), it should be easy for the customers to reuse the
customization App by code, i.e., to create a new instance of this App.

6.2 A Reference Architecture
Following the principles in the last section, we come up with a reference architecture to
support the customization of multi-tenant SaaS using customer microservices. Figure 4
illustrates this reference architecture with one product instance and two customization
services. The product is a typical browser-server web-based application. The single product
instance serves several tenants simultaneously. The tenant management component, as part
of the product instance, controls the valid tenant served by this instance, the unified identity
management service controls which users have the access via each tenant. The product
instance and the database are deployed in the same virtual machine from a public cloud
provider. All the user requests from the browser go through a web proxy, which translate
the user-friendly URL into the internal address used by the cloud provider.

Customization service customizes the behaviour of the product instance for one of its
tenants, by introducing new features and replacing existing features. The customization
service is registered to the tenant manager in a customization registration process before it
can be triggered. The new features can be accessed via a specific URL directly from the users,
or triggered by the product instance under predefined circumstances. The replacing features
are triggered by the product instance, when the original feature in the product is about
to be activated. The tenant manager defines when to trigger the customization services,

Microservices 2017/2019

1:12 Using Microservices to Customize Multi-Tenant SaaS

product service

Tenant
manager

proxy

identity
manager

customization
service

customization
databaseproduct

database

message
queue

sync triggering

async
triggering

invocation

register

product environment VM: environment
container container

UI in browser

cloud provider

Figure 4 A reference architecture of using microservices for customization.

based on the customization registration. The customization service may need the standard
data from the product instance, or modify the state and data of the product instance. It
achieves this by invoking the product instance via API calls (in a non-intrusive approach) or
call-back code (in an intrusive approach). Triggering and invoking are the two directions
of communications between the product instance and the customization service. We will
discuss later in Section 7 on how to implement these communications.

The customization service uses its own database to store the data that it cannot save
to the standard database. The customization service and the database are deployed in two
separate environments, which are in turn hosted by a virtual machine from the same provider
as the product environment.

7 Discussions

This section discusses the technical challenges and potential solutions to implement the
reference architecture.

7.1 Customization of Database
Customization often needs to extend the standard data type. Two types of extension on
the data schema must be supported, i.e., adding a new data entity and adding a field to an
existing entity. Removing an entity or a field is not necessary for customization, since the
customization service can simply ignore them. Changing the type of a field can be achieved
by adding a new field and ignoring the original one. Since the customization service is not
allowed to change the data schema of the product database, all data under the extended
entity of field has to be stored in the customization database. A new data entity can be
implemented as a table in the customization database. A new field can be also implemented
as a table in customization database, as a mapping from the primary key of the original
table to the extended field.

The customization service registers to the tenant manager how it extends the standard
data schema. In this way, the product service knows how each tenant extends its database, so
that it can utilize the extended data. For example, Music.MuTeShop.com has a page listing

H. Song, P.H. Nguyen, and F. Chauvel 1:13

all the shopping cart items, originally with price and quantity. When rendering this page,
Music.MuTeShop.com checks with the tenant manager and gets the information that the
customization extends shopping cart items with a new field of donation amount. Therefore,
it adds a new column in the shopping cart information table for this field and queries the
customization service to fill in this column.

Customization databases usually have simple schema and relatively small amount of data.
Therefore, it is reasonable to use light-weight technologies such as PostgreSQL and MySQL.
NoSQL database is also a possibility as we have experimented with MongoDB in Section 4.2.

7.2 Triggering of Customization Services
The customization service registers itself to the tenant manager, which allows it to be
triggered from one of the predefined extension points in the product service (e.g., as shown
in Listing 1). When the control flow reaches this extension point, the product service picks
the registered customization service, and triggers it. There are two types of triggering, i.e.,
synchronous triggering, when the product service awaits the customization service to finish
the triggered logic, and asynchronous triggering when it does not.

Synchronous triggering can be implemented as a direct REST invocation from the
product service to the customization service. In the product service, the implementation of
an extension point can be simplified as an if-then-else structure: if the product service finds
a customization service registered for this point, then it invokes this service and continues
with the returned value, else it executes the standard logic. The more extension points the
product service has, the more customization it supports. As an extreme case, the vendor
can inject an extension point before each method in the product, using Aspect-Oriented
Programming [8]. Synchronous triggering applies to the customization scenarios when the
behaviour of the product service has to be influenced by the customization immediately.

Asynchronous triggering can be implemented by the event technology. At an extension
point, the product service ejects an event indicating that it has reached this point, together
with some context information of the extension point. The event is published to a message
queue. If a customization service subscribes this message queue at the right topic, it will be
notified by the message queue and triggered to handle this event. The product usually has its
internal event mechanism, and therefore, to support asynchronous triggering of customization
service, the vendor just needs to publish part of these internal events to the public message
queue. Using asynchronous triggering, the customization cannot immediately influence the
behaviour of the product service because the control flow of the product service is not blocked
by the customization service.

A customization service usually needs both synchronous and asynchronous triggering.
Take the visit counting scenario in Section 4.2 as an example, each time an album is visited,
the customization service needs to be triggered asynchronously to increase the number of visits
in its database. Later on, in the overview page, the product service needs to synchronously
trigger the customization service to get the numbers of visits for all the albums. This time it
needs to wait for those numbers to be returned from the customization service to show them
on the overview page.

7.3 Invocation from Customization Services to the Product Service
A customization service needs to invoke the product service, in order to obtain the standard
data and to influence the state and behaviour of the product service for the relevant tenant.
From a technical point of view, there are two ways of implementing the invocation from

Microservices 2017/2019

1:14 Using Microservices to Customize Multi-Tenant SaaS

customization service to product service, i.e., intrusive invocation, when the customiza-
tion service injects code into the product service, and non-intrusive invocation, when the
customization service only relies on the APIs opened by the product service.

For intrusive invocation, the customization service send a piece of code (we call it the
“callback code“), to the product service. The product service compiles and executes the
callback code immediately, and sends the execution results back to the customization service.
The callback code is exposed to the same context as the native code of the product service,
and therefore, in theory, it can read and write all the standard data and the other states
of the product service, just as a piece of native code. To support intrusive invocation, the
product should have a built-in interpreter that compiles and executes the callback code.
Some modern dynamic programming languages support the execution of source code from
plain text, e.g., the eval method in Python. Microsoft .Net framework also provides the
Dynamic Linq techniques to compile a query into a dynamically executable delegation. If
the product is implemented in a platform without such support, the vendors can choose to
translate the callback code into a set of invocations to the reflection API. For the sake of
security and simplicity, the callback code should be transferred as source code, in terms of
plain text, instead of binary code. The product service should provide the specific REST
API for injecting callback code and return the execution result.

For non-intrusive invocation, the customization service calls the REST API of product
service to obtain the standard data and to manipulate the product states. In this way, the
customization capability is defined and limited by the APIs exposed to the customization
services. Providing a both powerful and easy-to-use API is a big challenge for the vendor.
Automatic generation of such APIs based on the data schema and the product features is a
promising way.

One challenge related to the invocation of product instance, regardless of intrusive or
non-intrusive way, is how to keep the execution context of the product service. In the product
service, every piece of code is running under a runtime context, which is the temporary
and static variables accessible by this piece of code. The context contains the important
information such as the current user, the recently queried and manipulated data, etc. When
the customization service kicks in and replaces an original piece of code, it normally need
such context information. For intrusive invocation, a natural solution is to reserve the entire
context at the point when the customization service is triggered, and the product service use
this context to execute the callback code. For non-intrusive invocation, the vendor should
identify the useful context information and provide specific API methods to obtain and
exploit such context information.

7.4 Tenant Manager and Tenant Isolation
The tenant manager is a part of the product service, which records the customization for
each tenant. When a customization service is activated, it registers to the tenant manager
the following information: which tenant it customizes, what extension points it listens to
(together with a service endpoint for the product service to call in order to trigger the
customization logic), and how it extends the product data schema. The product service
queries the tenant manager for such registration every time it reaches an extension point or
requires the data extensions. Due to the frequent interaction between the product service and
the tenant manager, it is reasonable to implement the tenant manager as a local component
within the product service, to avoid the unnecessary overload by remote invocations.

One of the key requirements in multi-tenant SaaS is tenant isolation with security and
privacy, especially together with deep customization enabled. We have better addressed
this requirement in the non-intrusive approach as discussed in [15]. The non-intrusive ap-

H. Song, P.H. Nguyen, and F. Chauvel 1:15

proach [15] allows a software vendor to manage all the tenants’ customization microservices,
in how they are authorized to customize the main product for a specific tenant, in adminis-
trating and monitoring the customization microservices at runtime. Deploying customization
microservices on separate containers for different tenants and the main product is also very
important for tenant isolation as discussed below.

7.5 Customization Environments
A customization environment comprises the infrastructure, technical stack and libraries that
a customization service needs at runtime. Considering that each customization service should
have a unique isolated environment, and a product service may serve many tenants, a vendor
cloud may host a large number of customization environments at the same time. Therefore, it
is important to keep a minimal footprint for each customization environment and to simplify
the management of these environments.

All the customization environments should use the same type of infrastructure, which is
both light-weighted and easy to manage. The container technology, in particular Docker,
appears to be very suitable for these purposes. Each customization environment is isolated
in a Docker container, so as the environment that hosts a customization database. The
consultant provides the vendor a Dockerfile, specifying how to construct a customization
environment container, i.e., choosing an operating system, installing the technical stack
step by step, downloading the customization App source code, and finally defining how to
initialize the technical stack with the customization App. The vendor builds the Docker
image according to the Dockerfile, in the vendor cloud, and instantiates a container from the
image when customization service needs to be on-board for the tenant.

The vendor should maintain a Docker cluster composing by a flexible number of virtual
machines from the same cloud provider. Depending on the number of customization services
and the load on them, the vendor cloud should scale in or out of the Docker cluster. The
vendor can also apply a standard management tool to monitor the state and resource
consumption of each container, and kill the customization services when necessary. Such
scaling and management functionality can be implemented using Docker tools.

8 Related Work

Software Product Line (SPL) [18] captures the variety of user requirements in a global
variability model, and actual products are generated based on the configuration of the
variability model. Traditional SPL approaches target all the potential user requirements by
the software vendor, and thus do not apply to our definition of customization. Dynamic
SPL [5] is closer to customization, and some approaches such as [10] propose the usage of
variability models for customization. However, such model-based configuration is in a much
higher abstraction level than programming [20], and focused on how to combine existing
features. In contrary, customization is targeting the development of new features specific to
the customers.

There are many approaches to SaaS customization in the context of service-oriented
computing. However, most of approaches focus on a high-level modification of the service
composition. Mietzner and Leymann [13] present a customization approach based on the
automatic transformation from a variability model to BPEL process. Here customization is a
re-composition of services provided by vendors. Tsai and Sun [24] follow the same assumption,
but propose multiple layers of compositions. All the composite services (defined by processes)
are customizable until reaching atomic services, which are, again, assumed to be provided by

Microservices 2017/2019

1:16 Using Microservices to Customize Multi-Tenant SaaS

the vendors. Nguyen et al. [16] develop the same idea, and introduce a service container to
manage the lifecycle of composite services and reduce the time to switch between tenants at
runtime. These service composition approaches all support customization in a coarse-grained
way, and rely on the vendors to provide adequate “atomic services” as the building blocks
for customized composite services. The microservice architecture discussed in this paper is
targeted at how to allow customers to develop the atomic services and integrate them into
the product service.

As market leading SaaS for CRM and ERP, the Salesforce platform and the Oracle NetSuite
provide built-in scripting languages [21][9][17] for fine-grained, code-level customization. Using
these scripting languages, the customization is running within the product, which requires
an advanced scripting interpreter to guarantee the isolation between customization and the
product. The customization capability is limited by the expression power of the language, and
learning these languages is a special burden for the customization developers. Implementing
customization as microservices solves these problems: Developers can choose the technical
stack that suits them, and still do not need to care about the hosting of these services.

Middleware techniques are also used to support the customization of SaaS. Guo et al. [4]
discuss, in a high abstraction level, a middleware-based framework for the development
and operation of customization, and highlight the key challenges. Walraven et al. [25]
implemented such a customization enabling middleware. In particular, they allow customers
to develop customization code using the same language as the main product, and use
Dependency Injection to dynamically inject these customization Java classes into the main
service, depending on the current tenant. Later work from the same group [26] developed
this idea and focused on the challenges of performance isolation and latency of customization
code switching. The dependency injection way for customization is close to our work, in
terms of the assimilation between custom code and the main service. However, operating the
customization code as an external microservice eases performance isolation. A misbehavior
of the customization code only fails the underlying container, and the main product only
perceives a network error, which will not affect other tenants. Besides, external microservices
ease management: scaling independently resource-consuming customization and eventually
billing tenants accurately.

This paper is a full extension of the position paper [23]. In this paper, we have summarized
our two approaches in [2] and [15] and then presented the full reference architecture for
customizing multi-tenant SaaS using microservices. Moreover, we have given discussions on
the technical challenges and potential solutions to implement the reference architecture.

9 Conclusion and Future Work

In this paper, we have presented a customization solution for multi-tenant SaaS using
microservices. From an intrusive approach, we have evolved our solution to introduce a
non-intrusive approach that could be more practical for industry. Based on these two
approaches, we have provided a generalized reference architecture for enabling customization
of multi-tenant SaaS using microservices. Our discussions on the technical challenges and
potential solutions to implement the reference architecture give more insights for readers to
adopt our customization solution. Our microservice-based customization solution is promising
to meet the general customization requirements, and achieves a balance between isolation,
assimilation and economy of scale. Our future research will focus on the quality assurance of
the customization services, including automatic testing and online monitoring, to achieve a
DevOps way of continuous customization development.

H. Song, P.H. Nguyen, and F. Chauvel 1:17

References
1 Cor-Paul Bezemer and Andy Zaidman. Multi-tenant SaaS applications: maintenance dream

or nightmare? In Proceedings of the Joint ERCIM Workshop on Software Evolution (EVOL)
and International Workshop on Principles of Software Evolution (IWPSE), pages 88–92. ACM,
2010.

2 Franck Chauvel and Arnor Solberg. Using Intrusive Microservices to Enable Deep Cus-
tomization of Multi-tenant SaaS. In 2018 11th International Conference on the Quality
of Information and Communications Technology (QUATIC), pages 30–37, September 2018.
doi:10.1109/QUATIC.2018.00015.

3 Denise Ganly, Andy Kyte, Nigel Rayner, and Carol Hardcastle. The Rise of the Postmodern
ERP and Enterprise Applications World. Gartner Report ID: G00259076, April 2018. URL:
https://www.gartner.com/doc/2633315?ref=mrktg-srch.

4 Chang Jie Guo, Wei Sun, Ying Huang, Zhi Hu Wang, and Bo Gao. A framework for native
multi-tenancy application development and management. In e-commerce Technology and the
4th IEEE International Conference on Enterprise Computing, e-commerce, and E-Services,
2007. CEC/EEE 2007. The 9th IEEE International Conference on, pages 551–558. IEEE,
2007.

5 Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. Dynamic software product
lines. Computer, 41(4), 2008.

6 IDG. 2018 Cloud Computing Survey, April 2018. URL: https://www.idg.com/
tools-for-marketers/2018-cloud-computing-survey/.

7 Cindy Jutras. Cloud Financials: Having It Your Way, White paper from
AICPA. URL: https://online.intacct.com/WebsiteAssets_wp_mintjutras_cloud_
financials_your_way.html.

8 Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In European conference on
object-oriented programming, pages 220–242. Springer, 1997.

9 Thomas Kwok and Ajay Mohindra. Resource calculations with constraints, and placement
of tenants and instances for multi-tenant SaaS applications. In International Conference on
Service-Oriented Computing, pages 633–648. Springer, 2008.

10 Jaejoon Lee and Gerald Kotonya. Combining service-orientation with product line engineering.
IEEE software, 27(3):35–41, 2010.

11 Microsoft. eShopOnContainers - Microservices Architecture and Containers based Reference
Application. URL: https://github.com/dotnet-architecture/eShopOnContainers.

12 Microsoft. MusicStore test application that uses ASP.NET/EF Core. URL: https://github.
com/aspnet/MusicStore.

13 Ralph Mietzner and Frank Leymann. Generation of BPEL customization processes for
SaaS applications from variability descriptors. In Services Computing, 2008. SCC’08. IEEE
International Conference on, volume 2, pages 359–366. IEEE, 2008.

14 Phu H. Nguyen, Hui Song, Franck Chauvel, and Erik Levin. Towards customizing multi-tenant
Cloud applications using non-intrusive microservices. The 2nd International Conference on
Microservices, Dortmund, 2019.

15 Phu H. Nguyen, Hui Song, Franck Chauvel, Roy Muller, Seref Boyar, and Erik Levin. Using
Microservices for Non-intrusive Customization of Multi-tenant SaaS. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2019, pages 905–915, New York, NY,
USA, 2019. ACM. doi:10.1145/3338906.3340452.

16 Tuan Nguyen, Alan Colman, and Jun Han. Enabling the delivery of customizable web services.
In Web Services (ICWS), 2012 IEEE 19th International Conference on, pages 138–145. IEEE,
2012.

17 Oracle. Applicaiton Development SuiteScript. URL: http://www.netsuite.com/portal/
platform/developer/suitescript.shtml.

Microservices 2017/2019

https://doi.org/10.1109/QUATIC.2018.00015
https://www.gartner.com/doc/2633315?ref=mrktg-srch
https://www.idg.com/tools-for-marketers/2018-cloud-computing-survey/
https://www.idg.com/tools-for-marketers/2018-cloud-computing-survey/
https://online.intacct.com/WebsiteAssets_wp_mintjutras_cloud_financials_your_way.html
https://online.intacct.com/WebsiteAssets_wp_mintjutras_cloud_financials_your_way.html
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/aspnet/MusicStore
https://github.com/aspnet/MusicStore
https://doi.org/10.1145/3338906.3340452
http://www.netsuite.com/portal/platform/developer/suitescript.shtml
http://www.netsuite.com/portal/platform/developer/suitescript.shtml

1:18 Using Microservices to Customize Multi-Tenant SaaS

18 Klaus Pohl, Günter Böckle, and Frank J van Der Linden. Software product line engineering:
foundations, principles and techniques. Springer Science & Business Media, 2005.

19 Chris Richardson. Microservices patterns, 2018.
20 Marcus A Rothenberger and Mark Srite. An investigation of customization in ERP system

implementations. IEEE Transactions on Engineering Management, 56(4):663–676, 2009.
21 Salesforce. Apex Developer Guide. URL: https://developer.salesforce.com/docs/atlas.

en-us.apexcode.meta/apexcode/.
22 Hui Song, Franck Chauvel, and Arnor Solberg. Deep customization of multi-tenant SaaS

using intrusive microservices. In Proceedings of the 40th International Conference on Software
Engineering: New Ideas and Emerging Results, pages 97–100. ACM, 2018.

23 Hui Song, Phu H. Nguyen, Franck Chauvel, Jens Glattetre, and Thomas Schjerpen. Cus-
tomizing Multi-Tenant SaaS by Microservices: A Reference Architecture. In 2019 IEEE
International Conference on Web Services (ICWS), pages 446–448, July 2019. doi:10.1109/
ICWS.2019.00081.

24 Wei-Tek Tsai and Xin Sun. SaaS multi-tenant application customization. In Service Oriented
System Engineering (SOSE), 2013 IEEE 7th International Symposium on, pages 1–12, 2013.

25 Stefan Walraven, Eddy Truyen, and Wouter Joosen. A middleware layer for flexible and
cost-efficient multi-tenant applications. In Proceedings of the 12th International Middleware
Conference, pages 360–379. International Federation for Information Processing, 2011.

26 Stefan Walraven, Dimitri Van Landuyt, Eddy Truyen, Koen Handekyn, and Wouter Joosen.
Efficient customization of multi-tenant software-as-a-service applications with service lines.
Journal of Systems and Software, 91:48–62, 2014.

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/
https://doi.org/10.1109/ICWS.2019.00081
https://doi.org/10.1109/ICWS.2019.00081

Experience Report: First Steps towards a
Microservice Architecture for Virtual Power
Plants in the Energy Sector
Manuel Wickert
Fraunhofer IEE, Kassel, Germany
http://www.iee.fraunhofer.de
manuel.wickert@iee.fraunhofer.de

Sven Liebehentze
Fraunhofer IEE, Kassel, Germany
http://www.iee.fraunhofer.de
sven.liebehentze@iee.fraunhofer.de

Albert Zündorf
University of Kassel, Germany
https://seblog.cs.uni-kassel.de/
zuendorf@uni-kassel.de

Abstract
Virtual Power Plants provide energy sector stakeholders a useful abstraction for distributed energy
resources by aggregating them. Software systems enabling this are critical infrastructure and
must handle a fast-growing number of distributed energy resources. Modern architecture such as
Microservice architecture can therefore be a good choice for dealing with such scalable systems
where changing market and regulation requirements are part of every day business. In this report,
we outline first experiences gained during the change from the existing Virtual Power Plant software
monolith to Microservice architecture.

2012 ACM Subject Classification Software and its engineering → Software design engineering;
Hardware → Smart grid

Keywords and phrases Microservices, VPP, Virtual Power Plants, Domain Driven Design

Digital Object Identifier 10.4230/OASIcs.Microservices.2017-2019.2

1 Introduction

In today’s transition to green energy, the primary concept of a modern power plant is
beginning to become that of a Virtual Power Plant (VPP), consisting of a huge number
of small distributed energy resources (DERs) [14]. Usually these DERs are wind farms,
photovoltaic parks, biogas plants, energy storages or flexible loads. VPPs have become the
modern kind of a large power plant, replacing large conventional power plants over time.
The coordination of a VPP is carried out by a software system, often referred to as an
energy management system (EMS). Such systems are connected to the distributed energy
resources to build the abstraction over a portfolio of DERs and provide monitoring and
control capabilities.

During several research projects, Fraunhofer IEE has developed and evaluated such a
software system, the VPP software solution IEE.vpp, which is in operation at some utilities
and trading companies in the energy sector. The software has with time become a monolith
with hundreds of KLOC (kilo lines of code). It consists of a canonical and generic data
model [8] which has strengths and weaknesses. In situations where the data model did not
fit into the corresponding business logic, the development time for the components increased
significantly. In the energy domain, where the regulatory framework changes very often and
new business models have to be implemented quickly, this will become a bigger issue over

© Manuel Wickert, Sven Liebehentze, and Albert Zündorf;
licensed under Creative Commons License CC-BY

Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices
2017/2019).
Editors: Luís Cruz-Filipe, Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and
Sabine Sachweh; Article No. 2; pp. 2:1–2:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4378-9940
http://www.iee.fraunhofer.de
mailto:manuel.wickert@iee.fraunhofer.de
https://orcid.org/0000-0002-1858-2024
http://www.iee.fraunhofer.de
mailto:sven.liebehentze@iee.fraunhofer.de
https://seblog.cs.uni-kassel.de/
mailto:zuendorf@uni-kassel.de
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 First Steps towards a Microservice Architecture for VPPs

time. Furthermore, it is hard for domain experts with algorithmic skills to contribute to the
VPP solution because their main programming languages are Python and Matlab, but the
VPP solution is written in Java. Therefore, we decided to migrate our macro architecture to
a Microservice approach [5, 12], based on a Domain-Driven Design [4].

With the migration of our software systems we evaluate two different aspects. On the
one hand, we outline how the modern architecture style of Microservices can be applied
to the domain of VPPs. While there is currently some work on evaluating Microservices
architectures in other areas of the smart grid such as metering [11] or IoT (Internet of Things)
for smart buildings [2], most publications [16, 9, 10] for VPPs do not consider Microservices.
Thus we present a first step for the application of Microservices as an architectural style
for VPPs that should be transferable to other VPP software systems. On the other hand,
using the example of a VPP, we show a novel migration approach to a different technology
(e.g. programming language). For the reasons stated above, we planned to implement some
Microservices in Python instead of using only Java.

This report presents the first steps of our migration to a Microservice architecture. The
migration was done step-by-step during an agile development process to enable us to provide
our customers with regular updates. The first step was a rough analysis of our domain to
identify the main business functions to be supported by our VPP software system. Section 2
gives an overview of our Analysis. With this information, we are able to identify different
bounded contexts for our software system in Section 3. For one of these bounded contexts,
the migration to our first Microservice is described step by step in Section 4. In Section 5 we
present the results of our first migration steps and discuss the advantages and disadvantages
of our approach. Section 6 contains our conclusions, points out next steps as well as our
most remarkable achievements.

2 Analyzing the Domain

From the perspective of Domain-Driven Design, VPPs typically use the two different domains
of energy trading and grid operation in the energy sector. In [3, 14], for these domains, two
different types of virtual power plants have been introduced - the technical virtual power
plant (TVPP) and the commercial virtual power plant (CVPP). Although some software
systems try to support use cases in both domains, most VPPs focus on just one. For the
European market this will be due to the fact that the liberalization of the energy markets in
Europe stipulates that TVPPs and CVPPs have to be operated by different companies and
therefore have to support different business models. The VPP IEE.vpp software solution is a
CVPP energy management system. Thus, the next sections focus on domain energy trading.

To understand the energy trading domain, we start with an example. The trading
company “Green Trader” is highly skilled in renewable energy trading, for DERs dealing in
windfarms, photovoltaics, biogas plants, batteries etc. For this reason it buys energy from
different power plant owners, paying a price fixed by contract for the power fed into the grid.
The fixed price is typically negotiated for one year. The “Green Trader” company bundles
all bought energy in one portfolio and trades it on the EPEX SPOT energy market. Because
the energy has to be traded before delivery, wind and photovoltaic production is forecasted
and the current generation is monitored. Differences between traded and delivered energy is
subject to a penalty payment for the trader. For optimizing the DER behaviour, according
to market prices and to avoid penalty payments due to forecast errors, the “Green Trader”
company is able to control the production and consumption (e.g. for batteries) of the DERs.
To summarize, the “Green Trader” company needs to be able to monitor and control all
DERs and optimize their schedules according to market prices. Therefore the company uses
an energy management system for VPPs, such as the IEE.vpp system.

M. Wickert, S. Liebehentze, and A. Zündorf 2:3

This example highlights two important requirements, “Monitoring and Control” and
“Optimization” for an energy management system of a VPP from a trading perspective.
However energy trading is much more complex and requires a number of different software
systems. Therefore the energy management system should also support the provision of the
collected information concerning the DERs, which is used by third party systems such as
market clients, process and data management tools, etc. This information provision may
be also needed for communication with other companies such as forecast providers. The
provision of information may be a use case for many other software systems as well. However,
since EMS hold critical business information concerning the DERs, information provision to
another system is a crucial functionality. Therefore, we highlight this requirement as well.

The portfolio of energy traders changes over time, in Germany every year. Thus the
integration of new energy units in a VPP and the termination of existing connections is a
permanent topic. In addition to base data management, the integration of a DER consists
primarily of the establishment of a communication link. The configuration of different
communication protocols and manufacturer‘ specific data models is also one of the primary
features of an EMS. Over the previous few years in many meetings with about 30 percent of
all German energy traders, we became aware that the easy integration of power plants is one
of the most desired requirements when building a VPP.

The analysis of the typical use cases for energy trading led to the following four main
business functions that need to be supported by our EMS:

Monitoring and Control
Flexibility Optimization
Information Provision
Administration of DER

3 Identifying Bounded Contexts

Based on the described use case analysis and the subsequent designated business functions,
we were able to define the domain precisely and derive the bounded contexts [12, 5, 15]. To
outline the dependencies between these, we then built a context map [4]. Please note, that
the business function “Information Provision” was skipped during this analysis because it can
be regarded as a more abstract business function. The main task of this business function
is the provision of information to third party systems. In order to define the associated
domain model, the external interface specification must be known. These reasons led to three
bounded contexts and a context map. In the context map we outline how we can integrate
concrete bounded contexts for information provision.

The first bounded context “SCADA” (Supervisory Control And Data Acquisition) includes
the supervision of control and data aquisition in the VPP software system, see Figure 1.
A DER is able to read different sensor values. These might be measurements such as the
current active power production, different temperatures or wind velocities. On the other
hand a DER might be able to process control commands, for example to reduce the current
power production. In order to exchange information and control commands between the
VPP and the control system of a DER, a certain protocol is used as a rule, for example
OPC-UA or IEC 60870-5-104. A so-called mapping scheme defines the translation between
specialized protocol items or addresses and the VPP internal representation.

The next identified bounded context is the so-called “Aggregation”, see Figure 2. It
includes aggregation and disaggregation data management strategies regarding the respective
energy market commitment of the DERs. The Aggregation handles the management of
portfolios, which are part of the VPP. Each portfolio is split according to various criteria,
such as plant type or marketing strategies.

Microservices 2017/2019

2:4 First Steps towards a Microservice Architecture for VPPs

DER CommunicationLink

Protocol

IEC 61850 VHPReady 3.0 OPC UAIEC 60870-5-104

SensorValue

Sensor Control Command MappingScheme

SCADA: Bounded Context

«use»

Figure 1 Bounded Context SCADA.

CHP

DER

Windfarm Photovoltaic
Park

BESS

Portfolio

Energy
Production Unit

Storage Flexible Loads

Heat Pump

Virtual Power
Plant

Aggregation Bounded Context

Figure 2 Bounded Context Aggregation.

The last identified bounded context is needed to model the unit commitment of the DERs.
It is called “Optimization”, see Figure 3. A portfolio may be placed on one or more markets.
Corresponding electricity price forecasts support the optimal electrical schedule calculation
for the related plants. Figure 3 shows part of the domain model for the combined heat and
power (CHP) optimization. For the best operation of a CHP, the energy production costs are
mainly determined by the fuel costs, i.e. gas prices. Furthermore, the efficiency curve is taken
into account in calculating how much electrical and thermal energy is produced depending
on the amount of gas. Heat storage is another important influencing factor because it cannot
be overfilled. The heat sink usually models the tight restrictions for the thermal energy
consumption.

With the three defined bounded contexts we are able to realize the business functions from
Section 2, except for the “Information Provision” as already noted. For the “Monitoring and
Control” business function, the “SCADA” and “Aggregation” contexts are necessary. This
is because the “SCADA” context contains the base model for control and monitoring. The

M. Wickert, S. Liebehentze, and A. Zündorf 2:5

CHP

GasSource Engine Heat Storage Heat Sink

Flexible DER Portfolio

Efficency curve

EnergyMarket

Price Forecast

Gas Price Heat Demand
Forecast

Optimization: Bounded Context

Figure 3 Bounded Context Optimization.

“Aggregation” context helps us to monitor different levels of aggregation and to disaggregate
control signals. The “SCADA” context supports the “Administration of DER” business
function as well. The domain model for the “Flexibility Optimization” is represented by the
bounded context “Optimization” .

The three described bounded contexts and an abstract bounded context “Information
Provision” are shown together in the context map in Figure 4. The Mappings between the
bounded contexts are shown by the use of the patterns for strategic design, cf. [4]. We use
the patterns Open Host Service (OHS) and Anticorruption Layer (ACL) for our purpose.

The “SCADA” context shares part of its model for providing sensor values and receiving
control commands, the “Aggregation” context uses this OHS but translates it with the
use of an ACL. The “Optimization” context uses processed information in a certain time
resolution e.g. 15 minutes mean values. This information is provided by the bounded context
“Aggregation” . The optimized schedules for the power plants may send directly to the
“SCADA” context. However also schedules for the optimization have to be aggregated for
the portfolios. In the current design, we plan to only have a link between “Aggregation” and
“Optimization” . There is still the option to also establish a link between “Optimization” and
“SCADA” . The context map also shows an abstract bounded context “Information Provision”
. Typically this bounded context will receive information through a shared model from the
“Aggregation” context and will use an ACL for the translation to the specific model.

4 Architectural Migration

We approached the migration case by case, starting with the bounded context Optimization.
As already noted, in order to include the domain experts in the respective area of optimization,
i.e. Mixed Integer Linear Programming (MILP) [13], we decided to implement the new
Microservice in Python. Additionally, this enabled the use of popular MILP frameworks
such as Pyomo [7, 6].

Before the migration, we identified parts of the old monolithic architecture, which are
responsible for the Optimization (marked in yellow in Figure 5). Therefore a closer look
at the monolithic architecture was needed. The software is implemented as a classic client
server architecture, where the backend is built as a layered architecture (see 1. in Figure 5).

Microservices 2017/2019

2:6 First Steps towards a Microservice Architecture for VPPs

ACL

CHP

DER

Windfarm Photovoltaic
Park

BESS

Portfolio

Energy
Production Unit

Storage Flexible Loads

Heat Pump

Virtual Power
Plant

DER CommunicationLink

Protocol

IEC 61850 VHPReady 3.0 OPC UAIEC 60870-5-104

SensorValue

Sensor Control Command MappingScheme

CHP

GasSource Engine Heat Storage Heat Sink

Flexible DER Portfolio

Efficency curve

EnergyMarket

Price Forecast

Gas Price Heat Demand
Forecast

Aggregation Bounded Context SCADA: Bounded Context

Optimization: Bounded Context

ACL OHS

OHS

Information Provision Bounded Context

ACL

OHS

«use»

Figure 4 Context Map.

The user interface is written in JavaFX and implemented as a rich client. It connects via
RESTful HTTP endpoints with the service layer of the backend. The service layer routes
requests to the domain logic, e.g. the optimization kernel. The business logic uses raw data
from DERs as well as aggregated and interpolated information. For this reason the business
layer above an aggregation and disaggregation layer. The bottom layer consists of online
data information retrieved directly from DERs as well as historical data retrieved from the
database. In 1. of Figure 5 the parts that are responsible for the optimization are highlighted
(marked in yellow). They are distributed over the different layers as well as in the UI and
database.

In the next step (2. in Figure 5) the optimization kernel was implemented in Python. In
contrast to a classical migration within the same programming language, a refactoring based
migration, cf. [12], was not possible. To continue working within our agile development
process and to keep the customer up to date, we decided not to extract all optimization
related functionalities at this stage. Therefore we only extracted the core business logic into
a SOA-like service and called these services directly from the layer where they were extracted
from. In this step, we used the data model from the above defined bounded context and we
used the OHS and ACL patterns, cf. [4], to transform the information between the monolith
and the new service. The other layers, e.g. persistence and aggregation, as well as the UI,
remained in the monolith. After this step, all existing integration and contract tests from
the monolith could be used to verify that the VPP software worked as before.

In step three, we enhanced the SOA-Service to a Microservice and shifted the relevant
parts of the aggregation and persistence layer from the monolith while adding a new database
to the service as well (see 3. of Figure 5). Introducing a new user interface or a micro-frontend
was skipped during this step. The main reason for this was the existing UI Technology. For
JavaFX clients, there are no appropriate micro-frontend approaches which are independently
deployable. Besides our Microservice migration we worked on the development of a web
UI, therefore we shifted the UI separation to another step. To keep providing a common

M. Wickert, S. Liebehentze, and A. Zündorf 2:7

Figure 5 Four migration steps including the highlighted use of the bounded context Optimization.

interface to the UI and other applications that directly communicate with the REST service,
we needed some kind of API Gateway. To minimise infrastructure changes for the first
Microservice, we used the existing service facade as the API Gateway for the monolith and
the Microservice as well.

The last step is to introduce a web UI and a separate API Gateway. However this step is
only useful if the UI is completely based on a web UI. Currently the migration of the UI
to Angular [1] is ongoing. After finishing this we will decide which existing API Gateway
solution we are going to use. With the completion of this step, the full migration is finished
and independent deployment will be possible.

The Architectural Migration was performed in four separate steps during our SCRUM-
based development process with 2 teams (see Section 5). We had three-week iterations
and each step took several iterations because the migration was done in parallel to the
feature development. Overall it took about six months to deliver the first deployment to our
customer. The reason for this being that we still needed some iterations in order to implement
the existing functionality in Python. Also the integration of the domain experts into the
new development Team took some time. For each of the migration steps we could perform
existing contract tests, partial integration tests and deploy our software in production on
schedule.

During our migration we identified two main challenges. The first was to bring the python
modules into operation including logging and metrics, providing health status, evaluating
web service frameworks and safety and security considerations, etc. The team’s goal was to

Microservices 2017/2019

2:8 First Steps towards a Microservice Architecture for VPPs

provide at least the same stable operation behavior as our Java Software already had. The
second challenge was to implement component tests. Now, the mocking of the optimization
changed from mocking Java Components to mocking a Microservice or an external Interface.
Thus the tests scenarios became much more complex.

5 Results

As a result of the first migration we received a smaller monolith (about 270 KLOC) and
a new Optimization Microservice (about 10 KLOC). Consequently we could significantly
increase the number of developers for the product by the inclusion of our domain experts.
We started with one development team for the monolith with 6 developers and have now
two development teams with 5 (allmost all well experienced in software engineering) and
4 developers (1 software engineer, 3 economists/industrial engineers). However, the new
development team has more skills in linear programming than in software engineering. Thus
the implementation of the agile development process is not yet complete.

The deployment of the software has also changed. To frequently deliver updates we
changed our production infrastructure to Docker together with the infrastructure team of
our customers. This helped us to deploy Python software including all required modules in a
stable environment. It also separated the infrastructure dependencies of the monolith and
the new Microservices. A consequence of this is that the infrastructure is now more complex
than before. To cope this, we are now working on the implementation of a distributed logging
environment.

The migration itself gained from the fact that we implemented a Service oriented archi-
tecture (SOA) in the second step. This focused our implementation on the domain logic
parts of the Microservice and without a database the infrastructure was less complex in
the second step. In comparison with a direct Microservice implementation, our approach
needs more development time because the integration consists of more steps. For working in
agile development teams we still recommend our new approach for migrating to a different
programming language, also for completely different domains.

6 Conclusion

In this experience report, we analyzed the domain of VPPs and pointed out relevant business
functions for a CVPP. For each business function, we identified supporting models and built
bounded contexts with a context map. With this domain-driven approach, we started the
migration with the detachment of the bounded context Optimization. With this step a new
Microservice evolved.

For the architectural migration, we examined a novel approach which separates the
process into four steps. This approach is also transferable to other software systems that
intend to use a new programming language within a new Microservice. Our most important
achievement was the realization of the respective upcoming migration step while delivering
new software features at regular intervals. The separation of the last step was important due
to the existing UI technology. This may also be an issue for other existing systems.

Our greatest benefit was the first migration step, namely the inclusion of further expert
knowledge in the development team by using Python as the programming language of the
new Microservice. This also opened up the set of actively supporting development team
members within our organization. Another benefit is the sharper domain within the new
Microservice supporting a more rapid development cycle for optimization features.

M. Wickert, S. Liebehentze, and A. Zündorf 2:9

The next step will be to also perform the migration of the user interface to a pure Web
UI. With this technology it is possible to build so called Microfrontends and deploy them
together with the Microservice. This also enables us to postpone UI framework or library
decisions to development teams. Afterwards we will be able to start the decomposition of the
remaining monolith to a SCADA and an administration service. A further decomposition
may follow afterwards. One of the future challenges will be the measurement of the effect of
the Microservice migration in terms of scaling behavior in operation, shorter development
times, etc. This will give us indicators for further architectural decisions.

References
1 Angular Framework. URL: https://angular.io/.
2 Kaibin Bao, Ingo Mauser, Sebastian Kochanneck, Huiwen Xu, and Hartmut Schmeck. A

Microservice Architecture for the Intranet of Things and Energy in Smart Buildings: Research
Paper. In Proceedings of the 1st International Workshop on Mashups of Things and APIs,
MOTA@Middleware 2016, Trento, Italy, December 12-13, 2016, pages 1–6, December 2016.
doi:10.1145/3007203.3007215.

3 Martin Braun. Virtual power plants in real applications: Pilot demonstrations in Spain and
England as part of the european project FENIX. Fraunhofer IWES, January 2009.

4 Evans. Domain-Driven Design: Tacking Complexity In the Heart of Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

5 Martin Fowler and James Lewis. Microservices, 2014. URL: http://martinfowler.com/
articles/microservices.html.

6 William E. Hart, Carl D. Laird, Jean-Paul Watson, David L. Woodruff, Gabriel A. Hackebeil,
Bethany L. Nicholson, and John D. Siirola. Pyomo–optimization modeling in python, volume 67.
Springer Science & Business Media, second edition, 2017.

7 William E Hart, Jean-Paul Watson, and David L Woodruff. Pyomo: modeling and solving
mathematical programs in Python. Mathematical Programming Computation, 3(3):219–260,
2011.

8 G. Hohpe and B.A. WOOLF. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. The Addison-Wesley Signature Series. Prentice Hall, 2004.
URL: http://books.google.com.au/books?id=dH9zp14-1KYC.

9 B. Jansen, C. Binding, O. Sundstrom, and D. Gantenbein. Architecture and Communication of
an Electric Vehicle Virtual Power Plant. In 2010 First IEEE International Conference on Smart
Grid Communications, pages 149–154, October 2010. doi:10.1109/SMARTGRID.2010.5622033.

10 Ingo Mauser, Christian Hirsch, Sebastian Kochanneck, and Hartmut Schmeck. Organic
Architecture for Energy Management and Smart Grids. In 2015 IEEE International Conference
on Autonomic Computing, Grenoble, France, July 7-10, 2015, pages 101–108, 2015. doi:
10.1109/ICAC.2015.10.

11 Antonello Monti, editor. Technologies and Methodologies in Modern Distribution Grid Automa-
tion, volume 15. Elsevier, Amsterdam [u.a.], 2018. URL: http://publications.rwth-aachen.
de/record/745831.

12 Sam Newman. Building Microservices. O’Reilly Media, Inc., 1st edition, 2015.
13 Seyyed Mostafa Nosratabadi, Rahmat-Allah Hooshmand, and Eskandar Gholipour. A com-

prehensive review on microgrid and virtual power plant concepts employed for distributed
energy resources scheduling in power systems. Renewable and Sustainable Energy Reviews,
67(C):341–363, 2017. doi:10.1016/j.rser.2016.09.02.

14 H. Saboori, M. Mohammadi, and R. Taghe. Virtual Power Plant (VPP), Definition, Concept,
Components and Types. In Proceedings of the 2011 Asia-Pacific Power and Energy Engineering
Conference, APPEEC ’11, pages 1–4, Washington, DC, USA, 2011. IEEE Computer Society.
doi:10.1109/APPEEC.2011.5749026.

Microservices 2017/2019

https://angular.io/
https://doi.org/10.1145/3007203.3007215
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://books.google.com.au/books?id=dH9zp14-1KYC
https://doi.org/10.1109/SMARTGRID.2010.5622033
https://doi.org/10.1109/ICAC.2015.10
https://doi.org/10.1109/ICAC.2015.10
http://publications.rwth-aachen.de/record/745831
http://publications.rwth-aachen.de/record/745831
https://doi.org/10.1016/j.rser.2016.09.02
https://doi.org/10.1109/APPEEC.2011.5749026

2:10 First Steps towards a Microservice Architecture for VPPs

15 Vaughn Vernon. Implementing Domain-Driven Design. Addison-Wesley Professional, 1st
edition, 2013.

16 Matej Zajc, Mitja Kolenc, and Nermin Suljanovic. Virtual Power Plant Communication System
Architecture, chapter 11, pages 231–250. Elsevier, 2018. doi:10.1016/B978-0-12-812154-2.
00011-0.

https://doi.org/10.1016/B978-0-12-812154-2.00011-0
https://doi.org/10.1016/B978-0-12-812154-2.00011-0

Exploring Maintainability Assurance Research for
Service- and Microservice-Based Systems:
Directions and Differences
Justus Bogner
University of Applied Sciences Reutlingen, Herman Hollerith Center, Germany
University of Stuttgart, Institute of Software Technology, Software Engineering Group, Germany
https://www.hhz.de/en/research/research-groups/digital-enterprise-architecture
justus.bogner@iste.uni-stuttgart.de

Adrian Weller
University of Stuttgart, Institute of Software Technology, Software Engineering Group, Germany
https://www.iste.uni-stuttgart.de/se
adrian.weller94@gmail.com

Stefan Wagner
University of Stuttgart, Institute of Software Technology, Software Engineering Group, Germany
https://www.iste.uni-stuttgart.de/se
stefan.wagner@iste.uni-stuttgart.de

Alfred Zimmermann
University of Applied Sciences Reutlingen, Herman Hollerith Center, Germany
https://www.hhz.de/en/research/research-groups/digital-enterprise-architecture
alfred.zimmermann@reutlingen-university.de

Abstract
To ensure sustainable software maintenance and evolution, a diverse set of activities and concepts
like metrics, change impact analysis, or antipattern detection can be used. Special maintainability
assurance techniques have been proposed for service- and microservice-based systems, but it is
difficult to get a comprehensive overview of this publication landscape. We therefore conducted a
systematic literature review (SLR) to collect and categorize maintainability assurance approaches
for service-oriented architecture (SOA) and microservices. Our search strategy led to the selection
of 223 primary studies from 2007 to 2018 which we categorized with a threefold taxonomy: a)
architectural (SOA, microservices, both), b) methodical (method or contribution of the study), and
c) thematic (maintainability assurance subfield). We discuss the distribution among these categories
and present different research directions as well as exemplary studies per thematic category. The
primary finding of our SLR is that, while very few approaches have been suggested for microservices
so far (24 of 223, ∼11%), we identified several thematic categories where existing SOA techniques
could be adapted for the maintainability assurance of microservices.

2012 ACM Subject Classification Software and its engineering → Software evolution; Software
and its engineering → Maintaining software; Social and professional topics → Quality assurance;
Information systems → Web services

Keywords and phrases Maintainability, Software Evolution, Quality Assurance, Service-Based
Systems, SOA, Microservices, Systematic Literature Review

Digital Object Identifier 10.4230/OASIcs.Microservices.2017-2019.3

Supplement Material https://github.com/xJREB/slr-maintainability-assurance

Funding Justus Bogner : Funded by the Ministry of Science of Baden-Württemberg, Germany, for
the doctoral program Services Computing (https://www.services-computing.de/?lang=en).

© Justus Bogner, Adrian Weller, Stefan Wagner, and Alfred Zimmermann;
licensed under Creative Commons License CC-BY

Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices
2017/2019).
Editors: Luís Cruz-Filipe, Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and
Sabine Sachweh; Article No. 3; pp. 3:1–3:22

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5788-0991
https://www.hhz.de/en/research/research-groups/digital-enterprise-architecture
mailto:justus.bogner@iste.uni-stuttgart.de
https://www.iste.uni-stuttgart.de/se
mailto:adrian.weller94@gmail.com
https://orcid.org/0000-0002-5256-8429
https://www.iste.uni-stuttgart.de/se
mailto:stefan.wagner@iste.uni-stuttgart.de
https://www.hhz.de/en/research/research-groups/digital-enterprise-architecture
mailto:alfred.zimmermann@reutlingen-university.de
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.3
https://github.com/xJREB/slr-maintainability-assurance
https://www.services-computing.de/?lang=en
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2 SLR on the Maintainability Assurance of Service- and Microservice-Based Systems

1 Introduction

While software continues “to eat the world” [3], it becomes all the more important that
systems can be quickly adapted to new or changed requirements. As more and more business
processes are not only supported by software, but digital goods and services form the essence
of entire businesses, the sustainable evolution of the underlying software is a vital concern for
many enterprises. The associated quality attribute is referred to as maintainability [35], i.e.
the degree of effectiveness and efficiency with which a system can be modified. In fast-moving
markets, the adaptive and extending notion of this quality attribute – also referred to as
evolvability [68] – is especially crucial. To address this, software professionals rely on a
set of diverse activities aiming to ensure a sufficient degree of maintainability. We refer to
these approaches and techniques as maintainability assurance. In general, such activities
are either of an analytical nature, i.e. to identify existing issues, or of a constructive nature,
i.e. to remediate or prevent issues [79]. Examples for analytical techniques include metric-
based evaluation (both static and dynamic analysis), scenario-based evaluation, or code
review. Examples for constructive techniques are refactoring, standardization, or systematic
maintainability construction with design patterns. Furthermore, maintainability assurance
for larger systems is often structured into a communicated assurance process and is an
integral part of the development flow.

The introduction of service-oriented computing [59] arguably led to several maintainability-
related benefits such as encapsulation, strict separation between interface and implementation,
loose coupling, composition, and reuse. The two service-based architectural styles – namely
service-oriented architecture (SOA) [23] and microservices [53] – are very popular for imple-
menting enterprise applications or web-based systems with strong requirements for scalability
and maintainability. The younger microservices paradigm also places special emphasis on
evolutionary design [29]. Several publications have tried to summarize the differences and
commonalities between SOA and microservices [66, 89, 21, 12]. While no holistic consensus
has been reached so far (and probably never will be), many authors focus on the broad
set of architectural commonalities. Highlighted differences of microservices are e.g. their
decentralized governance and organization (as opposed to centralization and standardization
in SOA), their focus on very few lightweight communication protocols like RESTful HTTP (as
opposed to protocol-agnostic interoperability via an enterprise service bus in SOA), or their
“share nothing” principle (as opposed to SOA’s focus on abstraction and reuse). Nonetheless,
the majority of publications acknowledges the shared service-oriented principles like loose
coupling, location transparency, or statelessness. Early adopters from industry like Netflix
also referred to their system as “fine-grained Service Oriented Architecture” [80].

In principal, both SOA and microservices are based on beneficial properties for main-
tainable and evolvable systems. However, concrete maintainability assurance processes for
such systems are still not trivial to establish. Empirical studies about industry practices in
this regard also highlighted that there is a high trust in the base maintainability of service
orientation, which may even lead developers to actively reduce assurance efforts [78, 9].
Simultaneously, practitioners are uncertain how to handle service-oriented particularities in
this regard and especially report challenges for architectural evolvability [9, 10]. When trying
to get an overview of assurance approaches for service orientation proposed by academia, it
is not easy to quickly scan the scattered variety of existing publications. Researchers have
suggested a plethora of assurance techniques specifically designed for SOA, microservices,
or both that try to approach maintainability from different directions. To enable such
an overview, we therefore conducted a systematic literature review (SLR) to collect and

J. Bogner, A. Weller, S. Wagner, and A. Zimmermann 3:3

categorize existing maintainability assurance research for service orientation. Our review
explicitly included both SOA and microservices, because the number of relevant publications
for the younger architectural style would have been too small on its own. Moreover, we
believed that a lot of the approaches designed for SOA will have relevance for microservices
as well. Lastly, the inclusion of both service-based styles will enable an additional comparison
on this level. Our SLR was guided by the following four research questions:

RQ1: How can maintainability assurance research proposed for service- and microservice-
based systems be categorized?
RQ2: How are the identified publications distributed among the formed categories?
RQ3: What are the most relevant research directions per identified category?
RQ4: What are notable differences between the approaches proposed for service-based
systems and those for microservices?

In the remainder of this paper, we first present related literature studies (Section 2) and
describe the details of our own study design (Section 3). After that, we present the SLR
results, from which we synthesized the answers to our research questions (Section 4). Lastly,
we mention possible threats to validity (Section 5) and conclude with a summary as well as
an outlook on potential follow-up research (Section 6).

2 Related Work

Several existing literature studies cover maintainability-related aspects without focusing on a
specific system type or architectural style. Breivold et al. [14] conducted an SLR to collect
studies on the architectural analysis and improvement of software evolvability. They identified
82 primary studies that they structured into five categories, such as quality considerations
during design, architectural quality evaluation, architectural knowledge management, or
modeling techniques. Service-oriented approaches are not included.

Similarly, Venters et al. [77] synthesized existing research approaches for general archi-
tecture sustainability in a non-systematic review. They define sustainability as a system’s
capacity to endure. Service-oriented approaches are only briefly mentioned in the area of
reference architectures, where some proposals for SOA are listed. Other described topics are
the importance of architectural decisions or metrics for the quantification of sustainability.

There are also several service-based literature studies focusing on SOA. Back in 2009,
Gu and Lago [33] conducted an SLR to uncover general service-oriented system challenges.
Using 51 primary studies, they identified more than 400 challenges, most of them related
to quality attributes, service design, and data management. Only three reported challenges
were associated with maintenance, i.e. their review is broader than our intended scope.

A more fine-grained scope than the one intended by us was applied in the literature
review of Bani-Ismail and Baghdadi [6]: they solely focused on service identification (SI)
in SOA and derived eight different challenges for this activity. The maintainability-related
aspect of service granularity is presented as one of the most important challenges.

In another service-oriented SLR, Sabir et al. [69] analyzed the evolution of object-oriented
and service-oriented bad smells as well as differences with their detection mechanisms. From
78 publications, they identified 56 object-oriented and 19 service-based smells and presented
details about their detection approaches. Smells related to microservices are not covered.

In similar fashion, Bogner et al. [8] conducted an SLR to collect existing antipatterns
for both SOA and microservices. While they did not include many details on detection
approaches, they synthesized a holistic data model for all antipatterns and also created a
taxonomy for their categorization. 14 of the 36 antipatterns were categorized as applicable
to SOA, three to microservices, and 19 to both styles. Like the review of Sabir et al., this is
a subset of our intended scope, but nonetheless targets both SOA and microservices.

Microservices 2017/2019

3:4 SLR on the Maintainability Assurance of Service- and Microservice-Based Systems

Several more recent literature studies also focus exclusively on microservices. Di Francesco
et al. [20] used a systematic mapping study to create a research overview on architecting with
microservices. They derived a classification framework and used it to produce a systematic
map of the topics of 103 selected primary studies. While maintainability is mentioned in 43
studies as an important design goal or investigated quality attribute, the broad scope of the
review prevents a more detailed discussion of how maintainability is actually ensured.

Lastly, Soldani et al. [73] systematically surveyed the existing grey literature on microser-
vices to distill their technical and operational “pains and gains”. Afterwards, identified
concerns were assigned to common stages of the software life cycle such as design or operation.
Maintainability is briefly discussed as an advantageous “gain” based on small service size
and self-containment, but concrete techniques for its assurance are not mentioned.

In summary, none of the presented related studies focus exclusively on maintainability
and its assurance while simultaneously targeting service- and microservice-based systems.
The studies that have a similar scope do not limit their review to service orientation and
the ones that do are either too general or too specific in their discussed aspects. We intend
to close this gap by presenting an SLR that specifically analyzes the state of the art of
maintainability assurance for service- and microservice-based systems.

3 Research Methodology

In general, an SLR is a secondary study that is used to identify, analyze, and summarize
(scientific) publications within a certain research area of interest. As such, it presents an
overview of the state of the art in a certain (sub)field and may point out research gaps
or even a research agenda to close them. Since scientific rigor and replicability are very
important in such studies, we relied on the process and guidelines described by Kitchenham
and Charters [39]. Moreover, we published all research artifacts in an online repository1.

Our general research process for this study was as follows (see also Fig. 1). First, we
brainstormed about research questions we intended to answer and defined four questions
that built upon each other (see Section 1). As a second step, we designed a detailed protocol
to guide us through the review. This protocol contained the used data sources (literature
databases and search engines), a search term with keywords, filter criteria for inclusion and
exclusion of studies, as well as a description of the process. We then used this protocol
to retrieve the initial result set from all data sources and subsequently applied our filter
criteria. The first two authors individually analyzed and filtered all identified publications
and afterwards compared the results. Any differences were discussed until a consensus was
reached. For the remaining studies, we performed one round of forward citation search
(“snowballing”) and applied the same filter criteria to the newly identified publications (again
with two researchers). Included studies were merged into the existing set and duplicates
were removed. This final set of primary studies was now analyzed in an iterative process.
A categorization scheme was derived and subsequently applied to the publications. The
result was then analyzed again and possible improvements for the categorization scheme
were implemented, which led to the next round of categorization. As with the inclusion and
exclusion criteria, categorization of the whole set was performed by two researchers, who
discussed any difference of opinion. Once the categories were stable, we started the detailed
evaluation to synthesize the answers to our research questions.

1 https://github.com/xJREB/slr-maintainability-assurance

https://github.com/xJREB/slr-maintainability-assurance

J. Bogner, A. Weller, S. Wagner, and A. Zimmermann 3:5

24/07/2019 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

Define research
questions

Design SLR
protocol

Retrieve initial
search results

Apply filter
criteria

Perform forward
citation search

Merge results Apply filter
criteriaAnalyze results

Derive
categorization

scheme

Categorize
results

Synthesize
answers to RQs

Perform detailed
evaluation

[if categories are stable]

Figure 1 General Research Process.

The four used data sources for our initial search (see also Fig. 2) were IEEE Xplore,
ACM Digital Library, Springer Link, and ScienceDirect, as they are very common for
software engineering and service-oriented topics. For the snowballing phase, we relied on the
publisher-agnostic search engine Google Scholar.

IEEE Xplore: https://ieeexplore.ieee.org
ACM Digital Library: https://dl.acm.org
Springer Link: https://link.springer.com
ScienceDirect (Elsevier): https://www.sciencedirect.com
Google Scholar (only for snowballing): https://scholar.google.com

Figure 2 Used Digital Libraries and Search Engines for the SLR.

As our search string (see also Fig. 3), we formed two buckets with keywords. The
two buckets were combined with an AND relation while the keywords within each bucket
were combined with an OR relation, i.e. from each bucket, at least one term needed to
match. The first bucket contained our central quality attribute maintainability as well
as the closely related terms modifiability, evolvability, and evolution. The second
bucket was responsible for our targeted system types and therefore consisted of the terms
soa, microservice, service-oriented, and service-based. The search string was not
confined to any particular field.

(maintainability ∨ modifiability ∨ evolvability ∨ evolution) ∧ (soa
∨ microservice ∨ service-oriented ∨ service-based)

Figure 3 Used Search String for the SLR.

Since we only relied on manual filtering to avoid the accidental exclusion of fitting studies
that just use different keywords, we also had to limit the result set to a manageable amount.
We therefore only considered the first 250 results per data source, i.e. we had a total
of 1000 publications for manual analysis. As our most basic inclusion criteria, we only
considered publications written in English and published in the years 2007 up until 2018.

Microservices 2017/2019

https://ieeexplore.ieee.org
https://dl.acm.org
https://link.springer.com
https://www.sciencedirect.com
https://scholar.google.com

3:6 SLR on the Maintainability Assurance of Service- and Microservice-Based Systems

The title and abstract of studies passing this test were then assessed for their relevance
to our research questions. The main focus of the paper needed to be on analyzing or
improving maintainability (or a related quality attribute or design property) in the context
of service-oriented computing (e.g. SOA or microservices). For example, the architecture
sustainability review of Venters et al. [77] fulfills the first property, but is not primarily
about service orientation. Conversely, the SOA policy optimization approach from Inzinger
et al. [36] is clearly about service orientation, but does not solely target maintainability. If
the topic relevance could not be determined from title and abstract alone, other parts of the
paper like the introduction or conclusion had to be read. Finally, we excluded the fields of
runtime adaptation as in [26], software testing as in [37], and legacy to SOA or microservices
migration as in [47]. While these topics are related to maintenance and evolution, they are
very specialized and each one could probably provide enough material for a separate SLR.

4 Results

Using the process described above, we obtained an initial set of 1000 papers, i.e. 250 per
selected publisher. We then applied our inclusion criteria, which resulted in a filtered set of
122 papers. In the snowballing phase, we identified a total of 806 publications that cited a
paper from our filtered set. Lastly, we applied the same filter criteria to these new publications
and merged the remaining ones back into the filtered set while removing duplicates. This
resulted in a final set of 223 primary studies (see also Fig. 4). Nearly half of these papers
(105) were published by IEEE, followed by 40 Springer publications (18%), 31 papers from
ACM (14%), and 10 from ScienceDirect (4%). The remaining 37 publications (17%) were
from 31 different publishers (see also Fig. 5). When looking at the number of publications
per year (Fig. 6), we see a slow beginning in 2007 (six publications), a peak in 2011 (35
publications), smaller yet fairly similar numbers for 2012 to 2015 (22-24 publications), and
finally another decline for 2016 to 2018 (15-18 publications).
��������� ��	
��

���
����������
���������
���
��
������������������	����������� ���

� !
"#$%&'&()*

+,-!
"#$%&'&()*

�./0/'1%*(0!
2$$$%&'&()*

3/10()(4%*(0!
2""%&'&()*

3/.'1%*(0!
""5%&'&()*

 6718*/9.!
:;<;

,/0'0/9.
*(')7=!
>;$?

@&)/.A()!
"#$%&'&()*

@7/(.7(B/)(70!
"#$%&'&()*

@.9CD'11(4%*(0!
E";%&'&()*

 6718*/9.!
:<$#

Figure 4 SLR Results: Number of Publications per Stage.

4.1 Research Categories (RQ1)
To answer the first research question, we derived a three-dimensional taxonomy to categorize
the identified primary studies (see Table 1). The first and most obvious category type called
architectural consisted of three different categories that determined if a study targeted SOA,
microservices, or both architectural styles. Both was selected if the study either explicitly
stated the inclusion of both SOA and microservices or if it was about concepts like RESTful
services that are prevalent in both styles. This category type was mandatory and exactly one

J. Bogner, A. Weller, S. Wagner, and A. Zimmermann 3:7

105 (47%)

40 (18%)

31 (14%)

10 (4%)

37 (17%)

IEEE Springer ACM ScienceDirect Other

Figure 5 Publisher Distribution.

6

12
11

16

35

22
24 24

23

17
15

18

0

5

10

15

20

25

30

35

40

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Figure 6 Number of Publications per Year.

Table 1 Three-Dimensional Categorization Scheme.

Type Description Mandatory Multiple

Architectural Contains three categories that determine if a publication
focuses on SOA, microservices, or both styles.

Yes No

Methodical Contains five categories that either determine the used
research method (e.g. literature study) or the study’s
contribution (e.g. model or taxonomy).

No Yes

Thematic Contains nine categories that determine the topic of a
publication, i.e. subfields of maintainability assurance.

Yes Yes (except
for other)

category had to be chosen per publication. Second, the optional methodical category type
determined either the applied methodology (e.g. case study) or the provided contribution
(e.g. process or method). It consisted of five different categories, from which multiple ones
could be selected per study. Lastly, the most important thematic category type determined
the actual maintainability-related topic of a publication, i.e. a more specific subfield of
maintainability assurance. To avoid a large number of very fine-grained thematic categories,
we created the generic Other category. At least one thematic category had to be chosen per
publication. The following listing briefly describes all methodical categories.

Case, Field, or Empirical Study: the publication either describes a case study (e.g.
demonstrating an approach with an example system), a field study (e.g. analyzing
an industry system), or an empirical study (e.g. a survey, interviews, or a controlled
experiment)
Literature Study: the publication presents the results of a literature study like an SLR
or a systematic mapping study
Model or Taxonomy: the publication contributes a (meta) model or taxonomy to
further the conceptual understanding of a topic
Process or Method: the publication defines a method or process, i.e. a sequence of
activities to achieve a certain goal
Reference Architecture or Tool: the publication either describes a reference archi-
tecture (an abstract and reusable template to create system architectures) or a tool to
e.g. mitigate manual efforts

Lastly, the next listing presents all thematic categories. They refer exclusively to a
service-based context.

Microservices 2017/2019

3:8 SLR on the Maintainability Assurance of Service- and Microservice-Based Systems

Architecture Recovery and Documentation: relying on architecture reconstruction
(if no current documentation is available) or on general architecture documentation
support to increase analyzability and therefore maintainability; example: [40]
Model-Driven Approaches: approaches that rely on model-driven engineering to
reduce long-term maintenance efforts with e.g. code generation from machine-readable
models; example: [49]
Patterns: applying patterns specifically designed for service orientation to systematically
improve maintainability-related aspects or to describe service evolution; example: [83]
Antipatterns and Bad Smells: conceptualizing service-based antipatterns and bad
smells or providing detection approaches for them to identify maintainability weaknesses;
example: [58]
Service Identification and Decomposition: approaches to identify suitable service
boundaries for functionality or to decompose large existing services into more fine-grained
ones that are more beneficial for maintainability; example: [45]
Maintainability Metrics and Prediction: conceptualizing or evaluating service-based
metrics to analyze or predict maintainability; example: [50]
Change Impact and Scenarios: approaches for analyzing the potential propagation
of service changes or general scenario-based maintainability evaluation; example: [34]
Evolution Management: general approaches to support or improve the overall service
evolution process via e.g. systematic planning techniques, accelerating the process,
increasing fault tolerance, or mitigating other negative consequences; example: [28]
Other: all papers that could not be assigned to one of the other categories were sorted
into this one; example: [84]

4.2 Category Distributions (RQ2)
The analysis of distributions among architectural categories (SOA, microservices, both)
immediately revealed that nearly 90% of the 223 publications exclusively targeted SOA (see
Fig. 7). Only 12 publications solely referred to microservices while an additional 12 included
both SOA and microservices. This means that only a combined ∼11% of our primary studies
were about maintainability assurance approaches for microservices. Since microservices are
much younger than SOA, it also makes sense to look at a more recent subset, e.g. starting
from 2014 when microservices began to rise in popularity (see Fig. 8). However, from 2014 to
2018, identified microservices-related publications still only accounted for a combined ∼25%.

199 (89.2%)

12 (5.4%)
12 (5.4%)

SOA Microservices Both

Figure 7 Architectural Categories 2007-
2018.

73 (75.3%)

12 (12.4%)

12 (12.4%)

SOA Microservices Both

Figure 8 Architectural Categories 2014-
2018.

J. Bogner, A. Weller, S. Wagner, and A. Zimmermann 3:9

Concerning methodical categories (see Fig. 9), the most frequent one was case, field, or
empirical study: 63% of publications included such a study, most often to demonstrate or
evaluate a proposed approach or to analyze industry practices. Moreover, nearly half of the
publications (110) described a process or method as part of their contribution, which highlights
the importance of systematic approaches in this field. Both the conceptual contribution of a
model or taxonomy (75 of 223) and the more practical contribution of a reference architecture
or tool (72 of 223) were present in roughly one third of studies. Lastly, 25 publications (11%)
described a literature study for meta analysis. Overall, 124 publications were associated with
at least two methodical categories (56%) and 68 publications with at least three (30%).

141 (63%)

110 (49%)

75 (34%)

72 (32%)

25 (11%)

Case, Field, or Empirical

Study

Process or Method

Model or Taxonomy

Reference Architecture or

Tool

Literature Study

Figure 9 Distribution: Methodical Categories (percentages are relative to 223 publications).

With respect to thematic categories (Fig. 10), around half of the publications were equally
distributed among either evolution management (56) or maintainability metrics & prediction
(55). This shows the popularity of approaches to systematically manage service evolution and
mitigate potential consequences as well as the interest in maintainability metrics specifically
designed for service orientation. In the remaining half, the largest category accounting for
17% of total publications was change impact & scenarios, which indicates that qualitative
evaluation has not been as popular as quantitative metric-based evaluation so far. Smaller
categories were antipatterns & bad smells (9%), service identification & decomposition (9%),
patterns (6%), model-driven approaches (5%), and architecture recovery & documentation
(4%). Lastly, 18 publications were categorized with other (8%) because they did not fit into
any existing category. As opposed to methodical categories, multiple selection was quite rare
here, i.e. only 21 publications were related to more than one category (9%).

56 (25%)

55 (25%)

39 (17%)

21 (9%)

21 (9%)

14 (6%)

12 (5%)

9 (4%)

18 (8%)
Evolution Management

Maintainability Metrics & Prediction

Change Impact & Scenarios

Antipatterns & Bad Smells

Service Identification &

Decomposition

Patterns

Model-Driven Approaches

Architecture Recovery &

Documentation

Other

Figure 10 Distribution: Thematic Categories (percentages are relative to 223 publications).

Microservices 2017/2019

3:10 SLR on the Maintainability Assurance of Service- and Microservice-Based Systems

4.3 Research Directions per Category(RQ3)

In this section, we briefly describe the most relevant research directions per identified thematic
category (except for other). We illustrate these by describing selected exemplary studies.

Architecture Recovery and Documentation. In our smallest thematic category, the major-
ity of the nine publications was concerned with (semi-)automatic architecture reconstruction
via static analysis, dynamic runtime analysis, or a mixture of both. A static example for
SOA is the intelligent search support by Reichherzer et al. [65]. Their SOAMiner tool parses
and analyzes common SOA artifacts like WSDL or BPEL files and conceptualizes knowledge
relevant for architecture and maintenance from them. Similarly, Buchgeher et al. [15] provide
a platform to provide up-to-date architectural information of large-scale service-based systems
via extraction techniques using source code and other development artifacts like POM files.
With five publications, this category was also especially popular for microservices. One
example is the MicroART approach of Granchelli et al. [32] that combines static information
from a code repository (e.g. Docker files) with dynamic runtime data collected via tcpdump.
A second mixed approach is the MICROLYZE framework from Kleehaus et al. [40]. By
combining data from service registries and OpenTracing monitoring with static build-time
information, the system’s architecture can be continuously reconstructed while also taking
infrastructure and hardware into account.

Overall, approaches in this category were concerned with providing accurate architecture
documentation to increase analyzability and to ease maintenance efforts. Automation is
used to reduce manual efforts, but this is challenging in heterogeneous and decentralized
environments that consist of a very large number of diverse (micro)services. Most modern
approaches combine static with dynamic analysis and sometimes even rely on tool-supported
manual steps to increase accuracy.

Model-Driven Approaches. All 12 publications in this category were related to SOA and
most of them were concerned with model-based verification during evolution. To support
model evolution and change propagation across different model types such as business process
or service models, Sindhgatta and Sengupta [71] proposed a framework that automatically
analyzes Meta-Object Facility (MOF) compliant models and supports the selective application
of changes to downstream models. Similarly, Liu et al. [48] designed a verification approach
that is based on colored reflective Petri nets and simulates adaptive service evolution. A last
approach in this area was created by Zhou et al. [88]: they analyze model consistency using
hierarchical timed automata and also support the modelling of time constraints as well as
architectural decomposition. In the area of business process management, Boukhebouze et
al. [13] relied on rule-based specifications with the event-condition-action model to assess a
business process’s flexibility and to estimate its cost of change. Rules are translated into a
graph and subsequently used for analysis. Lastly, Lambers et al. [44] proposed a very early
holistic approach for model-driven development of service-based applications. Their goal was
to enable expert users to iteratively and rapidly develop flexible services through a series
of models, code generators, and a graphical user interface for visual model creation and
modification.

All in all, the presented approaches rely on different kinds of formal methods to enable
faster and less error-prone development and evolution of service-based systems. Models
specific to service orientation like business process models were frequently used. The
predominant themes were consistency checking and verification.

J. Bogner, A. Weller, S. Wagner, and A. Zimmermann 3:11

Patterns. We identified 14 studies that discussed service-based design patterns, i.e. best
practice solution blueprints for recurring design problems, in the area of maintenance and
evolution. However, contrary to previous categories, most of them did not follow one
major research direction. A few publications proposed new service-based design patterns
beneficial for maintainability like the Service Decoupler from Athanasopoulos [4]. Others
like Tragatschnig et al. [76] used patterns to describe and plan the evolution of service-
based systems (“change patterns”), which should increase the efficiency and correctness of
modifications. Some approaches centered around existing patterns in a system. Zdun et
al. [85] provided a set of constraints and metrics for automatically assessing the pattern
conformance in microservice-based system to avoid architectural drift. Demange et al. [19]
designed the “Service Oriented Detection Of Patterns” (SODOP) approach to automatically
detect existing service-based patterns via metric rule cards so that their design quality can be
evaluated. Lastly, Palma et al. [55] analyzed the change-proneness of selected service-based
patterns by studying an open source system. Using the metrics number of changes and code
churn, they discovered that services with patterns needed less maintenance effort, but not
with a statistically significant difference.

In general, this category was surprisingly heterogeneous with diverse pattern use cases,
ranging from systematic maintainability construction to architecture conformance checking
or service evolution description. Unfortunately, our SLR did not identify more holistic publi-
cations with collections and discussion of service-based patterns beneficial for maintainability,
e.g. a literature study. Likewise, we only identified a single empirical study [55] that analyzed
the impact of service-based design patterns on modifiability.

Antipatterns and Bad Smells. With 21 publications, this category was 50% larger than
patterns, which could indicate that preventing suboptimal designs has been perceived as more
important or as more related to maintainability than to other quality attributes. Research
directions in this category were also not as scattered, but followed two main themes. The
smaller group was concerned with the conceptualization of service-based antipatterns. Palma
and Mohay [57] presented a classification taxonomy for 20 web service and Service Component
Architecture (SCA) antipatterns and also defined metrics to specify their existence. In the area
of microservices, Taibi and Lenarduzzi [75] synthesized 11 common bad smells by interviewing
72 developers. Similarly, Carrasco et al. [17] collected nine microservices architecture and
migration smells by analyzing 58 sources from scientific and grey literature. The larger
group in this category, however, went one step further and proposed automatic detection
approaches for antipatterns. An example was the SODA (Service Oriented Detection for
Antipatterns) approach from Nayrolles et al. [52], which the same authors later improved by
mining execution traces [51]. For RESTful services, Palma et al. [56] proposed an approach
which uses semantic as well as syntactic analysis to detect linguistic antipatterns. Lastly,
Sabir et al. [69] combined both directions in their SLR that not only collected existing
antipatterns, but also analyzed detection approaches.

The automatic detection of service-based antipatterns to efficiently identify design flaws
was the prevalent theme in this category. Different approaches like static or dynamic
analysis, machine learning, genetic programming, or combinations have been proposed. An
understudied area, however, seems to be the systematic refactoring of detected antipatterns.

Service Identification and Decomposition. We identified 21 publications that focused on
the activities of service identification or decomposition to increase maintainability. The
majority of these (15) proposed a process or method to derive service candidates or to

Microservices 2017/2019

3:12 SLR on the Maintainability Assurance of Service- and Microservice-Based Systems

decompose existing services or interfaces in a systematic or automatic fashion. A fully
automated identification approach has been proposed by Leopold et al. [45]: they relied on
semantic technologies to create a ranked list of service candidates from existing business
process models. Athanasopoulos et al. [5] designed a tool-supported approach to analyze
WSDL specifications with cohesion metrics. Based on the results, the existing interface
is progressively decomposed into more cohesive units. Similarly, Daagi et al. [18] used a
framework for Formal Concept Analysis (FCA) to identify hidden relations between WSDL
operations and decompose the interface into several more fine-grained ones. Because numerous
approaches have been proposed, there is also a decent amount of literature studies in this
category. Kohlborn et al. [41] conducted a structured evaluation of 30 service analysis
approaches and proposed a new consolidated method to address collected short-comings. A
second review by Cai et al. [16] tried to keep the literature analysis closer to the general
software and service engineering process and derived common “high-value activities”. Lastly,
a literature review from Bani-Ismail and Baghdadi [6] identified eight common service
identification challenges. The same authors [7] also conducted another review to gather
proposed evaluation frameworks for service identification methods.

Since a plethora of manual or automatic approaches has been proposed in this category, it
becomes difficult to differentiate between them. Some publications tried to address this with
literature studies, but selecting a feasible approach for a use case may still be challenging.

Maintainability Metrics and Prediction. Our second largest category consisted of 55 pub-
lications. Since existing source code or object-oriented metrics are only of limited relevance
for service-oriented systems, most publications in this category proposed maintainability
metrics specifically designed for service orientation. Some researchers approached this by
focusing on a single maintainability-related design property like coupling [62], complexity [63],
cohesion [61], or granularity [1]. Others tried to assemble holistic metric suites, like the SOA
design quality model from Shim et al. [70] or the metrics suite from Sindhgatta et al. [72].
Because most proposed metrics were of an architectural nature and therefore difficult to
collect from source code, some publications also focused on metrics for specific service-based
artifacts like SoaML [31] or BPMN [74] diagrams. To create an overview and to compare pro-
posed metrics, other researchers conducted literature studies. Nik Daud and Wan Kadir [54]
collected and categorized service-based metrics according to structural attributes, applied
phase, or artifact. Bogner et al. [11] targeted only automatically collectable metrics and
also analyzed the applicability of SOA metrics for microservices. A few publications also
used metrics and various machine learning techniques to predict the future maintainability
of services. Wang et al. [81] used artificial neural networks to build prediction models of
several web service interface metrics. In a slightly different fashion, Kumar et al. [43] applied
feature selection techniques and support vector machines to evaluate the prediction quality
of object-oriented metrics for the maintainability of service-based systems.

Overall, the main theme in this category was the definition of new or adapted service-
based maintainability metrics. While many metrics have been proposed, their relevance and
effectiveness often remained unclear. We identified only very few evaluation studies like
the one from Perepletchikov and Ryan [60]. Comparative literature studies were also rare.
Furthermore, even though automatic collection was a prevalent topic and several tools like
Q-ImPrESS from Koziolek et al. [42] or MAAT from Engel et al. [22] were presented, the
number of publicly available tools was very low, which could hinder replication studies and
industry adoption. Lastly, there seems to be much potential in crossing boundaries between
e.g. SOA, microservices, WSDL, or SoaML to adapt evaluated metrics to other fields.

J. Bogner, A. Weller, S. Wagner, and A. Zimmermann 3:13

Change Impact and Scenarios. A focus on dependencies between clients and services has
made change impact analysis a popular service-based topic. This category also comprises
publications about more general scenario-based maintainability evaluation. In total, we
identified 39 papers, which made this the third largest category. A large number of these
publications proposes specific approaches. Wang and Capretz [82] combined information
entropy with dependency analysis to quantify the relative importance of a service for
change effects. Another approach is taken by Hirzalla et al. [34]: they created a framework
(IntelliTrace), which relies on the modeling of traceability links between SOA artifacts like
business goals, processes, or services. Based on these links, the impact of changes at different
levels can be analyzed. Lastly, Khanh Dam [38] designed an approach based on association
rule data mining to predict change impact using the version history of web services. To collect
and compare proposed approaches, Amjad Alam et al. [2] conducted an SLR about impact
analysis and change propagation for business processes and SOA. Their analysis of 43 studies
concluded that very few mature approaches and tools existed, especially for bottom-up
or cross-organizational analysis. The second major research direction was concerned with
analysis of existing systems or APIs to derive information about their evolution change
impact. Using a tool called WSDLDiff, Romano and Pinzger [67] extracted and analyzed
fine-grained changes from the WSDL version histories of four web services from Amazon and
FedEx. Similarly, Espinha et al. [24] analyzed the evolution of the Twitter, Google Maps,
Facebook, and Netflix APIs. By interviewing six client developers and by analyzing source
code version histories, they investigated how the API evolution affected service consumers.

The two major research directions in this category were a) proposing approaches for
change impact analysis and b) empirical studies on the evolution impact of existing service-
based systems. Proposed methods were mostly based on dependency graphs or repository
data mining. Artifacts specific for service orientation like WSDL files were often used. Very
few publications, however, were concerned with general scenario-based evaluation, like the
one from Leotta et al. [46], who used the Software Architecture Analysis Method (SAAM) to
compare the maintainability of one SOA and one non-SOA alternative. Our review did not
identify a scenario-based method specifically designed for service orientation.

Evolution Management. With 56 papers, evolution management was our largest category
(25%). Since it was also our most general one, it consisted of diverse approaches to control
and plan service evolution. Therefore, no major research directions could be identified.
However, one similarity among these publications was that most of them (48 of 56) proposed
either a process or method or a model or taxonomy, i.e. most work was conceptual in nature.
To illustrate this diversity, we present some selected approaches. Zhang et al. [86] designed
a framework to manage requirements evolution in service-based system. The framework is
based on Role, Goal, Process and Service (RGPS) elements and also contains a meta model
and strategies. Another model and methodology was proposed by Zuo et al. [90]. In their
change-centric model for web service evolution, they specify e.g. stakeholder behavior, service
versioning, and the details of service changes. Feng et al. [25] created a taxonomy framework
for SOA evolution that describes the motivation, location, time, and support mechanism
of changes. The goal of their work is to support the analysis and planning of service
evolution. Lastly, a more holistic framework for web service evolution support (WSDarwin)
was presented by Fokaefs [27]. WSDarwin consists of an Eclipse plugin for automatic service
client adaptation on interface changes, a web application to automatically generate WADL
documentation for RESTful services and to compare different WADL versions, and a decision
support system for evolving service ecosystems based on game theory (see also [28]).

Microservices 2017/2019

3:14 SLR on the Maintainability Assurance of Service- and Microservice-Based Systems

4.4 Differences Between Approaches for SOA and Microservices (RQ4)
When analyzing differences between the identified publications for SOA and those for
microservices, the most apparent finding was the small percentage of microservice-focused
studies (less than 11% or less than 25% for 2014-2018). While microservices are the younger
paradigm, it seems that the scientific interest in their maintainability assurance is just getting
started. Possible reasons could be that most microservice-based systems are still fairly
young and therefore decently maintainable or that their inherent evolution qualities are
perceived as more beneficial when compared to SOA. With respect to thematic categories (see
Fig. 11), we see three categories without approaches exclusively designed for microservices
(evolution management, change impact & scenarios, and model-driven approaches), but only
one without a single publication on microservices, namely model-driven approaches. While
such approaches do exist for microservices [64], they were not identified by our review,
maybe because they are not advertised for maintainability. The most prominent category
for microservices was architecture recovery & documentation (5 of 9 papers, all of them
for recovery), which highlights the importance of this topic. While automatic microservice
decomposition and extraction is also a popular topic in academia [30], only two of the 21
papers in service identification & decomposition were about microservices. This is mainly
due to the fact that we excluded pure legacy migration approaches. Lastly, for antipatterns
& bad smells, publications for microservices were mostly concerned with defining antipatterns
while more established SOA publications already proposed automatic detection approaches.
This may be a sensible next step for microservices.

53
50

34

17 19

11 12

4

15

1

2
2

1

5

2

3
4

5

2

2

1

0

10

20

30

40

50

60

Evolution

Mgmt

Metrics &

Prediction

CI & Scenarios Antipatterns

& Bad Smells

SI & SD Patterns Model-Driven

Approaches

AR & D Other

SOA Microservices Both

Figure 11 Distribution: Thematic Categories Grouped By Architectural Category.

In general, we identified a lot of potential for the adoption of SOA approaches for
microservices, especially in the areas of maintainability metrics & prediction, antipatterns &
bad smells, service identification & decomposition, and patterns. Existing SOA research in
these categories could be valuable for the evolution and maintenance of microservices if the
techniques are also applicable for e.g. strong decentralization or technological heterogeneity.
Moreover, the majority of studies on RESTful services should be directly applicable for
microservice-based systems. Lastly, our SLR did not identify studies about possible negative
maintainability impacts of microservices, e.g. in the areas of knowledge exchange, team
synchronization, technological heterogeneity, or code duplication. While the maintainability
of microservices as an architectural style is generally perceived as positive, we still see the
potential for empirical studies on these topics.

J. Bogner, A. Weller, S. Wagner, and A. Zimmermann 3:15

5 Threats to Validity

Results derived from systematic literature studies may suffer from limitations in different
areas if not performed with great rigor (see e.g. [87]). Even though we adhered to a detailed
SLR protocol and the complete study selection and categorization was performed by two
researchers to mitigate subjective bias, there is still the possibility for threats to validity.
One example for the planning phase is that our search strategy could have been insufficient
due to missing keywords or not included databases. Likewise, the presentation of exemplary
publications to highlight existing directions per category was subject to our own perception
of relevance. Other researchers may disagree or come to different conclusions. However, the
most prominent threat to validity with this SLR is most likely the limiting of search results to
the first 250 entries per publisher (1000 papers from four publishers). This made the results
dependent on the relevance sorting of each search engine and may also hinder replicability
if publishers decide to change their algorithms in the future. Even though our snowballing
nearly doubled the amount of selected primary studies, there is still the possibility that we
may have missed relevant literature branches without links to our initial set. We accepted
this threat to keep the effort manageable within the project time frame.

6 Conclusion

Since the scientific literature on maintainability assurance for service-oriented systems is
diverse and scattered, we conducted an SLR with the goal to categorize the proposed
approaches and to analyze differences between SOA and microservices. As an answer to RQ1,
we derived a categorization set with architectural (SOA, microservices, both), methodical
(method or contribution), and thematic (subfield of maintainability assurance) categories
from the 223 selected primary studies. The distribution analysis (RQ2) revealed for example
that nearly 90% of papers exclusively targeted SOA (199) and that evolution management
and maintainability metrics & prediction were the most prominent thematic categories (both
with ∼25%). For each thematic category, we also presented the most relevant research
directions with illustrating studies (RQ3). Exemplary differences between approaches for
SOA and microservices (RQ4) were the importance of architecture reconstruction and the
absence of automatic antipattern detection approaches for microservices. While there was
only a small number of approaches for microservices, we identified a lot of potential for
adapting SOA approaches in several categories.

Future research could be concerned with literature studies for individual categories
to provide more insights into these subfields and to analyze the adoption potential for
microservices in greater detail. An analysis of maintainability-related differences between
orchestration (SOA) and choreography (microservices) across the primary studies may also
yield helpful results for the usage of these two paradigms. Lastly, it could be interesting to
replicate this SLR exclusively for microservices in a few years when more publications exist
for these topics. To enable replication and to allow convenient reuse of our results, we shared
all SLR artifacts in a GitHub repository2.

2 https://github.com/xJREB/slr-maintainability-assurance

Microservices 2017/2019

https://github.com/xJREB/slr-maintainability-assurance

3:16 SLR on the Maintainability Assurance of Service- and Microservice-Based Systems

References
1 Saad Alahmari, Ed Zaluska, and David C. De Roure. A Metrics Framework for Evaluating

SOA Service Granularity. In 2011 IEEE International Conference on Services Computing,
pages 512–519. IEEE, July 2011. doi:10.1109/SCC.2011.98.

2 Khubaib Amjad Alam, Rodina Binti Ahmad, and Maria Akhtar. Change Impact analysis and
propagation in service based business process management systems preliminary results from a
systematic review. In 2014 8th. Malaysian Software Engineering Conference (MySEC), pages
7–12. IEEE, September 2014. doi:10.1109/MySec.2014.6985981.

3 Marc Andreessen. Why Software Is Eating The World. Wall Street Journal, 20, 2011. URL:
https://www.wsj.com/articles/SB10001424053111903480904576512250915629460.

4 Dionysis Athanasopoulos. Service Decoupler: Full Dynamic Decoupling in Service Invocation.
In Proceedings of the 22nd European Conference on Pattern Languages of Programs - EuroPLoP
’17, pages 1–9, New York, New York, USA, 2017. ACM Press. doi:10.1145/3147704.3147716.

5 Dionysis Athanasopoulos, Apostolos V. Zarras, George Miskos, Valerie Issarny, and Panos
Vassiliadis. Cohesion-Driven Decomposition of Service Interfaces without Access to Source
Code. IEEE Transactions on Services Computing, 8(4):550–5532, 2015. doi:10.1109/TSC.
2014.2310195.

6 Basel Bani-Ismail and Youcef Baghdadi. A Literature Review on Service Identification
Challenges in Service Oriented Architecture. In Communications in Computer and Information
Science, pages 203–214. Springer, Cham, 2018. doi:10.1007/978-3-319-95204-8_18.

7 Basel Bani-Ismail and Youcef Baghdadi. A Survey of Existing Evaluation Frameworks
for Service Identification Methods: Towards a Comprehensive Evaluation Framework. In
Communications in Computer and Information Science, volume 877, pages 191–202. Springer,
Cham, August 2018. doi:10.1007/978-3-319-95204-8_17.

8 Justus Bogner, Tobias Boceck, Matthias Popp, Dennis Tschechlov, Stefan Wagner, and
Alfred Zimmermann. Towards a Collaborative Repository for the Documentation of Service-
Based Antipatterns and Bad Smells. In 2019 IEEE International Conference on Software
Architecture Companion (ICSA-C), pages 95–101, Hamburg, Germany, March 2019. IEEE.
doi:10.1109/ICSA-C.2019.00025.

9 Justus Bogner, Jonas Fritzsch, Stefan Wagner, and Alfred Zimmermann. Limiting Technical
Debt with Maintainability Assurance – An Industry Survey on Used Techniques and Differences
with Service- and Microservice-Based Systems. In Proceedings of the 2018 International
Conference on Technical Debt - TechDebt ’18, pages 125–133, New York, New York, USA,
2018. ACM Press. doi:10.1145/3194164.3194166.

10 Justus Bogner, Jonas Fritzsch, Stefan Wagner, and Alfred Zimmermann. Assuring the
Evolvability of Microservices: Insights into Industry Practices and Challenges. In 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME), Cleveland, Ohio,
USA, 2019. IEEE.

11 Justus Bogner, Stefan Wagner, and Alfred Zimmermann. Automatically measuring the main-
tainability of service- and microservice-based systems. In Proceedings of the 27th International
Workshop on Software Measurement and 12th International Conference on Software Process
and Product Measurement on - IWSM Mensura ’17, pages 107–115, New York, New York,
USA, 2017. ACM Press. doi:10.1145/3143434.3143443.

12 Justus Bogner, Alfred Zimmermann, and Stefan Wagner. Analyzing the Relevance of SOA
Patterns for Microservice-Based Systems. In Proceedings of the 10th Central European Workshop
on Services and their Composition (ZEUS’18), pages 9–16, Dresden, Germany, 2018. CEUR-
WS.org.

13 Mohamed Boukhebouze, Youssef Amghar, Aïcha Nabila Benharkat, and Zakaria Maamar. A
rule-based approach to model and verify flexible business processes. International Journal
of Business Process Integration and Management, 5(4):287, 2011. doi:10.1504/IJBPIM.2011.
043389.

https://doi.org/10.1109/SCC.2011.98
https://doi.org/10.1109/MySec.2014.6985981
https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
https://doi.org/10.1145/3147704.3147716
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1007/978-3-319-95204-8_18
https://doi.org/10.1007/978-3-319-95204-8_17
https://doi.org/10.1109/ICSA-C.2019.00025
https://doi.org/10.1145/3194164.3194166
https://doi.org/10.1145/3143434.3143443
https://doi.org/10.1504/IJBPIM.2011.043389
https://doi.org/10.1504/IJBPIM.2011.043389

J. Bogner, A. Weller, S. Wagner, and A. Zimmermann 3:17

14 Hongyu Pei Breivold, Ivica Crnkovic, and Magnus Larsson. A systematic review of software
architecture evolution research. Information and Software Technology, 54(1):16–40, 2012.
doi:10.1016/j.infsof.2011.06.002.

15 Georg Buchgeher, Rainer Weinreich, and Heinz Huber. A Platform for the Automated Provi-
sioning of Architecture Information for Large-Scale Service-Oriented Software Systems. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), volume 11048 LNCS, pages 203–218. Springer
International Publishing, 2018. doi:10.1007/978-3-030-00761-4_14.

16 Simin Cai, Yan Liu, and Xiaoping Wang. A Survey of Service Identification Strategies. In
2011 IEEE Asia-Pacific Services Computing Conference, pages 464–470. IEEE, December
2011. doi:10.1109/APSCC.2011.12.

17 Andrés Carrasco, Brent van Bladel, and Serge Demeyer. Migrating towards microservices:
migration and architecture smells. In Proceedings of the 2nd International Workshop on
Refactoring - IWoR 2018, pages 1–6, New York, New York, USA, 2018. ACM Press. doi:
10.1145/3242163.3242164.

18 Marwa Daagi, Ali Ouniy, Marouane Kessentini, Mohamed Mohsen Gammoudi, and Salah
Bouktif. Web Service Interface Decomposition Using Formal Concept Analysis. In 2017
IEEE International Conference on Web Services (ICWS), pages 172–179. IEEE, June 2017.
doi:10.1109/ICWS.2017.30.

19 Anthony Demange, Naouel Moha, and Guy Tremblay. Detection of SOA Patterns. In
Service-Oriented Computing. ICSOC 2013. Lecture Notes in Computer Science, pages 114–130.
Springer, Berlin, Heidelberg, 2013. doi:10.1007/978-3-642-45005-1_9.

20 Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. Architecting with microservices: A
systematic mapping study. Journal of Systems and Software, 150(April):77–97, April 2019.
doi:10.1016/j.jss.2019.01.001.

21 Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara, Fabrizio
Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: Yesterday, Today, and Tomorrow.
In Present and Ulterior Software Engineering, pages 195–216. Springer International Publishing,
Cham, 2017. doi:10.1007/978-3-319-67425-4_12.

22 Thomas Engel, Melanie Langermeier, Bernhard Bauer, and Alexander Hofmann. Evaluation
of Microservice Architectures: A Metric and Tool-Based Approach. In Jan Mendling and
Haralambos Mouratidis, editors, Lecture Notes in Business Information Processing, volume
317 of Lecture Notes in Business Information Processing, pages 74–89. Springer International
Publishing, Cham, 2018. doi:10.1007/978-3-319-92901-9_8.

23 Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.

24 Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. Web API growing pains: Loosely
coupled yet strongly tied. Journal of Systems and Software, 100:27–43, February 2015.
doi:10.1016/j.jss.2014.10.014.

25 Zaiwen Feng, Patrick C. K. Hung, Keqing He, Yutao Ma, Matthias Farwick, Bing Li, and
Rong Peng. Towards a Taxonomy Framework of Evolution for SOA Solution: From a Practical
Point of View. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 7652 LNCS, pages 261–274.
Springer, Berlin, Heidelberg, October 2013. doi:10.1007/978-3-642-38333-5_28.

26 José Luiz Fiadeiro and Antónia Lopes. A model for dynamic reconfiguration in service-
oriented architectures. Software & Systems Modeling, 12(2):349–367, May 2013. doi:10.1007/
s10270-012-0236-1.

27 Marios Fokaefs. WSDarwin: A Framework for the Support of Web Service Evolution. In 2014
IEEE International Conference on Software Maintenance and Evolution, pages 668–668. IEEE,
September 2014. doi:10.1109/ICSME.2014.123.

28 Marios Fokaefs and Eleni Stroulia. Software Evolution in Web-Service Ecosystems: A Game-
Theoretic Model. Service Science, 8(1):1–18, March 2016. doi:10.1287/serv.2015.0114.

Microservices 2017/2019

https://doi.org/10.1016/j.infsof.2011.06.002
https://doi.org/10.1007/978-3-030-00761-4_14
https://doi.org/10.1109/APSCC.2011.12
https://doi.org/10.1145/3242163.3242164
https://doi.org/10.1145/3242163.3242164
https://doi.org/10.1109/ICWS.2017.30
https://doi.org/10.1007/978-3-642-45005-1_9
https://doi.org/10.1016/j.jss.2019.01.001
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1016/j.jss.2014.10.014
https://doi.org/10.1007/978-3-642-38333-5_28
https://doi.org/10.1007/s10270-012-0236-1
https://doi.org/10.1007/s10270-012-0236-1
https://doi.org/10.1109/ICSME.2014.123
https://doi.org/10.1287/serv.2015.0114

3:18 SLR on the Maintainability Assurance of Service- and Microservice-Based Systems

29 Martin Fowler. Microservices Resource Guide, 2015. URL: http://martinfowler.com/
microservices.

30 Jonas Fritzsch, Justus Bogner, Alfred Zimmermann, and Stefan Wagner. From Monolith to
Microservices: A Classification of Refactoring Approaches. In Jean-Michel Bruel, Manuel
Mazzara, and Bertrand Meyer, editors, Software Engineering Aspects of Continuous Develop-
ment and New Paradigms of Software Production and Deployment, pages 128–141. Springer,
Toulouse, France, 2019. doi:10.1007/978-3-030-06019-0_10.

31 Michael Gebhart, Marc Baumgartner, Stephan Oehlert, Martin Blersch, and Sebastian Abeck.
Evaluation of Service Designs Based on SoaML. In 2010 Fifth International Conference on
Software Engineering Advances, pages 7–13. IEEE, August 2010. doi:10.1109/ICSEA.2010.8.

32 Giona Granchelli, Mario Cardarelli, Paolo Di Francesco, Ivano Malavolta, Ludovico Iovino, and
Amleto Di Salle. Towards Recovering the Software Architecture of Microservice-Based Systems.
In 2017 IEEE International Conference on Software Architecture Workshops (ICSAW), pages
46–53. IEEE, April 2017. doi:10.1109/ICSAW.2017.48.

33 Qing Gu and Patricia Lago. Exploring service-oriented system engineering challenges: a
systematic literature review. Service Oriented Computing and Applications, 3(3):171–188,
September 2009. doi:10.1007/s11761-009-0046-7.

34 M.A. Hirzalla, A. Zisman, and J. Cleland-Huang. Using Traceability to Support SOA Impact
Analysis. In 2011 IEEE World Congress on Services, pages 145–152. IEEE, July 2011.
doi:10.1109/SERVICES.2011.103.

35 International Organization For Standardization. ISO/IEC 25010 - Systems and software
engineering - Systems and software Quality Requirements and Evaluation (SQuaRE) - System
and software quality models, 2011.

36 Christian Inzinger, Benjamin Satzger, Waldemar Hummer, Philipp Leitner, and Schahram
Dustdar. Non-intrusive policy optimization for dependable and adaptive service-oriented
systems. In Proceedings of the 27th Annual ACM Symposium on Applied Computing - SAC
’12, page 504, New York, New York, USA, 2012. ACM Press. doi:10.1145/2245276.2245373.

37 Miguel A. Jimenez, Angela Villota Gomez, Norha M. Villegas, Gabriel Tamura, and Laurence
Duchien. A Framework for Automated and Composable Testing of Component-Based Services.
In 2014 IEEE 8th International Symposium on the Maintenance and Evolution of Service-
Oriented and Cloud-Based Systems, pages 1–10. IEEE, September 2014. doi:10.1109/MESOCA.
2014.9.

38 Hoa Khanh Dam. Predicting change impact in Web service ecosystems. International Journal
of Web Information Systems, 10(3):275–290, August 2014. doi:10.1108/IJWIS-03-2014-0006.

39 Barbara Kitchenham and Stuart Charters. Guidelines for performing Systematic Literature re-
views in Software Engineering. Technical report, School of Computer Science and Mathematics,
Keele University, Keele, UK, 2007.

40 Martin Kleehaus, Ömer Uludağ, Patrick Schäfer, and Florian Matthes. MICROLYZE: A
Framework for Recovering the Software Architecture in Microservice-Based Environments.
In Lecture Notes in Business Information Processing, volume 317, pages 148–162. Springer,
Cham, June 2018. doi:10.1007/978-3-319-92901-9_14.

41 Thomas Kohlborn, Axel Korthaus, Taizan Chan, and Michael Rosemann. Identification and
Analysis of Business and Software Services—A Consolidated Approach. IEEE Transactions
on Services Computing, 2(1):50–64, January 2009. doi:10.1109/TSC.2009.6.

42 Heiko Koziolek, Bastian Schlich, Carlos Bilich, Roland Weiss, Steffen Becker, Klaus Krogmann,
Mircea Trifu, Raffaela Mirandola, and Anne Koziolek. An industrial case study on quality
impact prediction for evolving service-oriented software. In Proceeding of the 33rd international
conference on Software engineering - ICSE ’11, page 776, New York, New York, USA, 2011.
ACM Press. doi:10.1145/1985793.1985902.

43 Lov Kumar, Aneesh Krishna, and Santanu Ku. Rath. The impact of feature selection on
maintainability prediction of service-oriented applications. Service Oriented Computing and
Applications, 11(2):137–161, June 2017. doi:10.1007/s11761-016-0202-9.

http://martinfowler.com/microservices
http://martinfowler.com/microservices
https://doi.org/10.1007/978-3-030-06019-0_10
https://doi.org/10.1109/ICSEA.2010.8
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1007/s11761-009-0046-7
https://doi.org/10.1109/SERVICES.2011.103
https://doi.org/10.1145/2245276.2245373
https://doi.org/10.1109/MESOCA.2014.9
https://doi.org/10.1109/MESOCA.2014.9
https://doi.org/10.1108/IJWIS-03-2014-0006
https://doi.org/10.1007/978-3-319-92901-9_14
https://doi.org/10.1109/TSC.2009.6
https://doi.org/10.1145/1985793.1985902
https://doi.org/10.1007/s11761-016-0202-9

J. Bogner, A. Weller, S. Wagner, and A. Zimmermann 3:19

44 Leen Lambers, Hartmut Ehrig, Leonardo Mariani, and Mauro Pezzè. Iterative model-driven
development of adaptable service-based applications. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering - ASE ’07, page 453,
New York, New York, USA, 2007. ACM Press. doi:10.1145/1321631.1321707.

45 Henrik Leopold, Fabian Pittke, and Jan Mendling. Automatic service derivation from business
process model repositories via semantic technology. Journal of Systems and Software, 108:134–
147, October 2015. doi:10.1016/j.jss.2015.06.007.

46 Maurizio Leotta, Filippo Ricca, Gianna Reggio, and Egidio Astesiano. Comparing the
Maintainability of Two Alternative Architectures of a Postal System: SOA vs. Non-SOA. In
2011 15th European Conference on Software Maintenance and Reengineering, pages 317–320.
IEEE, March 2011. doi:10.1109/CSMR.2011.41.

47 Grace Lewis and Dennis B. Smith. Developing Realistic Approaches for the Migration of
Legacy Components to Service-Oriented Architecture Environments. In Trends in Enterprise
Application Architecture, pages 226–240. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.
doi:10.1007/978-3-540-75912-6_17.

48 Ying Liu, Walter Cazzola, and Bin Zhang. Towards a colored reflective Petri-net approach to
model self-evolving service-oriented architectures. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing - SAC ’12, page 1858, New York, New York, USA, 2012.
ACM Press. doi:10.1145/2245276.2232081.

49 Christine Mayr, Uwe Zdun, and Schahram Dustdar. View-based model-driven architecture for
enhancing maintainability of data access services. Data & Knowledge Engineering, 70(9):794–
819, September 2011. doi:10.1016/j.datak.2011.05.004.

50 Arafat Abdulgader Mohammed Elhag and Radziah Mohamad. Metrics for evaluating the
quality of service-oriented design. In 2014 8th. Malaysian Software Engineering Conference
(MySEC), pages 154–159. IEEE, September 2014. doi:10.1109/MySec.2014.6986006.

51 Mathieu Nayrolles, Naouel Moha, and Petko Valtchev. Improving SOA antipatterns detection in
Service Based Systems by mining execution traces. In 2013 20th Working Conference on Reverse
Engineering (WCRE), pages 321–330. IEEE, October 2013. doi:10.1109/WCRE.2013.6671307.

52 Mathieu Nayrolles, Francis Palma, Naouel Moha, and Yann-Gaël Guéhéneuc. Soda: A Tool
Support for the Detection of SOA Antipatterns. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), volume 7759 LNCS, pages 451–455. Springer, Berlin, Heidelberg, November 2013.
doi:10.1007/978-3-642-37804-1_51.

53 Sam Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly Media, 1st
edition, 2015.

54 Nik Marsyahariani Nik Daud and Wan M. N. Wan Kadir. Static and dynamic classifications for
SOA structural attributes metrics. In 2014 8th. Malaysian Software Engineering Conference
(MySEC), pages 130–135. IEEE, September 2014. doi:10.1109/MySec.2014.6986002.

55 Francis Palma, Le An, Foutse Khomh, Naouel Moha, and Yann-Gael Gueheneuc. Investigating
the Change-Proneness of Service Patterns and Antipatterns. In 2014 IEEE 7th International
Conference on Service-Oriented Computing and Applications, pages 1–8. IEEE, November
2014. doi:10.1109/SOCA.2014.43.

56 Francis Palma, Javier Gonzalez-Huerta, Naouel Moha, Yann-Gaël Guéhéneuc, and Guy
Tremblay. Are RESTful APIs Well-Designed? Detection of their Linguistic (Anti)Patterns. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), volume 9435, pages 171–187. Springer, Berlin, Heidelberg,
2015. doi:10.1007/978-3-662-48616-0_11.

57 Francis Palma and Naouel Mohay. A study on the taxonomy of service antipatterns. In
2015 IEEE 2nd International Workshop on Patterns Promotion and Anti-patterns Prevention
(PPAP), pages 5–8. IEEE, March 2015. doi:10.1109/PPAP.2015.7076848.

58 Francis Palma, Mathieu Nayrolles, Naouel Moha, Yann-Gaël Guéhéneuc, Benoit Baudry, and
Jean-Marc Jézéquel. SOA antipatterns: an approach for their specification and detection.

Microservices 2017/2019

https://doi.org/10.1145/1321631.1321707
https://doi.org/10.1016/j.jss.2015.06.007
https://doi.org/10.1109/CSMR.2011.41
https://doi.org/10.1007/978-3-540-75912-6_17
https://doi.org/10.1145/2245276.2232081
https://doi.org/10.1016/j.datak.2011.05.004
https://doi.org/10.1109/MySec.2014.6986006
https://doi.org/10.1109/WCRE.2013.6671307
https://doi.org/10.1007/978-3-642-37804-1_51
https://doi.org/10.1109/MySec.2014.6986002
https://doi.org/10.1109/SOCA.2014.43
https://doi.org/10.1007/978-3-662-48616-0_11
https://doi.org/10.1109/PPAP.2015.7076848

3:20 SLR on the Maintainability Assurance of Service- and Microservice-Based Systems

International Journal of Cooperative Information Systems, 22(04):1341004, December 2013.
doi:10.1142/S0218843013410049.

59 M.P. Papazoglou. Service-oriented computing: concepts, characteristics and directions. In
Proceedings of the 4th International Conference on Web Information Systems Engineering
(WISE’03). IEEE Comput. Soc, 2003. doi:10.1109/WISE.2003.1254461.

60 Mikhail Perepletchikov and Caspar Ryan. A Controlled Experiment for Evaluating the Impact
of Coupling on the Maintainability of Service-Oriented Software. IEEE Transactions on
Software Engineering, 37(4):449–465, July 2011. doi:10.1109/TSE.2010.61.

61 Mikhail Perepletchikov, Caspar Ryan, and Keith Frampton. Cohesion Metrics for Predicting
Maintainability of Service-Oriented Software. In Seventh International Conference on Quality
Software (QSIC 2007), pages 328–335. IEEE, 2007. doi:10.1109/QSIC.2007.4385516.

62 Mikhail Perepletchikov, Caspar Ryan, Keith Frampton, and Zahir Tari. Coupling Metrics
for Predicting Maintainability in Service-Oriented Designs. In 2007 Australian Software
Engineering Conference (ASWEC’07), pages 329–340. IEEE, April 2007. doi:10.1109/ASWEC.
2007.17.

63 Zhang Qingqing and Li Xinke. Complexity Metrics for Service-Oriented Systems. In 2009
Second International Symposium on Knowledge Acquisition and Modeling, volume 3, pages
375–378. IEEE, 2009. doi:10.1109/KAM.2009.90.

64 Florian Rademacher, Jonas Sorgalla, Sabine Sachweh, and Albert Zündorf. A model-driven
workflow for distributed microservice development. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing - SAC ’19, pages 1260–1262, New York, New York, USA,
2019. ACM Press. doi:10.1145/3297280.3300182.

65 Thomas Reichherzer, Eman El-Sheikh, Norman Wilde, Laura White, John Coffey, and Sharon
Simmons. Towards intelligent search support for web services evolution identifying the right
abstractions. In 2011 13th IEEE International Symposium on Web Systems Evolution (WSE),
pages 53–58. IEEE, September 2011. doi:10.1109/WSE.2011.6081819.

66 Mark Richards. Microservices vs. Service-Oriented Architecture. O’Reilly Media, Sebastopol,
CA, 2016.

67 Daniele Romano and Martin Pinzger. Analyzing the Evolution of Web Services Using Fine-
Grained Changes. In 2012 IEEE 19th International Conference on Web Services, pages 392–399.
IEEE, June 2012. doi:10.1109/ICWS.2012.29.

68 David Rowe, John Leaney, and David Lowe. Defining systems architecture evolvability - a
taxonomy of change. In International Conference on the Engineering of Computer-Based
Systems, pages 45–52. IEEE, 1998. doi:10.1109/ECBS.1998.10027.

69 Fatima Sabir, Francis Palma, Ghulam Rasool, Yann-Gaël Guéhéneuc, and Naouel Moha. A
systematic literature review on the detection of smells and their evolution in object-oriented
and service-oriented systems. Software: Practice and Experience, 49(1):3–39, January 2019.
doi:10.1002/spe.2639.

70 Bingu Shim, Siho Choue, Suntae Kim, and Sooyong Park. A Design Quality Model for
Service-Oriented Architecture. In 2008 15th Asia-Pacific Software Engineering Conference,
pages 403–410. IEEE, 2008. doi:10.1109/APSEC.2008.32.

71 Renuka Sindhgatta and Bikram Sengupta. An extensible framework for tracing model evolution
in SOA solution design. In Proceeding of the 24th ACM SIGPLAN conference companion on
Object oriented programming systems languages and applications - OOPSLA ’09, page 647,
New York, New York, USA, 2009. ACM Press. doi:10.1145/1639950.1639960.

72 Renuka Sindhgatta, Bikram Sengupta, and Karthikeyan Ponnalagu. Measuring the Quality of
Service Oriented Design. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 5900 LNCS, pages
485–499. Springer, Berlin, Heidelberg, November 2009. doi:10.1007/978-3-642-10383-4_36.

73 Jacopo Soldani, Damian Andrew Tamburri, and Willem-Jan Van Den Heuvel. The pains and
gains of microservices: A Systematic grey literature review. Journal of Systems and Software,
146(September):215–232, December 2018. doi:10.1016/j.jss.2018.09.082.

https://doi.org/10.1142/S0218843013410049
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1109/TSE.2010.61
https://doi.org/10.1109/QSIC.2007.4385516
https://doi.org/10.1109/ASWEC.2007.17
https://doi.org/10.1109/ASWEC.2007.17
https://doi.org/10.1109/KAM.2009.90
https://doi.org/10.1145/3297280.3300182
https://doi.org/10.1109/WSE.2011.6081819
https://doi.org/10.1109/ICWS.2012.29
https://doi.org/10.1109/ECBS.1998.10027
https://doi.org/10.1002/spe.2639
https://doi.org/10.1109/APSEC.2008.32
https://doi.org/10.1145/1639950.1639960
https://doi.org/10.1007/978-3-642-10383-4_36
https://doi.org/10.1016/j.jss.2018.09.082

J. Bogner, A. Weller, S. Wagner, and A. Zimmermann 3:21

74 Iis Solichah, Margaret Hamilton, Petrus Mursanto, Caspar Ryan, and Mikhail Perepletchikov.
Exploration on software complexity metrics for business process model and notation. In 2013
International Conference on Advanced Computer Science and Information Systems (ICACSIS),
pages 31–37. IEEE, September 2013. doi:10.1109/ICACSIS.2013.6761549.

75 Davide Taibi and Valentina Lenarduzzi. On the Definition of Microservice Bad Smells. IEEE
Software, 35(3):56–62, May 2018. doi:10.1109/MS.2018.2141031.

76 Simon Tragatschnig, Srdjan Stevanetic, and Uwe Zdun. Supporting the evolution of event-
driven service-oriented architectures using change patterns. Information and Software Tech-
nology, 100:133–146, August 2018. doi:10.1016/j.infsof.2018.04.005.

77 Colin C. Venters, Rafael Capilla, Stefanie Betz, Birgit Penzenstadler, Tom Crick, Steve
Crouch, Elisa Yumi Nakagawa, Christoph Becker, and Carlos Carrillo. Software sustainability:
Research and practice from a software architecture viewpoint. Journal of Systems and Software,
138(December):174–188, April 2018. doi:10.1016/j.jss.2017.12.026.

78 Dirk Voelz and Andreas Goeb. What is Different in Quality Management for SOA? In 2010
14th IEEE International Enterprise Distributed Object Computing Conference, pages 47–56.
IEEE, October 2010. doi:10.1109/EDOC.2010.27.

79 Stefan Wagner. Software Product Quality Control. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2013. doi:10.1007/978-3-642-38571-1.

80 Allen Wang and Sudhir Tonse. Announcing Ribbon: Tying the Netflix Mid-
Tier Services Together, 2013. URL: https://medium.com/netflix-techblog/
announcing-ribbon-tying-the-netflix-mid-tier-services-together-a89346910a62.

81 Hanzhang Wang, Marouane Kessentini, and Ali Ouni. Prediction of Web Services Evolution. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), volume 9936 LNCS, pages 282–297. Springer, Cham,
October 2016. doi:10.1007/978-3-319-46295-0_18.

82 Shuying Wang and Miriam A.M. Capretz. Dependency and Entropy Based Impact Analysis
for Service-Oriented System Evolution. In 2011 IEEE/WIC/ACM International Conferences
on Web Intelligence and Intelligent Agent Technology, volume 1, pages 412–417. IEEE, August
2011. doi:10.1109/WI-IAT.2011.196.

83 Shuying Wang, Wilson Akio Higashino, Michael Hayes, and Miriam A M Capretz. Service
Evolution Patterns. In 2014 IEEE International Conference on Web Services, pages 201–208.
IEEE, June 2014. doi:10.1109/ICWS.2014.39.

84 Laura White, Norman Wilde, Thomas Reichherzer, Eman El-Sheikh, George Goehring, Arthur
Baskin, Ben Hartmann, and Mircea Manea. Understanding Interoperable Systems: Challenges
for the Maintenance of SOA Applications. In 2012 45th Hawaii International Conference on
System Sciences, pages 2199–2206. IEEE, January 2012. doi:10.1109/HICSS.2012.614.

85 Uwe Zdun, Elena Navarro, and Frank Leymann. Ensuring and Assessing Architecture Con-
formance to Microservice Decomposition Patterns. In Service-Oriented Computing, vol-
ume 10601, pages 411–429, Cham, 2017. Springer International Publishing. doi:10.1007/
978-3-319-69035-3_29.

86 Songlin Zhang, Junsong Yin, and Rong Liu. A RGPS-based framework for service-oriented
requirement evolution of networked software. In 2011 IEEE 3rd International Conference
on Communication Software and Networks, pages 321–325. IEEE, May 2011. doi:10.1109/
ICCSN.2011.6013724.

87 Xin Zhou, Yuqin Jin, He Zhang, Shanshan Li, and Xin Huang. A Map of Threats to Validity
of Systematic Literature Reviews in Software Engineering. In 2016 23rd Asia-Pacific Software
Engineering Conference (APSEC), pages 153–160, Hamilton, New Zealand, 2016. IEEE.
doi:10.1109/APSEC.2016.031.

88 Yu Zhou, Jidong Ge, Pengcheng Zhang, and Weigang Wu. Model based verification of dynam-
ically evolvable service oriented systems. Science China Information Sciences, 59(3):32101,
March 2016. doi:10.1007/s11432-015-5332-8.

Microservices 2017/2019

https://doi.org/10.1109/ICACSIS.2013.6761549
https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1016/j.infsof.2018.04.005
https://doi.org/10.1016/j.jss.2017.12.026
https://doi.org/10.1109/EDOC.2010.27
https://doi.org/10.1007/978-3-642-38571-1
https://medium.com/netflix-techblog/announcing-ribbon-tying-the-netflix-mid-tier-services-together-a89346910a62
https://medium.com/netflix-techblog/announcing-ribbon-tying-the-netflix-mid-tier-services-together-a89346910a62
https://doi.org/10.1007/978-3-319-46295-0_18
https://doi.org/10.1109/WI-IAT.2011.196
https://doi.org/10.1109/ICWS.2014.39
https://doi.org/10.1109/HICSS.2012.614
https://doi.org/10.1007/978-3-319-69035-3_29
https://doi.org/10.1007/978-3-319-69035-3_29
https://doi.org/10.1109/ICCSN.2011.6013724
https://doi.org/10.1109/ICCSN.2011.6013724
https://doi.org/10.1109/APSEC.2016.031
https://doi.org/10.1007/s11432-015-5332-8

3:22 SLR on the Maintainability Assurance of Service- and Microservice-Based Systems

89 Olaf Zimmermann. Microservices tenets. Computer Science - Research and Development,
32(3-4):301–310, July 2017. doi:10.1007/s00450-016-0337-0.

90 Wei Zuo, Aicha Nabila Benharkat, and Youssef Amghar. Change-centric Model for Web
Service Evolution. In 2014 IEEE International Conference on Web Services, pages 712–713.
IEEE, June 2014. doi:10.1109/ICWS.2014.111.

https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1109/ICWS.2014.111

Introduction to Microservice API Patterns (MAP)
Olaf Zimmermann
University of Applied Sciences of Eastern Switzerland, Rapperswil, Switzerland
ozimmerm@hsr.ch

Mirko Stocker
University of Applied Sciences of Eastern Switzerland, Rapperswil, Switzerland
mirko.stocker@hsr.ch

Daniel Lübke
iQuest GmbH, Hanover, Germany
ich@daniel-luebke.de

Cesare Pautasso
Software Institute, Faculty of Informatics, USI Lugano, Switzerland
c.pautasso@ieee.org

Uwe Zdun
University of Vienna, Faculty of Computer Science, Software Architecture Research Group,
Vienna, Austria
uwe.zdun@univie.ac.at

Abstract
The Microservice API Patterns (MAP) language and supporting website premiered under this name
at Microservices 2019. MAP distills proven, platform- and technology-independent solutions to
recurring (micro-)service design and interface specification problems such as finding well-fitting
service granularities, rightsizing message representations, and managing the evolution of APIs and
their implementations. In this paper, we motivate the need for such a pattern language, outline
the language organization and present two exemplary patterns describing alternative options for
representing nested data. We also identify future research and development directions.

2012 ACM Subject Classification Software and its engineering → Patterns; Software and its engin-
eering → Designing software

Keywords and phrases application programming interfaces, distributed systems, enterprise applica-
tion integration, service-oriented computing, software architecture

Digital Object Identifier 10.4230/OASIcs.Microservices.2017-2019.4

1 Motivation

It is hard to escape the term microservices these days. Much has been said about this rather
advanced approach to system decomposition since its inception a few years ago [10]. The
basic elements of a microservice-based message exchange are introduced in Figure 1.

Early adopters’ experiences suggest that service design requires particular attention if
microservices are supposed to deliver on their promises [16]:

How many (micro-)service operations should be exposed in Application Programming
Interfaces (APIs)?
Which service cuts let services and their clients deliver user value jointly, but couple them
loosely?
How often do services and their clients interact to exchange data? How much and which
data should be exchanged?
What are suitable message representation structures and nesting levels, and how do these
change throughout service life cycles?

© Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Cesare Pautasso, and Uwe Zdun;
licensed under Creative Commons License CC-BY

Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices
2017/2019).
Editors: Luís Cruz-Filipe, Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and
Sabine Sachweh; Article No. 4; pp. 4:1–4:17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ozimmerm@hsr.ch
mailto:mirko.stocker@hsr.ch
mailto:ich@daniel-luebke.de
mailto:c.pautasso@ieee.org
mailto:uwe.zdun@univie.ac.at
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2 Microservice API Patterns

Figure 1 Microservices, represented as hexagons, exchange request and response message repres-
entations via platform-independent ports and technology-specific adapters. The inner structure of
the services is sketched in onion form: each ring represents a local logical layer (e.g., logic, data).

How can the meaning of message representations be agreed upon – and how to stick to
these contracts in the long run?

To address these and related design issues and choose working combinations out of the
many possible design options, application context and requirements must be analyzed. Our
Microservice API Patterns (MAP) cover and organize this design space. Before we describe
MAP and present two example patterns in the following sections, let us first recapitulate
what microservices actually are (and where they came from).

1.1 A Consolidated Definition of Microservices
Microservices architectures have evolved from previous incarnations of Service-Oriented
Architectures (SOAs) [5]. They consist of independently deployable, scalable and changeable
services, each having a single responsibility. These responsibilities model business capabilities.
Microservices often are deployed in lightweight virtualization containers, encapsulate their
own state, and communicate via message-based remote APIs in a loosely coupled fashion.
Microservices solutions leverage polyglot programming, polyglot persistence, as well as
DevOps practices including decentralized continuous delivery and end-to-end monitoring
[22], [13], [10].

When it comes to protocol selection, message-based APIs such as RESTful HTTP or
queue-based event sourcing and streaming have come to dominate over remote procedure
calls, including their object-oriented variants [15]. JSON is a particularly popular data
serialization and message exchange format in many developer communities today.

1.2 Service Design Challenges
Microservices architectures include many remote APIs. The data representations exposed by
these APIs must not only meet the information and processing needs of clients and other
services, but also be designed and documented in an understandable and maintainable way.

While microservice API design and implementation might seem to be simple and straight-
forward from the distance, a closer look unveils that a lot of interesting problems are awaiting
API teams:

O. Zimmermann, M. Stocker, D. Lübke, C. Pautasso, and U. Zdun 4:3

Requirements diversity: The wants and needs of API clients differ from one another, and
keep on changing. API providers have to decide whether they want to offer good-enough
compromises in a single unified API or try to satisfy all client requirements individually.
Design mismatches: What backend systems can do (in terms of functional scope and
quality), and how they are structured (in terms of endpoint and data definitions), might
be different from what clients expect. These differences have to be overcome.
Open vs. closed systems: API clients and providers often have conflicting goals. For
instance, the desire to innovate and market dynamics such as competing API providers
trying to catch up on each other may cause more change and possibly incompatible
evolution strategies than clients are able or willing to accept. Publishing an API means
opening up a system and giving up some control, thus limiting the freedom to change it.
Clients might use data that is exposed by an API in unexpected ways.
Stability vs. flexibility: Microservices help to enable frequent releases, e.g., in the context of
DevOps practices such as continuous delivery. Changes are released at an ever increasing
pace. In contrast, APIs should stay as stable as possible to avoid breaking client code.
This constant conflict needs to be resolved by microservice API designers.

These conflicting requirements and stakeholder concerns must be balanced; many design
trade-offs can be observed:

Few operations that carry lots of data back and forth vs. many chatty, fine-grained
interactions. Which choice is better in terms of performance, scalability, bandwidth
consumption and evolvability?
Stable, standardized, elaborate interfaces vs. fast changing, specialized, focused ones. How
to find a balance between breadth and depth? How to keep the interfaces compatible
without sacrificing their extensibility?
Data consistency vs. reliability and fast response times. Should state changes be reported
via coordinated API calls or via reactive event sourcing and streaming? Should commands
and queries be separated architecturally? To which extent can and should consistency,
availability, and recoverability (backup) requirements be satisfied? [14]

1.3 Existing Design Heuristics

One can find many excellent books providing deep advice about using RESTful HTTP, e.g.,
which HTTP verb or method to pick to implement a particular operation, or how to apply
asynchronous messaging including routing, transformation, and guaranteed delivery [1], [7].
Strategic Domain-Driven Design [3], [19] can assist with service identification. SOA, cloud
and microservice infrastructure patterns have already been proposed, and structuring data
storages also is understood well. Our previous publications [17] and [23] cover such related
works; the MAP website also gives reading recommendations1.

Structuring data exchanges without breaking information hiding remains hard; no single
solution exists. According to Helland [4], “data on the outside” differs from “data on the
inside” significantly. Data access/usage profiles drive many data modeling decisions, both
for data on the inside and for data in the outside. However, inside and outside data have
diverging mutability, lifetime, accuracy, consistency and protection needs.

1 https://microservice-api-patterns.org/relatedPatternLanguages

Microservices 2017/2019

https://microservice-api-patterns.org/relatedPatternLanguages
https://microservice-api-patterns.org/relatedPatternLanguages

4:4 Microservice API Patterns

2 Microservice API Patterns (MAP) Scope and Organization

Microservice API Patterns (MAP) takes a broad view on microservice API design and
evolution, from the perspective of data on the outside, i.e., the message representations
and payloads exchanged when APIs are called (as shown in Figure 1). These messages are
structured as representation elements which differ in their meaning and structure as API
endpoints and their operations have different architectural roles and responsibilities. Critical
design choices about the message structure and semantics strongly influence the design time
and runtime qualities of an API and its underlying microservices implementations. Many
options exist, with very different characteristics. The API designs evolve over time.

2.1 Patterns as Knowledge Sharing Vehicles

Software patterns are proven knowledge sharing vehicles with a 25-year track record [6].
We decided for the pattern format to share API design advice because:

Pattern names aim at forming a domain vocabulary, a ubiquitous language [3]. For
instance, Hohpe’s and Woolf’s Enterprise Integration Patterns [7] have become the lingua
franca of queue-based messaging; they are implemented in a number of frameworks and
tools. Such ubiquitous language for API design is missing to date.
The forces and consequences sections of patterns support informed decision making,
for instance about desired and achievable quality characteristics (but also downsides of
certain designs). The design challenges and trade-offs identified in Section 1 frame and
support such design discussions.
Patterns are soft around their edges: they only sketch solutions and do not provide
blueprints to be followed blindly.
Patterns are not invented, but mined from practical experience and then curated and
hardened via peer feedback.

2.2 Knowledge Categories

MAP addresses the following questions, which also define pattern categories:
The structure of messages and the message elements that play critical roles in the design
of APIs. What is an adequate number of representation elements for request and response
messages? How are these elements structured? How can they be grouped and annotated
with supplemental usage information (metadata)? [23]
The impact of message content on the quality of the API. How can an API provider achieve
a certain level of quality of the offered API, while at the same time using its available
resources in a cost-effective way? How can the quality trade-offs be communicated and
accounted for? [17]
The roles and responsibilities [20] of API operations. Which is the architectural role played
by each API endpoint and its operations? How do these roles and their responsibilities
impact microservice size and granularity?
API descriptions as a means for API governance and evolution over time. How to deal with
life cycle management concerns such as support periods and versioning? How to promote
backward compatibility and extensibility? How to communicate breaking changes? [11]

Two more categories complete the language scope, foundation and identification (not
covered here due to space constraints). See Figure 2 for an overview.

O. Zimmermann, M. Stocker, D. Lübke, C. Pautasso, and U. Zdun 4:5

Figure 2 The MAP language is organized into categories, three of which have subcategories.
Patterns set in bold/black are already available online at the time of writing; the grayed out ones
are currently being mined. The identification category is not available yet. Visit www.microservice-
api-patterns.org for an interactive, up-to-date version of this pattern index.

Microservices 2017/2019

https://www.microservice-api-patterns.org
https://www.microservice-api-patterns.org

4:6 Microservice API Patterns

3 Pattern Examples: In-/Excluding Nested Data Representations

In this section, we introduce two patterns from the quality category not featured in peer-
reviewed publications yet, Embedded Entity and Linked Information Holder. They provide
two alternatives for representing related data elements: inclusion (nesting) and linkage
(referencing).

We use the following template to document all our patterns: The context establishes
preconditions for pattern eligibility/applicability. The problem specifies a design issue to be
resolved, typically in question form. The forces explain why the problem is hard to solve:
architectural design issues and conflicting quality attributes are often referenced here. The
solution answers the design question introduced by the problem statement, describes how the
solution works and which variants (if any) exist. It also gives an example and shares pattern
application and implementation hints. The consequences section discusses to which extent
the solution resolves the pattern forces as well as additional pros and cons; it may also call
out new problems or identify alternative solutions. The known uses report real-world pattern
applications. Finally, the relations to other patterns are explained and additional pointers
and references are given under more information.

References to other patterns are formatted like this in this paper: Pattern Name.

3.1 Pattern: Embedded Entity
a.k.a. Inlined Entity Data; Embedded Document (Nesting)

3.1.1 Context
The information required by a communication participant contains structured data. This
data includes multiple elements that relate to each other in certain ways. For instance,
a master data element such as a customer profile may contain other elements providing
contact information including addresses and phone numbers, or a periodic business report
may aggregate source information such as monthly sales figures summarizing individual
business transactions. API clients work with several of the related information elements
when processing response messages or producing request messages.2

3.1.2 Problem
How can you avoid exchanging multiple messages when receivers require insights from multiple
related information elements?

3.1.3 Forces
When deciding for or against this pattern, you have to consider its impact on:

Performance and scalability
Flexibility and modifiability
Data quality
Data freshness and consistency

2 Note that this is (almost) the same context as in the sibling pattern Linked Information Holder.

O. Zimmermann, M. Stocker, D. Lübke, C. Pautasso, and U. Zdun 4:7

API

Client

Response Message

Resource
Related
Resource

Proxy

Resource Representation

Embedded Entity (Related
Resource Representation)

Request Message

references

contains

(2)

(1)

Figure 3 Sketch of Embedded Entity pattern (entities are represented as HTTP resources).

Traversing all relationships between information elements to include all possibly interesting
data may require complex message representations and lead to large message sizes. It is
unlikely and/or difficult to ensure that all recipients will require the same message content.

3.1.3.1 Non-solution

One could simply define one API endpoint per information element. This endpoint is accessed
whenever API clients process data from that information element, e.g., when it is referenced
from another one. But if API clients use such data in many situations, this solution leads to
many subsequent requests to follow the references. This could possibly make it necessary to
coordinate request execution and introduce conversation state, which harms scalability and
availability; distributed data also is more difficult to keep consistent than local data.

3.1.4 Solution

For any relationship that the client has to follow, embed an Entity Element3 in the message
that contains the data of the target entity (instead of linking to the target entity). For
instance, if a purchase order has a relation to product master data, let the purchase order
message hold a copy of all relevant information stored in the product master data. Figure 3
shows a solution sketch of Embedded Entity.

3 All patterns that are already published, but not contained in this paper can be found online: https:
//microservice-api-patterns.org/.

Microservices 2017/2019

https://microservice-api-patterns.org/
https://microservice-api-patterns.org/

4:8 Microservice API Patterns

3.1.4.1 How it works

Define a Parameter Tree4 or an Atomic Parameter List that includes an Entity Element
for the referenced relationship. Provide an additional Metadata Element to denote the
relationship type if needed.

Analyze outgoing relationships in the Entity Element and consider embedding them in
the message as well, but only if this additional data is also used by the API client in enough
cases. Repeat this analysis up to reaching the “transitive closure” where all reachable entities
have either been included or excluded.

Review each source-target relationship carefully: is the target entity really needed on
the API client side in enough cases? A “yes” answer warrants transmitting relationship
information as Embedded Entities; otherwise transmitting references to Linked Information
Holders might be sufficient.

Document the existence and the meaning of the embedded entity relationships in the
API Description.

3.1.4.2 Example

Lakeside Mutual5, a microservices sample application, contains a service called Customer
Core that aggregates several information items (here: entities and value objects from Domain-
Driven Design) in its operation signatures. An API client can access this data via an HTTP
resource API. This API contains several instances of the pattern. Applying the Embedded
Entity pattern, a response message might look as follows:

GET http://localhost:8080/customers/a51a-433f-979b-24e8f0

{
"customer": {

"id": "a51a-433f-979b-24e8f0"
},
"customerProfile": {

"firstname": "Robbie",
"lastname": "Davenhall",
"birthday": "1961-08-11T23:00:00.000+0000",
"currentAddress": {

"streetAddress": "1 Dunning Trail",
"postalCode": "9511",
"city": "Banga"

},
"email": "rdavenhall0@example.com",
"phoneNumber": "491 103 8336",
"moveHistory": [{

"streetAddress": "15 Briar Crest Center",
"postalCode": "",
"city": "Aeteke"

}]
},

4 See https://microservice-api-patterns.org/.
5 https://github.com/Microservice-API-Patterns/LakesideMutual

https://github.com/Microservice-API-Patterns/LakesideMutual
https://microservice-api-patterns.org/
https://github.com/Microservice-API-Patterns/LakesideMutual

O. Zimmermann, M. Stocker, D. Lübke, C. Pautasso, and U. Zdun 4:9

"customerInteractionLog": {
"contactHistory": [],
"classification": "??"

}
}

The referenced information items are all fully contained in the response message (e.g.,
customerProfile, customerInteractionLog); no URIs (links) to other resources appear.
Note that customerProfile actually embeds nested data (currentAddress, moveHistory),
while the customerInteractionLog is empty in this exemplary data set.

3.1.4.3 Implementation hints

When embedding entity relationships in message representations, keep in mind to:
Document data characteristics such as owner, provenance, lifetime, and last update in
the API Description; consider to introduce corresponding Metadata Elements if the data
is used by a sufficient amount of clients requiring additional explanations.
Distinguish transactional data from master data and other reference data when embedding
it (to account for their different life cycles, evolution roadmaps and validity timeframes).
Secure the message so that the content part with the highest protection need is covered
adequately; this might (or might not) be the Embedded Entity. If the security requirements
of link source and target differ substantially, consider switching to the sibling pattern
Linked Information Holder.
Be careful with consumer-side caching and replicating parts or all of the embedded data
as this may introduce consistency, concurrency, and/or data ownership issues, especially
when mixing transactional data with master data in one message.
Test the use of Embedded Entities with all valid and invalid cardinalities. More specifically,
empty, one, few, or many referenced data items should appear in different test cases.
Monitor message sizes at runtime to prepare for interface refactoring such as switching to
Linked Information Holder (see discussion below) or introducing Pagination.
Define compatibility rules and service evolution policies [11] when introducing Embedded
Entites. The more related entities a message includes and the more complex its payload is,
the more likely it is to change as a whole and in parts. As a client, behave as a Tolerant
Reader [2]: Clients should not assume that all related entities will always be included
and might have to be ready to follow a link in case the information is not embedded.

3.1.5 Consequences
The pattern meets the “all in one” requirement articulated by the problem statement, but
this may lead to large messages that are expensive to transfer. If some clients do not have to
receive all the data, then parts of the payload could have been omitted.

3.1.5.1 Resolution of forces

+ An Embedded Entity reduces the number of calls required: If the required information is
included, the client does not have to create a request to obtain it.

+ Embedding entities can lead to a reduction in the number of endpoints, because no
dedicated endpoint to retrieve some information is required.

− Embedding entities leads to larger response messages which take longer to transfer.

Microservices 2017/2019

4:10 Microservice API Patterns

− It can be difficult to anticipate what information different clients require to perform their
tasks. As a result, there is a tendency to include more data than needed by (most) clients
in an Embedded Entity, which leads to yet larger message sizes. Such design can be found
in many Public APIs serving large and possibly unknown clients.

− Large messages that contain unused data consume more bandwidth than necessary.
However, if most or all of the data is actually used, sending many small messages might
actually require more bandwidth than sending one large message (e.g., for header and
metadata sent with the smaller messages multiple times).

− If the embedded entities change with different speed (e.g., a fast-changing transactional
entity refers to immutable master data), retransmitting all entities causes unnecessary
overhead as messages with partially changed content cannot be cached. Consider switching
to a Linked Information Holder (and maybe additionally apply the Conditional Request
pattern for the linked entity).

− Once included and exposed in an API Description, it is hard to remove an Embedded
Entity in a backward-compatible manner (as clients may have begun to rely on it).

3.1.5.2 Alternatives

If reducing message size is your main design goal, you can also define a Wish List or, even
more expressive, a Wish Template to minimize the data to be transferred by letting consumers
dynamically describe which subset of the data they need.

API Gateways6 can also help when dealing with different information needs. They can
either provide two alternative APIs that use the same backend interface, and/or collect and
aggregate information from different endpoints and operations (which makes them stateful).

3.1.6 Known Uses

Many public APIs with complex response messages use the Embedded Entity pattern:

• When retrieving an issue with the GitHub v3 API7, the response also contains the full
information about the milestone the issue is assigned to.

• A tweet in the Twitter REST API8 contains the entire user information, including for
example the number of followers the user has.

• Many operations in the Microsoft Graph API apply this pattern. For instance, the user
resource representations9 contain structured attributes that represent (sub-)entities (but
also link to other resources via Linked Information Holders). For instance, the response
body of List events contains an array of attendees that are identified by their email
addresses, but also have a type and a status.

Plenty of APIs offered by custom enterprise information systems and master data man-
agement products also realize the pattern.

6 https://microservices.io/patterns/apigateway.html
7 https://developer.github.com/v3/issues/#get-a-single-issue
8 https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/

get-statuses-show-id
9 https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user

https://microservices.io/patterns/apigateway.html
https://developer.github.com/v3/issues/#get-a-single-issue
https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-statuses-show-id
https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user
https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user
https://microservices.io/patterns/apigateway.html
https://developer.github.com/v3/issues/#get-a-single-issue
https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-statuses-show-id
https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-statuses-show-id
https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user

O. Zimmermann, M. Stocker, D. Lübke, C. Pautasso, and U. Zdun 4:11

3.1.7 More Information

3.1.7.1 Related Patterns

Linked Information Holder describes a complementary solution for the reference management
problem and can also be seen as an alternative (as explained above).

Wish List or Wish Template can help to fine-tune the content in an Embedded Entity, as
explained above.

3.1.7.2 Other Sources

See Section 7.5 in [18] for additional advice and examples (“Embedded Document (Nesting)”).

3.2 Pattern: Linked Information Holder

a.k.a. Linked Entity, Data Reference; Compound Document (Sideloading)

3.2.1 Context

An API exposes structured data to meet the information needs of the communication
participants. This data contains elements that relate to each other (e.g., a master information
element may contain other elements providing detailed information or a performance report
for a period of time may aggregate raw data such as individual measurements). API clients
want to work with several of the related information elements when processing response
messages or producing request messages.10

3.2.2 Problem

When exposing structured, possibly deeply nested information elements in an API, how can
you avoid sending large messages containing lots of data that is not always useful for the
message receiver in its entirety?

3.2.3 Forces

A general rule of thumb in distributed systems is that request and response messages should
not be too large so that the network and the endpoint processing resources are not over-
utilized. That said, message recipients possibly would like to follow many or all of the
relationships to access information elements related to the elements requested. If the related
elements are not included, information about their location and their content is required,
as well as access information. This information set has to be designed, implemented and
evolved; the resulting dependency has to be managed.

The sibling pattern Embedded Entity list additional forces that apply to both patterns.

10 This context is (almost) the same as that of the sibling pattern Embedded Entity.

Microservices 2017/2019

4:12 Microservice API Patterns

Client

API

Response Message

Request Message Proxy

Resource
Related
Resource

Resource Representation

Link Element (Address of Related Resource)

(3) follow link

(1)

references

contains(2)

links to

Figure 4 Sketch of Linked Information Holder pattern.

3.2.3.1 Non-solution

One option is to always (transitively) include all the related information elements of each
transmitted element in request and response messages throughout the API (as described in
the Embedded Entity pattern). However, this approach can harm performance of individual
calls and lead to large, wasteful messages containing data not required by some clients.

3.2.4 Solution
Add a Link Element11 to the message that references an API endpoint. Introduce an API
endpoint that represents the linked entity, for instance, an Information Holder Resource
for the referenced information element. This element might be an entity from the domain
model12 that is exposed by the API. Figure 4 outlines this solution.

3.2.4.1 How it works

Include the location information (i.e., host and port), expressed in the logical naming and/or
addressing scheme of the API, when referencing the endpoint via Link Elements in request and
response messages. This typically requires a Parameter Tree to be used in the representation
structure; in simple cases, an Atomic Parameter List might suffice.

Identify the Link Element with a name. If more information about the relation should be
sent to clients, annotate this Link Element with details about the corresponding relationship,
for instance, a Metadata Element specifying the type and characteristics of the relationship.
Clients and providers must agree on the semantics (i.e., meaning) of the link relationships,
and be aware of coupling and side effects introduced.

Document the existence and the meaning of the Linked Information Holder in the API
Description. Specify the cardinalities on both ends of the relation. One-to-many relationships
can be modeled as collections, for instance by transmitting multiple elements as Atomic
Parameter Lists. Many-to-many relationships can be modeled as two such one-to-many
relationships, one linking the source entities to the targets, and one linking the target entities
to the sources. Such design may require the introduction of an additional API endpoint
representing the relation rather than its source and target.

11 See https://microservice-api-patterns.org/.
12 https://en.wikipedia.org/wiki/Domain_model

https://en.wikipedia.org/wiki/Domain_model
https://en.wikipedia.org/wiki/Domain_model
https://microservice-api-patterns.org/
https://en.wikipedia.org/wiki/Domain_model

O. Zimmermann, M. Stocker, D. Lübke, C. Pautasso, and U. Zdun 4:13

3.2.4.2 Example

A sample application for Customer Management could work with a Customer Core service
API that aggregates several information elements from the domain model of the application,
in the form of entities and value objects from Domain-Driven Design (DDD). Its API client
could access this data through a Customer Information Holder, implemented as a REST
controller in Spring Boot.

If the Customer Information Holder implements the Linked Information Holder pattern
for the customerProfile, a response message looks as this:

GET http://localhost:8080/customers/a51a-433f-979b-24e8f0

{
"customer": {

"id": "a51a-433f-979b-24e8f0"
},
"links": [{

"rel": "customerProfile",
"href": "http://localhost:8080/customers/a51a-433f-979b-24e8f0/profile"

}, {
"rel": "moveHistory",
"href": "http://localhost:8080/customers/a51a-433f-979b-24e8f0/moveHistory"

}],
"email": "rdavenhall0@example.com",
"phoneNumber": "491 103 8336",
"customerInteractionLog": {

"contactHistory": [],
"classification": "??"

}
}

The customerProfile can then be retrieved by a subsequent GET request to the provided
URI link. The moveHistory has been factored out as well, so the pattern is applied twice in
this example.

3.2.4.3 Implementation hints

When adding links to message representations to turn relationship targets into API endpoints,
it is good practice to:
• Keep the naming scheme and structure of the Link Elements consistent and be reluctant

to change it. For instance, keep the URI naming scheme consistent in HTTP resource
APIs.

• Define compliance controls if the link relations are subject to system and process assurance
audits as discussed in [8].13

• Run regression tests on the source of a link when the link destination changes its interface
or implementation.

13An example of such a control is a pre- and postcondition check at the API endpoint boundary that
enforces the correct cardinality of a link from a purchase order to customer (e.g., there has to be one
and only one customer per order). Such design-by-contract approaches can be implemented as a foreign
key relationship if both order and customer are stored in the same relational database. In a distributed
services architecture, both sides of the relationship can modify the data independently of each other,
which might introduce inconsistencies.

Microservices 2017/2019

4:14 Microservice API Patterns

• Monitor performance continuously to preserve and challenge the rationale for pattern
usage. If most or all client calls follow the given link, consider embedding the target
element in the original representation to reduce traffic (see Embedded Entity pattern).

• Adhere to REST constraints and related recommended practices when using RESTful
HTTP (see [1]): Linked reference data is a cornerstone of the Hypertext as the Engine of
Application State (HATEOAS) tenet that is required to reach REST maturity level 314.

3.2.5 Consequences
This pattern is often applied when referencing rich information holders serving multiple
usage scenarios: not all message recipients require the full set of referenced data, for instance,
when Master Data Holders such as customer profiles or a product records are referenced.
Following the link, message recipients can obtain the required subsets on demand.

When introducing link elements into message representations, an implicit promise is made
to the recipient that these links can be followed successfully; the provider might not be willing
to keep such promise infinitely. Even if a long lifetime of the linked endpoint is guaranteed,
links still may break; for instance, when the data organization or location changes. Clients
should expect this and be able to follow redirects or referrals to the updated links. To
minimize breaking links on the provider side, the provider should invest in maintaining link
consistency. For instance, a Lookup Resource can be used to solve this problem.

3.2.5.1 Resolution of forces

+ Linking instead of embedding entities results in smaller messages and uses less resources
in the communications infrastructure when exchanging individual messages. This needs
to be contrasted to the possible higher resource use due to transfer of multiple messages
as links get followed.

+ If some linked data changes often, only that data needs to be requested again.

− Additional requests are required to dereference the linked information.
− Linking instead of embedding entities might result in the use of more resources in the

communications infrastructure as multiple messages are required to follow the links.
− Additional Information Holder Resource endpoints have to be provided for the linked

entities, causing development and operations effort and cost.

3.2.5.2 Alternatives

The patterns in the Quality Patterns category that help reduce the amount of data exchanged
can be used alternatively. For instance, Conditional Request, Wish List, and Wish Template
are eligible; the structure pattern Pagination is an option too.

3.2.6 Known Uses
Many public Web APIs apply this pattern, for instance the JIRA Cloud REST API15 when
reporting the links between issues in the Get issue link16 call.

14 https://martinfowler.com/articles/richardsonMaturityModel.html
15 https://docs.atlassian.com/jira/REST/cloud/
16 https://developer.atlassian.com/cloud/jira/platform/rest/#api-api-2-issueLink-linkId-get

https://martinfowler.com/articles/richardsonMaturityModel.html
https://docs.atlassian.com/jira/REST/cloud/
https://developer.atlassian.com/cloud/jira/platform/rest/#api-api-2-issueLink-linkId-get
https://martinfowler.com/articles/richardsonMaturityModel.html
https://docs.atlassian.com/jira/REST/cloud/
https://developer.atlassian.com/cloud/jira/platform/rest/#api-api-2-issueLink-linkId-get

O. Zimmermann, M. Stocker, D. Lübke, C. Pautasso, and U. Zdun 4:15

Certain calls in the Microsoft Graph API also apply this pattern: for instance, user
resource representations17 contain scalar and complex attributes as “Properties”, but also
link to other resources such as Calendar (under “Relationships”).

RESTful HTTP APIs on maturity level 3 apply this pattern if the links representing
application state transfer deal with both master data and transactional data resources and
their representations. An example is Spring Restbucks18.

3.2.7 More Information
3.2.7.1 Related Patterns

The sibling pattern Embedded Entity provides an alternative to Linked Information Holder,
transmitting related data rather than referencing it.

Linked Information Holders typically reference Information Holder Resources. The
referenced Information Holder Resources can be combined with Lookup Resource to cope
with potentially broken links, as outlined previously.

Linked Service19 is a similar pattern in [2], but less focused on data. “Web Service
Patterns” [12] has a Partial DTO Population pattern which solves a similar problem.

3.2.7.2 Other Sources

See Section 7.4 in [18] for additional advice and examples, to be found under “Compound
Document (Sideloading)”.

The Backup, Availability, Consistency (BAC) theorem investigates data management
issues further [14].

4 Conclusion

This paper introduced Microservice API Patterns (MAP), a volunteer project compiling
a pattern language for the design and evolution of Microservice APIs. The language is
organized into six pattern categories at present; the MAP website20 provides additional
navigation aids such as a cheat sheet and pattern filtering by scope, phase, role, and quality
attributes. The patterns, their known uses and the examples have been mined from public
Web APIs as well as application development and software integration projects the authors
and their industry partners have been involved in [21]. We previously published 18 patterns
at pattern conferences; this paper introduced two more.

In our future work, we plan to fill gaps throughout our six pattern categories. The next
patterns will describe additional structural representations as well as the architectural roles
and responsibilities of endpoints and operations within an API. Patterns capturing API
endpoint and service identification strategies and tactics as well as corresponding artifacts yet
have to be mined: Context Maps, Bounded Contexts and Aggregates from Domain-Driven
Design (DDD) [3] seem to be particularly promising starting points for microservice API
design, and tools for strategic DDD are beginning to emerge [9]. We have also begun to work
on a technology-independent service contract language that incorporates our patterns as
first-class language elements, as well as tools to create API specifications from DDD context
maps, existing code, and as other specification languages such as Open API Specification.
Other future tools may search for pattern instances and provide metrics.

17 https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user
18 https://github.com/odrotbohm/spring-restbucks
19 http://www.servicedesignpatterns.com/ClientServiceInteractions/LinkedService
20 https://microservice-api-patterns.org/

Microservices 2017/2019

https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user
https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user
https://github.com/odrotbohm/spring-restbucks
http://www.servicedesignpatterns.com/ClientServiceInteractions/LinkedService
https://microservice-api-patterns.org/
https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user
https://github.com/odrotbohm/spring-restbucks
http://www.servicedesignpatterns.com/ClientServiceInteractions/LinkedService
https://microservice-api-patterns.org/

4:16 Microservice API Patterns

References
1 Subbu Allamaraju. RESTful Web Services Cookbook. O’Reilly, 2010.
2 Robert Daigneau. Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL

and RESTful Web Services. Addison-Wesley Professional, 2011. URL: http://www.
servicedesignpatterns.com/.

3 Eric Evans. Domain-Driven Design: Tacking Complexity In the Heart of Software. Addison-
Wesley, 2003.

4 Pat Helland. Data on the Outside Versus Data on the Inside. In CIDR 2005, Second Biennial
Conf. on Innovative Data Systems Research, Asilomar, CA, USA, January 4-7, 2005, Online
Proceedings, pages 144–153, 2005. URL: http://cidrdb.org/cidr2005/papers/P12.pdf.

5 Gregor Hohpe. SOA patterns: New insights or recycled knowledge? https://www.
enterpriseintegrationpatterns.com/docs/HohpeSOAPatterns.pdf, 2007. URL: https:
//www.enterpriseintegrationpatterns.com/docs/HohpeSOAPatterns.pdf.

6 Gregor Hohpe, Rebecca Wirfs-Brock, Joseph W. Yoder, and Olaf Zimmermann. Twenty Years
of Patterns’ Impact. IEEE Software, 30(6):88, 2013. doi:10.1109/MS.2013.135.

7 Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, 2003.

8 Klaus Julisch, Christophe Suter, Thomas Woitalla, and Olaf Zimmermann. Compliance
by design–Bridging the chasm between auditors and IT architects. Computers & Security,
30(6):410–426, 2011.

9 Stefan Kapferer. A Domain-specific Language for Service Decomposition. Term project,
University of Applied Sciences of Eastern Switzerland (HSR FHO), 2018. URL: https:
//eprints.hsr.ch/722.

10 James Lewis and Martin Fowler. Microservices: a definition of this new architectural
term. https://martinfowler.com/articles/microservices.html/, 2014. URL: https:
//martinfowler.com/articles/microservices.html/.

11 Daniel Lübke, Olaf Zimmermann, Mirko Stocker, Cesare Pautasso, and Uwe Zdun. Interface
Evolution Patterns - Balancing Compatibility and Extensibility across Service Life Cycles. In
Proc. of the 24th European Conference on Pattern Languages of Programs, EuroPLoP ’19,
2019.

12 Paul B. Monday. Web Services Patterns: Java Edition. Apress, Berkely, CA, USA, 2003.
13 Sam Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly, 2015.
14 Guy Pardon, Cesare Pautasso, and Olaf Zimmermann. Consistent Disaster Recovery for

Microservices: the BAC Theorem. IEEE Cloud Computing, 5(1):49–59, December 2018.
doi:10.1109/MCC.2018.011791714.

15 Cesare Pautasso and Olaf Zimmermann. The Web as a Software Connector: Integration
Resting on Linked Resources. IEEE Software, 35:93–98, 2018. doi:10.1109/MS.2017.4541049.

16 Cesare Pautasso, Olaf Zimmermann, Mike Amundsen, James Lewis, and Nicolai M. Josuttis.
Microservices in Practice, Part 1: Reality Check and Service Design. IEEE Software, 34(1):91–
98, 2017. doi:10.1109/MS.2017.24.

17 Mirko Stocker, Olaf Zimmermann, Daniel Lübke, Uwe Zdun, and Cesare Pautasso. Interface
Quality Patterns - Communicating and Improving the Quality of Microservices APIs. In Proc.
of the 23nd European Conference on Pattern Languages of Programs, EuroPLoP ’18, 2018.

18 Phil Sturgeon. Build APIs you won’t hate. LeanPub, https://leanpub.com/build-apis-you-
wont-hate, 2016.

19 Vaughn Vernon. Implementing Domain-Driven Design. Addison-Wesley Professional, 2013.
20 Rebecca Wirfs-Brock and Alan McKean. Object Design: Roles, Responsibilities, and Collabor-

ations. Pearson Education, 2002.
21 Uwe Zdun, Mirko Stocker, Olaf Zimmermann, Cesare Pautasso, and Daniel Lübke. Guiding

Architectural Decision Making on Quality Aspects in Microservice APIs. In 16th International
Conference on Service-Oriented Computing ICSOC 2018, pages 78–89, November 2018. URL:
http://eprints.cs.univie.ac.at/5956/.

http://www.servicedesignpatterns.com/
http://www.servicedesignpatterns.com/
http://cidrdb.org/cidr2005/papers/P12.pdf
https://www.enterpriseintegrationpatterns.com/docs/HohpeSOAPatterns.pdf
https://www.enterpriseintegrationpatterns.com/docs/HohpeSOAPatterns.pdf
https://www.enterpriseintegrationpatterns.com/docs/HohpeSOAPatterns.pdf
https://www.enterpriseintegrationpatterns.com/docs/HohpeSOAPatterns.pdf
https://doi.org/10.1109/MS.2013.135
https://eprints.hsr.ch/722
https://eprints.hsr.ch/722
https://martinfowler.com/articles/microservices.html/
https://martinfowler.com/articles/microservices.html/
https://martinfowler.com/articles/microservices.html/
https://doi.org/10.1109/MCC.2018.011791714
https://doi.org/10.1109/MS.2017.4541049
https://doi.org/10.1109/MS.2017.24
http://eprints.cs.univie.ac.at/5956/

O. Zimmermann, M. Stocker, D. Lübke, C. Pautasso, and U. Zdun 4:17

22 Olaf Zimmermann. Microservices Tenets. Comput. Sci., 32(3-4):301–310, July 2017. doi:
10.1007/s00450-016-0337-0.

23 Olaf Zimmermann, Mirko Stocker, Daniel Lübke, and Uwe Zdun. Interface Representation
Patterns: Crafting and Consuming Message-Based Remote APIs. In Proc. of the 22nd European
Conference on Pattern Languages of Programs, EuroPLoP ’17, pages 27:1–27:36. ACM, 2017.
doi:10.1145/3147704.3147734.

Microservices 2017/2019

https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1145/3147704.3147734

PREvant (Preview Servant): Composing
Microservices into Reviewable and Testable
Applications
Marc Schreiber
aixigo AG, Aachen, Germany
marc.schreiber@fh-aachen.de

Abstract
This paper introduces PREvant (preview servant), a software tool which provides a simple RESTful
API for deploying and composing containerized microservices as reviewable applications. PREvant’s
API serves as a connector between continuous delivery pipelines of microservices and the infrastructure
that hosts the applications. Based on the REST API and a web interface developers and domain
experts at aixigo AG developed quality assurance workflows that help to increase and maintain high
microservice quality.

2012 ACM Subject Classification Software and its engineering → Software creation and management;
Software and its engineering

Keywords and phrases Microservice development, testing for microservices, exploratory testing,
development workflows

Digital Object Identifier 10.4230/OASIcs.Microservices.2017-2019.5

Supplement Material
The source code is available on GitHub: https://github.com/aixigo/PREvant
A short talk about PREvant is available on YouTube: https://www.youtube.com/watch?v=
O9GxapQR5bk

1 Introduction

Currently, an increasing number of enterprises develop microservices to build their applica-
tions [2, 11, 18] because microservices are scalable and offer quick deployment cycles, superior
quality, and greater flexibility compared to monolithic software [21, 24]. Furthermore, nu-
merous companies migrate their on-premises applications to microservice architectures [13]
because of the aforementioned advantages combined with agile software development. How-
ever, when development teams begin to build microservices, they can face major challenges
due to the increased cognitive load, design complexity, testing and maintenance efforts [30].

Microservices must be deployed on an infrastructure to perform automatic and user-based
acceptance tests, thereby ensuring feature correctness. Developers can employ containeriza-
tion techniques to package and deploy their microservices [17]; however, they must manage
the complexity of deployment set-ups when they provide the whole application as a preview,
which consists of multiple microservices distributed across numerous source-code repositories.
To deploy their services to a container orchestration platform for testing purposes, develop-
ers must create complex continuous delivery pipelines that utilize container orchestration
platforms. In addition to these technical challenges, the testing of microservices provides
further challenges that require effective testing strategies [15, 22].

This paper introduces PREvant (Preview Servant), a software tool that helps to deliver
high-quality microservices by providing an approach to deploying and composing containerized
microservices as reviewable applications. PREvant simplifies the deployment of applications
that comprise multiple microservices, and it supports various configuration scenarios that

© Marc Schreiber;
licensed under Creative Commons License CC-BY

Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices
2017/2019).
Editors: Luís Cruz-Filipe, Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and
Sabine Sachweh; Article No. 5; pp. 5:1–5:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2564-6126
mailto:marc.schreiber@fh-aachen.de
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.5
https://github.com/aixigo/PREvant
https://www.youtube.com/watch?v=O9GxapQR5bk
https://www.youtube.com/watch?v=O9GxapQR5bk
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 PREvant (Preview Servant)

equip the application with the necessary infrastructure through companions. Thanks to these
and additional features, developers and domain experts can employ established workflows
to ensure that their teams are building high-quality services. Additionally, sales and team
managers can utilize PREvant’s capabilities.

The remainder of this paper is structured as follows: Section 2 provides basic concepts
and technologies that are necessary for understanding PREvant’s use cases. Additionally,
this section presents related work. Section 3 provides an exemplary case study to support
PREvant’s use cases with a meaningful example, and Section 4 depicts PREvant’s approach,
implementation, and architecture. Section 5 illustrates established workflows utilized at
aixigo AG that ensure high quality microservices. Section 6 supplies recipes that have been
collected through the utilization of PREvant at aixigo AG. Finally, Section 7 concludes the
paper.

2 Background and Related Work

The development of microservices is based on the following characteristics [18]:

Microservices are small, autonomous services that work together . . . and [a service]
might be deployed as an isolated service on a platform as a service (PAAS), or it might
be its own operating system process. . . . All communication between the services
themselves are via network calls, to enforce separation between the services and avoid
the perils of tight coupling. . . . [The] service exposes an application programming
interface (API), and collaborating services communicate with us via those APIs.

Therefore, developers who create applications consisting of independent microservices must
ensure that the services provide feature correctness even when the independent microservices
do not share any resources such as operating systems or databases. Due to the independence
of microservices, Docker [17] and standard containerization techniques [9] support the
development of such microservice architecture because Docker and containers in general suit
each other in implementing this kind of architecture [14]. This approach of implementing
microservice architectures [9, 14, 17] provides the foundation of PREvant’s approach.

Because microservice architectures rely on unreliable network calls that require fault-
tolerant services [18, Chapter 11], developers must ensure that the source code includes
this fault tolerance. Therefore, developers can rely on automated unit tests and continuous
integration to ensure high-quality code [12]. Additionally, developers must ensure that the
whole application works as expected, a factor which is often confronted by continuous delivery
pipelines [4]. Figure 1 depicts a continuous delivery pipeline for a microservice as described
by Chen [4].

Acceptance
Test

Build Manual
Test

ProductionCommit

Figure 1 Continuous Delivery Pipeline Stages.

M. Schreiber 5:3

The build stage in Figure 1 represents the continuous integration stage, in which the
microservice is compiled, tested, and packaged into a runnable format, such as a Docker
container image [9, 17]. When the build stage is completed, the continuous delivery pipeline
executes the next stages:

Acceptance Test In this stage, automated end-to-end tests ensure that the microservice per-
forms as expected. For example, an automated browser test ensures that the microservice’s
data is rendered correctly.

Manual Test This stage provides a running instance of the microservice for domain experts
who perform exploratory testing to ensure correct business behavior.

Production When the domain experts establish that the microservice performs correctly,
the service can be deployed into production, completing the continuous delivery pipeline.

The acceptance and manual test stages include environments similar to the production
environment in which the microservices will be deployed (depicted by the infrastructure
symbols above the stages in Figure 1). The deployment in these environments is handled by
the continuous delivery pipeline and is supported by different development tools, such as
GitLab Review Apps1 or GitOps,2 that utilize container orchestrations to spin the required
environments. Such an approach [4] builds common ground for GitLab Review Apps, GitOps,
and PREvant.

However, existing solutions have a common disadvantage when developers build multiple
microservices in multiple source-code repositories, a factor which is addressed by PREvant.
Existing solutions such as GitLab Review Apps do not manage effectively when the de-
velopment of an application consists of multiple microservices distributed across multiple
source-code repositories, as depicted in Figure 2. In this scenario, the continuous delivery
pipelines of each microservice repository (see the commit stage) must be aware of foreign mi-
croservices and ensure that their environments include them (see question marks in Figure 2).
Therefore, both GitLab Review Apps and GitOps offer to write deployment scripts that
ensure that the foreign microservices are deployed as well, which generates a tight coupling
between the deployment pipelines, thus violating the mantra of independent microservice
architecture.

Acceptance
Test

Build Manual
Test

Commit

Branching
Model

Figure 2 Continuous Delivery Pipeline Stages with Multi-Repository Development.

1 https://about.gitlab.com/product/review-apps/
2 https://www.weave.works/technologies/gitops/

Microservices 2017/2019

https://about.gitlab.com/product/review-apps/
https://www.weave.works/technologies/gitops/

5:4 PREvant (Preview Servant)

Furthermore, the development of each microservice could follow a branching model, as
depicted on the left-hand side of Figure 2, and each branch should be tested through the
same stages of the delivery pipeline as the mainline branch. However, if a feature requires
the extensions of two or more microservices, then this must be configured and written into
the source code of the deployment scripts, which requires thorough clean-up afterward. This
clean-up could fail and break the deployment of the mainline branches.

In contrast to existing solutions, PREvant aims to improve the handling of delivery
pipelines in multi-repository, multi-branch scenarios, some of which are described in further
detail in Section 4. Therefore, PREvant relies on following techniques to compose a set of
microservices into one application:
1. Because PREvant supports the development of microservices, and containers are an

ideal match for microservice architecture [14], PREvant relies on container runtime
infrastructure, such as Docker, Docker Swarm, or Kubernetes to deploy the microservices
into staging areas.3

2. To compose the microservices on a container runtime, PREvant relies on a container
registry to exchange the container images between a continuous delivery pipeline and the
container runtime.

3. Additionally, the container runtimes provide software-defined networking [7] that PREvant
utilizes to isolate the microservice applications from each other.

4. To make the composed applications accessible to the domain experts, PREvant equips
the containers in such a way that Traefik [5] can work as a reverse proxy, which makes
Traefik a requirement for PREvant.

3 Case Study

To support PREvant’s use cases with an illustrative example, this section introduces a sample
e-commerce system that offers end customers the ability to purchase products in a web shop.
The example is borrowed from Wolff [29] and provides the following services:

order This microservice provides a web interface that accepts orders through a shopping cart.
All accepted orders are stored in a database and are published through an asynchronous
messaging channel.

invoice This service subscribes to the orders channel and extracts all relevant information
from the messages. The relevant information is stored as new invoices in a database,
and the accounting department receives new invoices through the invoice service’s web
interface.

shipping Similar to the invoice service, the shipping service subscribes to the orders channel
and stores the relevant shipping information in a database. The shipping department
receives new shipping requests through the shipping service’s web interface.

In the context of this paper, the development of these services is distributed across three
source-code repositories, and each repository manages a continuous delivery pipeline that
ensures that the services perform as desired. Additionally, the development team is supported
through domain experts who randomly perform exploratory testing on the whole e-commerce
system to ensure that the system works well for the salespeople who operate the system.

3 Currently, PREvant only supports Docker, but PREvant’s developers plan to support Kubernetes in
the future.

M. Schreiber 5:5

Therefore, the continuous delivery pipelines must ensure that domain experts can access the
application at any time, as depicted in Figure 2.

Furthermore, the microservices rely on infrastructure services. They require a Apache
Kafka4 instance to exchange the order message and PostgreSQL5 as a database instance
to store the service-relevant information. These infrastructure services must be deployed
through the continuous delivery pipelines as well to ensure a running application.

4 Composing Microservices with PREvant

As stated in Section 2, PREvant aims to simplify the composition of microservices through
continuous delivery pipelines. Therefore, PREvant serves as a connector between the
continuous delivery pipelines and the infrastructure that hosts the applications for testing
and quality-assurance purposes, as depicted in Figure 3. This approach facilitates the
composition of reviewable applications that are explained in detail in this section.

Acceptance
Test

BuildCommit Production

 HT
TP

shipping

invoiceinvoice

orderorder

shipping

invoice

shipping

order

order

shipping

invoice

Manual
Test

Image Registry

P
u
s
h

I
m
a
g
e

Figure 3 Composing Microservices with PREvant into Reviewable Applications.

Figure 3 illustrates the disjoint repositories and continuous delivery pipelines of the
microservices order, shipping, and invoice. The build stage packages the microservices as
a container image and pushes it to a container image registry (e.g. a Docker registry) to
ensure that the services are ready for deployment in the acceptance and manual test stages.
In a deployment phase, such as the manual test stage depicted in Figure 3, the continuous
delivery pipeline can utilize PREvant’s REST API, as illustrated in Listing 1. This REST
request creates a software-defined network [7], initiates the container for the microservice,
connects it to the network, and creates a reverse-proxy configuration, making the service
accessible through PREvant’s web interface.6 Subsequent REST calls check whether the
container image has a newer version, and if so, then the container is updated.

4 https://kafka.apache.org/
5 https://www.postgresql.org/
6 In this example the invoice service is available through the relative URL /master/invoice.

Microservices 2017/2019

https://kafka.apache.org/
https://www.postgresql.org/

5:6 PREvant (Preview Servant)

Listing 1 Deploy "invoice" Service.

POST /api/apps/master HTTP/1.1
Content-Type: application/json
Accept: application/json

[{
"serviceName": "invoice",
"image": "registry.example.com/a-team/invoice:master",

}]

When the continuous delivery pipelines of the remaining microservices utilize a similar
REST call, for example, replacing invoice in Listing 1 with order or shipping PREvant
initiates the containers and connects them to the existing software-defined network so
that the services can communicate with each other. Then, domain experts can access the
services through PREvant’s web interface, and they can begin exploratory testing before
the microservices are deployed to production. Through this approach, PREvant offers the
following key concepts:

PREvant’s REST API does not expose the internal workings of the underlying container
runtime, which makes the deployment infrastructure agnostic. By design, the software
architecture of PREvant employs an infrastructure abstraction so that Docker and
Kubernetes are supported platforms; however, PREvant is not limited to these container
orchestration platforms. Section 4.1 provides an architectural overview.
The REST API approach reduces the complexity of continuous delivery pipelines because
the necessity of deployment scripts for specific container orchestration is eliminated.
The REST API approach enables further use cases that are employed in development
workflows, as illustrated in Section 5.
PREvant supports different microservice architectures so that it is not limited to a specific
kind of microservice architecture. This is implemented through the concept of companions,
as explained in Section 6.

In addition to these key concepts, PREvant supports feature branch workflows across
multiple build pipelines and is not limited to mainline branches of microservices. As illustrated
in Figure 2 in Section 2, a feature-based branching model raises the following issue: how does
one deploy or compose the whole application automatically when developing a new feature
on a branch for a single microservice? For this use case, PREvant provides following solution:

While PREvant can compose the mainline branches of multiple microservices into one
application, it also utilizes the mainline branch as a template for each feature branch, as
illustrated in Figure 4. To provide a fully functional application that can be reviewed by
the domain experts, PREvant replicates all missing services from the master application.
For example, if the delivery pipeline executes a POST request to deploy the service order,
then PREvant compares the set of running microservices in the master application with the
provided set of microservices. Then it includes the microservices that are not included and
initiates them to provide a fully functional application. Here, it would deploy new container
instances of the container images for the services shipping and invoice.

To distinguish the applications, the deployment pipeline must choose the names that are
defined by a path parameter at the REST API level, as illustrated in Listing 2. Here, the
application named feature-a (see path parameter) is deployed with the container image of
the order service that has been labeled with feature-a. These names can be derived from
the branch names through the continuous delivery pipeline, which is an established pattern
at aixigo AG.

M. Schreiber 5:7

shipping

order

invoice

order

shipping

invoice

Figure 4 Replication of Services for Feature Branch Workflows.

Listing 2 Deploy Feature Branch of "order" Service.

POST /api/apps/feature-a HTTP/1.1
Content-Type: application/json
Accept: application/json

[{
"serviceName": "order",
"image": "registry.example.com/a-team/order:feature-a",

}]

Additionally, if a feature requires changes in two services, then the feature branches can
use the same application names to deploy and test the feature across multiple microservice.

4.1 Architecture
To provide the aforementioned use cases, PREvant is implemented as a self-contained
system [28] written in Rust [16]; it works in conjunction with Traefik and a container runtime,
as illustrated in Figure 5. PREvant’s architecture is divided into the following layers.

Container Runtime

Web Interface

REST API

Apps

Infrastructure

Reverse Proxy

Auto DiscoveryAPI Calls Reverse Proxy

Figure 5 PREvant’s Architecture.

Web Interface To provide the use case so that domain experts can access the reviewable
applications, PREvant offers a web interface that employs PREvant’s REST API to render
the available applications. This interface is implemented as a single-page application
written in Vue.js,7 and Figure 6 displays the result in a screenshot of the web interface.

7 https://vuejs.org/

Microservices 2017/2019

https://vuejs.org/

5:8 PREvant (Preview Servant)

REST API As an interface for continuous delivery pipelines and the web interface, PREvant
implements its REST API with Rocket,8 which is a web framework for Rust. This API
layer forwards HTTP requests to the Apps layer.

Apps This layer implements the logic of PREvant’s use cases. For example, the request to
deploy a microservice is enriched with further information, such as additional services
that must be deployed (see Figure 4), and the enriched information is passed to the
Infrastructure layer.

Infrastructure The Infrastructure layer serves as a connector between the actual container
runtime and the Apps layer by translating requests from the Apps layer into API calls
to the container runtime. For example, when PREvant utilizes Docker as a container
runtime, the request to list all running applications with the running services is translated
into the corresponding API call,9 as illustrated through API Calls in Figure 5. Further
requests from the Apps layer are translated as well.
Additionally, this layer is responsible to create the software-defined network for every
application so that the microservices of one application can communicate with each other.
Additionally, this layer assigns DNS names to the services that are equivalent to the value
of the field "serviceName" in the REST request.

Figure 6 PREvant’s Web Interface.

While this architecture solves the deployment and composition problems, it does not serve
a proxy mechanism to make the microservices accessible. Therefore, PREvant utilizes Traefik’s
capabilities [5] as a reverse proxy. PREvant configures the running containers through the
Infrastructure layer in such a way that Traefik can utilize the automatic discovery of containers
to provide HTTP routes to the microservices, as illustrated in Figure 7. The HTTP requests
of each web client, such as a browser, are routed through Traefik, which determines the
microservice (concurrently running on the infrastructure) responsible to process the request.
Additionally, Traefik routes all requests to PREvant’s API and web interface.

8 https://rocket.rs/
9 https://docs.docker.com/engine/api/v1.40/

https://rocket.rs/
https://docs.docker.com/engine/api/v1.40/

M. Schreiber 5:9

http://preview.example.com/master/shipping

http://preview.example.com/feature-a/order

shipping

invoice

http://preview.example.com/

order

shipping

invoice

order

order

shipping

invoice

order

shipping

invoice

Figure 7 Traefik Serving the Microservices.

To utilize Traefik’s capabilities, PREvant must label each microservice with routing
information to enable Traefik to discover the microservices automatically. For example,
if PREvant is hosted on http://preview.example.com/, then the invoice service of the
application master would be configured to be accessible at following URL, as shown in
Figure 7: http://preview.example.com/master/invoice

4.2 Conventions on Microservices and Application
As illustrated above, PREvant provides a web interface that makes PREvant’s applications
accessible to the domain experts, sales and team managers, and developers, as illustrated
in Figure 6 which displays the microservices of the fictitious e-commerce shop in Section 3.
This interface provides following features:

Access to the microservices via HTML links, which are accessible through Traefik
Access to log statements (see Logs in Figure 6)
Issue-tracking system information
Version information, such as Git commit hash, semantic version, and build date and time
Swagger UI integration (see API Documentation in Figure 6)
Start and stop buttons to test the resilience of each microservice

To provide these features, PREvant relies on some conventions. For example, to make
the logs available, the container must log to standard output, which is a common practice
for cloud-native applications [26]. Additionally, PREvant attempts to link the names of the
applications to issue tracking information.

To provide version information and Swagger UI integration, PREvant collects information
from the microservice itself. Therefore, PREvant employs the web host metadata, proposed in
RFC 6415 [6]. If a microservice provides the well-known resource /.well-known/host-meta.
json, then PREvant can collect the required information and render it in the web interface.
Listing 3 illustrates web host metadata of the microservice shipping in the application master,
demonstrating that the OpenAPI specification [8] of the microservice is available at http:
//preview.example.com/master/shipping/swagger.json. When PREvant requests the

Microservices 2017/2019

5:10 PREvant (Preview Servant)

well-known resource, it provides the HTTP headers Forwarded [19] and X-Forwarded-Prefix
to the microservice, enabling the microservice to generate public links, which are required by
the web interface.

Listing 3 Microservices Properties Formulated in Web Host Meta.

{
"properties": {

"https://schema.org/softwareVersion": "0.9",
"https://schema.org/dateModified": "2019-08-12T15:31:00Z",
"https://git-scm.com/docs/git-commit":

"43de4c6edf3c7ed93cdf8983f1ea7d73115176cc"
},
"links": [

{
"rel": "https://github.com/OAI/OpenAPI-Specification",
"href": "http://preview.example.com/master/shipping/swagger.json"

}
]

}

5 Development and Quality Assurance Workflows

Aixigo AG utilizes PREvant extensively in daily development activities and has developed
substantial workflows that improve the quality assurance of its microservices:

Aixigo AG utilizes feature branches to prevent the pollution of mainline branches with
incomplete features, as discussed in Section 5.1.
Aixigo’s microservices provide flexible configuration capabilities, and PREvant allows
changes in configuration set-ups quickly to test different scenarios, as illustrated in
Section 5.2.
Aixigo AG provides bug fixes for older major or minor releases of its microservices. In
these cases, PREvant helps to reproduce reported bugs, as outlined in Section 5.3.

Each described workflow occurs before the release to production, because aixigo AG
generally cannot access the production area due to legal constraints. Some testing strategies
of microservices suggest testing in the production area [15] but this paper does not cover
such strategies; rather, it describes workflows that allow developers, domain experts, and
sales and team managers to provide improved service quality for in-house developments.

5.1 Feature Branch Based Development
New feature development of a microservice at aixigo AG is subject to strict quality control
because several actions have been implemented to ensure high quality: test-driven develop-
ment [1], code reviews [3], pair programming [27], snapshot and integration tests, end-to-end
tests.10 Additionally, the company has enhanced its development workflow based on reviews
by its domain experts.

When a new feature is completed by a developer, such as new functionality in the front-end
or a new REST resource, it must be reviewed by a domain expert; the domain experts have

10Vocke [25] provides more information about automatic software tests.

M. Schreiber 5:11

experience with REST APIs, so they can judge whether the developer has implemented the
feature correctly. When the feature branch of any microservice has been built by the delivery
pipeline and the whole application is available on PREvant, as mentioned in Figure 4, the
developer notifies the domain expert that the branch is ready for review, and the domain
expert performs exploratory tests. If any issues are discovered, then they are reported to the
developer; the developer then solves the reported issues.

Even when developers are working on features that are not observable from the outside,
PREvant ensures that the application meets quality criteria. For example, aixigo AG’s delivery
pipelines deploy the feature branches for automatic end-to-end tests (see the acceptance
stage). PREvant deploys the whole application and the end-to-end tests are working on the
whole application, which ensures that the whole set of microservices is working in conjunction,
thus reducing integration time and costs. Due to the quick deployment cycles that PREvant
provides, teams at aixigo AG have extended their definitions of done with the clause that the
developer is responsible to test the new application features manually (by clicking through
the front-end or by utilizing the integrated Swagger UI), which prevents obvious faults by
the developer.

When the feature is completed and complies with the definition of done[23, Page 18],
the developer merges the feature onto the mainline branch. This invokes a web hook and
instructs PREvant to shut down the application, and the development continues with the
next feature.

5.2 Configurable and Isolated Environments
Because the microservices of aixigo AG are utilized with different configurations in different
production environments, it is crucial that these configurations can be tested in an accessible
manner. Therefore, the company utilizes PREvant’s REST API to spin up-and-down
applications with specific configuration scenarios. Listing 4 illustrates the usage of PREvant’s
REST API to spin up the application features.test with the order service in a specific
configuration.

Listing 4 REST API Call with Configuration for Test Case.

POST /api/apps/features.test HTTP/1.1
Host: preview.example.com
Content-Type: application/json
Accept: application/json

[{
"serviceName": "order",
"image": "registry.example.com/a-team/order",
"files": {

"/etc/order/conf.d/sales.properties": "some.feature.flag = OFF"
},
"env": {

"FEATURE_FLAG": "ON"
}

}]

In this case the configuration of order is influenced by two parameters: the configuration
file /etc/order/conf.d/sales.properties and the environment variable FEATURE_FLAG that
toggle features of the service. The configuration of the remaining services has not been

Microservices 2017/2019

5:12 PREvant (Preview Servant)

changed. When the REST request has been executed, the domain experts and developers can
test the service to determine whether it behaves correctly. This feature is crucial to quality
assurance when introducing new configuration options because the mainline application runs
in a default configuration; otherwise, it would be difficult for domain experts and developers
to spin up an application for quality-assurance purposes. PREvant’s approach provides
additional use cases:

The microservices with the specific configurations are running in isolation so that domain
experts can test the application without disruption from builds and deployments that are
executed on the mainline branch. Aixigo AG’s domain experts often utilize this feature
to clone the mainline branch to test it with the default configuration without disruption.
The REST call that is integrated into PREvant’s web interface is illustrated in Listing 5.
Furthermore, the REST interface provides the query parameter replicateFrom to specify
which application should be replicated.

Listing 5 REST API Call Cloning Mainline.

POST /api/apps/features.test?replicateFrom=master HTTP/1.1
Host: preview.example.com
Content-Type: application/json
Accept: application/json

[]

From time to time, sales managers wish to demonstrate the application to potential
customers and must demonstrate the application in a specific configuration. Therefore,
they ask aixigo’s domain experts to set up an application that can demonstrate feature X
or Y.

5.3 Version Picking
Microservices of aixigo AG are running in production in different major or minor versions,
and users report bugs in different versions. To reproduce these bugs, domain experts and
developers utilize PREvant to spin up an application that runs the specific version with an
additional specific configuration of the service. Therefore, a domain expert can utilize the
REST API to select a specific container image version, as illustrated in Listing 6.11

Listing 6 REST API Call with Version Picking.

POST /api/apps/is-it-working-with-v1?replicateFrom=master HTTP/1.1
Host: preview.example.com
Content-Type: application/json
Accept: application/json

[{
"serviceName": "order",
"image": "registry.example.com/a-team/order:1.0.2"

}]

11 Sometimes it is useful to compare old and new versions of a microservice in aixigo’s sprint reviews; on
such occasions, it is convenient to spin it up with PREvant.

M. Schreiber 5:13

PREvant does not provide a user interface for this use case and the feature is only
accessible utilizing command line tools or the integrated Swagger UI. However, PREvant’s
road map contains the extension of the web interface, so that spinning up applications with
specific versions and configurations, as illustrated in Listing 4 and 6, is more effective.

6 Companions and Recipes

While PREvant enables workflows that ensure a higher quality of microservices, it also
aims to be agnostic to the hosted types of microservices, which means that the type of
microservices [10] in development are irrelevant to PREvant. Whether a team develops a
function as a service or a self-contained system, the microservices merely need to be packaged
as a container image. However, these microservices rely on services that provide some
infrastructure, such as databases or OpenID [20] providers, as depicted in the case study in
Section 3. To provide these infrastructure services, PREvant offers two types of companions
that are infrastructure microservices that are available over the container network while the
microservice applications are running. PREvant deploys companions automatically when it
received a REST request.

Service Companions Some infrastructure services are specific to a given microservice or are
logically owned by a microservice. For example, a database instance such as MariaDB12

is required by a service, a memory cache such as Memcached13 is required by another
service, and all services require a sidecar proxy.
These infrastructure services must be available for the microservice, and PREvant initiates
these services as soon as the dependent microservice spins up.

Application Companions Some infrastructure services must be available for all microservices
of an application. For example, Apache Kafka provides a stream-processing platform to
establish publish and subscribe messaging between services. Further examples include
service discovery providers, API gateways, or OpenID providers.
These types of services are globally available and potentially required by all microservices
of the application. Therefore, PREvant initiates these infrastructure services when the
application spins up.

To initiate these infrastructure services, PREvant provides configuration options that
are illustrated in the following subsections by a set of recipes. These recipes provide some
configuration examples that help developers to compose their microservice applications
through PREvant. Section 6.1 provides an example of the configuration of database services
for all microservices of an application. Additionally, these configuration options provide some
templating options so that configurations are dynamically adjusted.

6.1 Service Databases

As stated previously, microservices that are hosted by PREvant often require the provision
of a database. Listing 7 illustrates a configuration that ensures initiation of a MariaDB
database, which is a service companion.

12 https://mariadb.org/
13 http://memcached.org/

Microservices 2017/2019

https://mariadb.org/
http://memcached.org/

5:14 PREvant (Preview Servant)

Listing 7 PREvant Configuration: Database Companion.

1 [companions.mariadb]
2 type = 'service'
3 image = 'docker.io/library/mariadb:10.3'
4 serviceName = '{{service.name}}-db'
5 env = [
6 'MYSQL_DATABASE={{service.name}}', 'MYSQL_USER={{service.name}}',

'MYSQL_PASSWORD={{service.name}}'↪→

7]

Initially, the companion name must be defined; in this case, the name is mariadb (see
Line 1). Additionally, the companion type must be defined so that it is valid for every
service (see Line 2). Furthermore, the container image as well as the service name must be
specified (see Line 3), which results in the DNS name of the database (see Line 4). The
configuration of the DNS name can be adjusted by Handlebars templating syntax.14 In
this case, the corresponding microservice name is utilized to derive the DNS name. For
example, for the microservice with name X, the corresponding database DNS name is X-db.
Additionally, the environment variables of the database companion are adjusted so that the
companion creates a database with a default username and password.

6.2 API Gateway
Some microservice architectures require an API gateway that processes every request before
they are forwarded to any microservice. To initiate an API gateway for each application,
definitions of the type, image and service name for the companion are required, as illustrated
in Listing 8 by [companions.api-gateway].

Listing 8 PREvant Configuration Using An API Gateway.

[companions.api-gateway]
type = 'application'
image = 'registry.example.com/a-team/api-gateway:latest'
serviceName = 'api-gateway'

[companions.api-gateway.labels]
'traefik.frontend.rule' = 'PathPrefix:/{{application.name}}/'
'traefik.frontend.priority' = '10000'

Furthermore, all requests are routed through the API gateway; therefore, the entry
link a domain expert employs to interact with the application is irrelevant. In Listing 8,
the configuration section labeled [companions.api-gateway.labels] ensures that the default
labeling of the API gateway, which is responsible for Traefik’s automatic discovery, is
overwritten. Here, every request to the application is routed to the API gateway because of
the higher priority and the path-prefix rule.15

14 https://handlebarsjs.com/
15More information about Traefik’s configuration options are available at: https://docs.traefik.io/

basics/

https://handlebarsjs.com/
https://docs.traefik.io/basics/
https://docs.traefik.io/basics/

M. Schreiber 5:15

7 Summary

This paper presented the concepts and implementation details of the tool Preview Ser-
vant (PREvant), which enables developers and domain experts to perform quality-assurance
tasks on their microservice applications. Therefore, PREvant provides a simple REST inter-
face that allows developers to extend their microservices’ delivery pipelines with PREvant’s
composing mechanism (see Section 4), which spins up fully functional applications that
can be explored by domain experts. Based on the capabilities of the RESTful interface,
aixigo’s employees utilize workflows that increase and maintain the microservice quality (see
Section 5). Furthermore, PREvant’s approach is not tied to these established workflows;
rather, it employs an approach that is independent from the microservice application archi-
tecture because PREvant enables developers to configure required infrastructure services, as
described in Section 6.

Furthermore, PREvant’s composition and configuration mechanisms that are integrated in
the web interface, allow users to set up dedicated previews in minutes so that sales managers
can utilize isolated applications to demonstrate the application to potential customers.
PREvant has become a major factor in the quality-assurance process at aixigo AG.

References
1 Dave Astels. Test Driven Development: A Practical Guide. Prentice Hall Professional Technical

Reference, July 2003.
2 Antonio Bucchiarone, Nicola Dragoni, Schahram Dustdar, Stephan T. Larsen, and Manuel

Mazzara. From Monolithic to Microservices: An Experience Report from the Banking Domain.
IEEE Software, 35(3):50–55, May 2018. doi:10.1109/MS.2018.2141026.

3 Giuliana Carullo. Code Reviews 101: The Wisdom of Good Coding. Giuliana Carullo, May
2019.

4 Lianping Chen. Continuous Delivery: Huge Benefits, but Challenges Too. IEEE Software,
32(2):50–54, March 2015. doi:10.1109/MS.2015.27.

5 Containous. Traefik: The Cloud Native Edge Router, 2019. Accessed: 2019-08-12. URL:
https://traefik.io/.

6 B. Cook. Web Host Metadata. Technical report, Internet Engineering Task Force, November
2011. doi:10.17487/rfc6415.

7 Cosmin Costache, Octavian Machidon, Adrian Mladin, Florin Sandu, and Razvan Bocu.
Software-defined networking of Linux containers. In RoEduNet Conference 13th Edition:
Networking in Education and Research Joint Event RENAM 8th Conference, pages 1–4,
September 2014. doi:10.1109/RoEduNet-RENAM.2014.6955310.

8 The Linux Foundation. OpenAPI Initiative, 2019. Accessed: 2019-11-08. URL: https:
//www.openapis.org/.

9 Silvery Fu, Jiangchuan Liu, Xiaowen Chu, and Yueming Hu. Toward a Standard Interface for
Cloud Providers: The Container as the Narrow Waist. IEEE Internet Computing, 20:66–71,
2016. doi:10.1109/MIC.2016.25.

10 Martin Garriga. Towards a Taxonomy of Microservices Architectures. In Software Engineering
and Formal Methods, pages 203–218. Springer International Publishing, February 2018. doi:
10.1007/978-3-319-74781-1_15.

11 Anne Marie Glen. [DZone Research] Microservices Priorities and Trends,
July 2018. Accessed: 2019-08-12. URL: https://dzone.com/articles/
dzone-research-microservices-priorities-and-trends.

12 Jesper Holck and Niels Jørgensen. Continuous Integration and Quality Assurance: a case study
of two open source projects. Australasian Journal of Information Systems, 11(1), November
2003. doi:10.3127/ajis.v11i1.145.

Microservices 2017/2019

https://doi.org/10.1109/MS.2018.2141026
https://doi.org/10.1109/MS.2015.27
https://traefik.io/
https://doi.org/10.17487/rfc6415
https://doi.org/10.1109/RoEduNet-RENAM.2014.6955310
https://www.openapis.org/
https://www.openapis.org/
https://doi.org/10.1109/MIC.2016.25
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://dzone.com/articles/dzone-research-microservices-priorities-and-trends
https://dzone.com/articles/dzone-research-microservices-priorities-and-trends
https://doi.org/10.3127/ajis.v11i1.145

5:16 PREvant (Preview Servant)

13 Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. Cloud Migration Research: A Systematic
Review. IEEE Transactions on Cloud Computing, 1(2):142–157, 2013. doi:10.1109/tcc.
2013.10.

14 David Jaramillo, Duy Nguyen, and Robert Smart. Leveraging microservices architecture by
using Docker technology. In SoutheastCon 2016, pages 1–5, March 2016. doi:10.1109/SECON.
2016.7506647.

15 Sheroy Marker. Test Strategy for Microservices, May 2018. Accessed: 2019-08-12. URL: https:
//www.gocd.org/2018/05/08/continuous-delivery-microservices-test-strategy/.

16 Nicholas D. Matsakis and Felix S. Klock, II. The Rust Language. In Proceedings of the 2014
ACM SIGAda Annual Conference on High Integrity Language Technology, HILT ’14, pages
103–104. ACM, 2014. doi:10.1145/2692956.2663188.

17 Dirk Merkel. Docker: Lightweight Linux Containers for Consistent Development and Deploy-
ment. Linux Journal, 2014(239):2, 2014.

18 Sam Newman. Building Microservices. O’Reilly Media, Inc., 1st edition, 2015.
19 A. Petersson and M. Nilsson. Forwarded HTTP Extension. Technical report, Internet

Engineering Task Force, June 2014. doi:10.17487/rfc7239.
20 David Recordon and Drummond Reed. OpenID 2.0: A Platform for User-centric Identity

Management. In Proceedings of the Second ACM Workshop on Digital Identity Management,
DIM ’06, pages 11–16, New York, NY, USA, 2006. ACM. doi:10.1145/1179529.1179532.

21 Cesar Saavedra. The State of Microservices Survey 2017 – Eight trends you need to know,
December 2017. Accessed: 2019-08-12. URL: https://middlewareblog.redhat.com/2017/
12/05/the-state-of-microservices-survey-2017-eight-trends-you-need-to-know/.

22 D. I. Savchenko, Gleb Radchenko, and Ossi Taipale. Microservices validation: Mjolnirr
platform case study. In 38th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), pages 235–240, May 2015. doi:
10.1109/MIPRO.2015.7160271.

23 Jeff Sutherland and Ken Schwaber. The scrum guide. The definitive guide to scrum: The
rules of the game, 268, 2013. URL: https://www.scrumguides.org/docs/scrumguide/v2017/
2017-Scrum-Guide-US.pdf.

24 Markos Viggiato, Ricardo Terra, Henrique Rocha, Marco Tulio Valente, and Eduardo
Figueiredo. Microservices in Practice: A Survey Study. In VEM 2018 - 6th Workshop
on Software Visualization, Evolution and Maintenance, Sao Carlos, Brazil, September 2018.
URL: https://hal.inria.fr/hal-01944464.

25 Ham Vocke. The Practical Test Pyramid, February 2018. Accessed: 2019-11-08. URL:
https://martinfowler.com/articles/practical-test-pyramid.html.

26 Adam Wiggins. The Twelve-Factor App, 2017. Accessed: 2019-08-12. URL: https://12factor.
net/.

27 Laurie Williams. Pair Programming Illuminated. Addison-Wesley Professional, July 2002.
28 Eberhard Wolff. Microservices: Flexible Software Architectures. CreateSpace Independent

Publishing Platform, 2016.
29 Eberhard Wolff. Microservices: A Practical Guide. CreateSpace Independent Publishing

Platform, April 2018.
30 Olaf Zimmermann. Microservices Tenets. Comput. Sci., 32(3–4):301–310, July 2017. doi:

10.1007/s00450-016-0337-0.

https://doi.org/10.1109/tcc.2013.10
https://doi.org/10.1109/tcc.2013.10
https://doi.org/10.1109/SECON.2016.7506647
https://doi.org/10.1109/SECON.2016.7506647
https://www.gocd.org/2018/05/08/continuous-delivery-microservices-test-strategy/
https://www.gocd.org/2018/05/08/continuous-delivery-microservices-test-strategy/
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.17487/rfc7239
https://doi.org/10.1145/1179529.1179532
https://middlewareblog.redhat.com/2017/12/05/the-state-of-microservices-survey-2017-eight-trends-you-need-to-know/
https://middlewareblog.redhat.com/2017/12/05/the-state-of-microservices-survey-2017-eight-trends-you-need-to-know/
https://doi.org/10.1109/MIPRO.2015.7160271
https://doi.org/10.1109/MIPRO.2015.7160271
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://hal.inria.fr/hal-01944464
https://martinfowler.com/articles/practical-test-pyramid.html
https://12factor.net/
https://12factor.net/
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0

	p000-Frontmatter
	Preface
	Microservices 2017
	Microservices 2019

	p001-Song
	Introduction
	A Motivational Example
	A Conceptual Model of Customization for Multi-Tenant SaaS
	Intrusive Customization Using Microservices
	Adapting the SaaS to be Customizable
	Sample Customization

	Non-Intrusive Customization Using Microservices
	A Reference Architecture for Customization by Microservices
	Principles
	A Reference Architecture

	Discussions
	Customization of Database
	Triggering of Customization Services
	Invocation from Customization Services to the Product Service
	Tenant Manager and Tenant Isolation
	Customization Environments

	Related Work
	Conclusion and Future Work

	p002-Wickert
	Introduction
	Analyzing the Domain
	Identifying Bounded Contexts
	Architectural Migration
	Results
	Conclusion

	p003-Bogner
	Introduction
	Related Work
	Research Methodology
	Results
	Research Categories (RQ1)
	Category Distributions (RQ2)
	Research Directions per Category(RQ3)
	Differences Between Approaches for SOA and Microservices (RQ4)

	Threats to Validity
	Conclusion

	p004-Zimmermann
	Motivation
	A Consolidated Definition of Microservices
	Service Design Challenges
	Existing Design Heuristics

	Microservice API Patterns (MAP) Scope and Organization
	Patterns as Knowledge Sharing Vehicles
	Knowledge Categories

	Pattern Examples: In-/Excluding Nested Data Representations
	Pattern: Embedded Entity
	Context
	Problem
	Forces
	Solution
	Consequences
	Known Uses
	More Information

	Pattern: Linked Information Holder
	Context
	Problem
	Forces
	Solution
	Consequences
	Known Uses
	More Information

	Conclusion

	p005-Schreiber
	Introduction
	Background and Related Work
	Case Study
	Composing Microservices with PREvant
	Architecture
	Conventions on Microservices and Application

	Development and Quality Assurance Workflows
	Feature Branch Based Development
	Configurable and Isolated Environments
	Version Picking

	Companions and Recipes
	Service Databases
	API Gateway

	Summary

