
Computers and Operations Research 127 (2021) 105159
Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier .com/locate /caor
Air traffic flow management with layered workload constraintsq
https://doi.org/10.1016/j.cor.2020.105159
0305-0548/� 2020 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

q This work was funded by The Research Council of Norway [grant numbers
237718, 267554].
⇑ Corresponding author at: Department of Mathematics, P.O box 1053 Blindern,

0316 Oslo, Norway.
E-mail address: andreana@math.uio.no (A. Nakkerud).
Carlo Mannino a,b, Andreas Nakkerud a,b,⇑, Giorgio Sartor b

aDepartment of Mathematics, P.O box 1053 Blindern, 0316 Oslo, Norway
b SINTEF, P.O box 124 Blindern, 0314 Oslo, Norway
a r t i c l e i n f o

Article history:
Received 4 May 2020
Revised 17 November 2020
Accepted 20 November 2020
Available online 28 November 2020

2010 MSC:
90B06
90B20
90C06
90C08
90C11
90C90

Keywords:
Hotspot problem
Air traffic management
Air traffic flow management
Scheduling
Job-shop scheduling
Optimization
Mixed integer programming
Linear programming
a b s t r a c t

Many regions of the world are currently struggling with congested airspace, and Europe is no exception.
Motivated by our collaboration with relevant European authorities and companies in the Single European
Sky ATM Research (SESAR) initiative, we investigate novel mathematical models and algorithms for sup-
porting the Air Traffic Flow Management in Europe. In particular, we consider the problem of optimally
choosing new (delayed) departure times for a set of scheduled flights to prevent en-route congestion and
high workload for air traffic controllers while minimizing the total delay. This congestion is a function of
the number of flights in a certain sector of the airspace, which in turn determines the workload of the air
traffic controller(s) assigned to that sector. We present a MIP model that accurately captures the current
definition of workload, and extend it to overcome some of the drawbacks of the current definition. The
resulting scheduling problem makes use of a novel formulation, Path&Cycle, which is alternative to the
classic big-M or time-indexed formulations. We describe a solution algorithm based on delayed variable
and constraint generation to substantially speed up the computation. We conclude by showing the great
potential of this approach on randomly generated, realistic instances.

� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Air Traffic Flow Management consists in regulating air traffic to
prevent congestion while optimizing the usage of the available
capacity. This is a very important topic in SESAR (SESAR, 2020),
an ongoing extensive European collaborative project with the
objective of improving and modernizing every aspect of the air
traffic management in Europe. In this paper, we present recent
results related to our work on SESAR sub-projects.

The European airspace is divided into control sectors, each
assigned to one or more air traffic controllers who are in charge
of guaranteeing the safety of the air traffic. The tasks of a controller
(e.g., communicate with pilots, handover flights to the controller of
an adjacent sector, prevent potential conflicts, etc.) are heavily reg-
ulated, each one requiring a certain amount of time and effort.
Within each sector, controllers are solving the Air Traffic Control
problem of finding a feasible combination of flight paths, subject
to regulations about the temporal and spatial separation of air-
planes. In Europe, these flight paths are also subject to the schedule
determined by the central control authority. The workload of a
controller is usually a function of these tasks which, in turn, is a
function of the flights traversing the sector. Therefore, capacity
constraints are imposed on each sector to regulate the number of
flights and consequently to keep the workload of controllers within
the set boundaries. In Europe, this capacity is computed through
involved simulation procedures, standardized by the European
control authority. Briefly, depending on the traffic scenario, each
task performed by a controller is decomposed into atomic control-
ling actions, and each such action has an expected time required
for execution. For a given traffic scenario, the expected overall time
use necessary for a controller in a time window of one hour must
not exceed 42 min (70% workload). Then, many historical traffic

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2020.105159&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cor.2020.105159
http://creativecommons.org/licenses/by/4.0/
mailto:andreana@math.uio.no
https://doi.org/10.1016/j.cor.2020.105159
http://www.sciencedirect.com/science/journal/03050548
http://www.elsevier.com/locate/caor

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
scenarios are assessed and, for each such scenario, the maximum
number of flights which can be controlled within the time thresh-
old is determined. The capacity of the sector is then simply the
minimum of such numbers overall traffic scenarios (Flynn et al.,
2003). Whenever a set of flights violates these capacity regulations
in a certain sector, we say there is a hotspot (Allignol et al., 2012;
Dubot et al., 2016) (see Fig. 1 for an illustrated example). In this
paper, we present techniques that allow more precise modelling
of controller workload, which in turn could be used to allow higher
capacities without the risk of overloading a sector.

Typically, the working day of a controller is divided into fixed
time windows, e.g., from 10 a.m. to 11 a.m., from 11 a.m. to 12 p.
m., and so on. Then the regulations usually impose a limit on the
number of aircraft entering the sector during each time window.
Since flight plans are submitted to the control authorities by each
airline only a few hours before departure (sometimes even half an
hour in the case of private jets), it is not uncommon that they will
ultimately produce a hotspot. Control authorities have many ways
to deal with this issue, such as asking the airline to submit an
altered flight plan. When a satisfactory solution cannot be agreed
upon in due time, control authorities can simply choose to delay
the departure. This is the scenario considered in this paper. In par-
ticular, given the schedule for a set of flights and given the capacity
constraints for all sectors, the Hotspot Problem (HP) consists in
finding new (possibly delayed) departure times for all flights such
that the corresponding schedule is hotspot-free and the sum of
delays is minimized.

The exact definition of HP depends on the exact definition of
hotspot. As mentioned above, the current definition agreed in Eur-
ope (Flynn et al., 2003) considers fixed intervals of time and, for
each sector and for each interval of time, it compares the aircraft
entry counts with the predefined sector capacity. There are several
drawbacks with this definition. The most evident is perhaps a phe-
nomenon called bunching, where the excess flights of a certain
interval of time are simply moved and amassed at the beginning
of the next interval. We propose to solve this by considering sliding
intervals of time, where the sector capacity must be respected in
any interval of time of a certain length. A recent study (Guibert
et al., 2019), which also involves the European control authority,
considers the possibility to jointly take into account entry counts
and occupancy counts. The first measures the number of aircraft
entering a sector within a certain interval of time, whereas the lat-
ter measures the number of aircraft simultaneously traversing a
sector within a certain interval of time (see Fig. 2). In this paper,
we describe a model that considers both sliding intervals of time
and occupancy counts, and that can be immediately extended to
support fixed interval of times and entry counts.

The literature on the hotspot problem is small, with only a few
papers dealing with somewhat related problems (of which an over-
view can be found in Zhong (2018)). None of these papers matches
exactly with the Hotspot Problem. In Schefers et al. (2017), the air-
space is subdivided into micro-cells of unit capacity, and airplanes
can be delayed at the departure, but only within the assigned time
slot. The question of delaying flights to reduce congestion is dis-
cussed in de Jonge and Seljée (2011) along with a greedy-like
prioritization-based iterative algorithm to compute delays. In con-
trast, a MILP model for the same problem is discussed in Damhuis
et al. (2015), with some interesting experimental results on some
simulation scenarios. In Vaaben and Larsen (2015) the problem is
studied from the side of the airlines. When control authorities
issue flying restrictions, airlines need to modify flight trajectories
to meet such restrictions. Both schedules and trajectories can be
modified in this study, but the feasible trajectories are chosen from
a predefined, finite set. In Sailauov and Zhong (2016) the stand-
point is again from the control authority side. The model factors
in many details, including, for instance, stops at intermediate
2

airports and fairness of the solutions. The resulting, overarching
time-indexed MILP model is probably too complex to be solved
for the size of practical instances, and indeed the experiments
reported in the paper involves only two flights.

One of the most closely related problems in the literature is pre-
sented in Kim et al. (2009), where a combination of greedy and
randomized rounding heuristics is used to minimize the maximum
occupancy of any sector. Our problem mainly differs from the one
in Kim et al. (2009) in that we minimize delays while respecting
capacity restrictions rather than minimize occupancy, and that
we apply an exact method. Our computational experiments (Sec-
tion 7) are on instances of the single-sector problem, which is
already NP-hard in general Kim et al. (2009). Our ability to solve
these instances using our exact method rests on the fact that we
have an available schedule which is already close to feasible. If
no schedule is available, a heuristic method like the one presented
in Kim et al. (2009) could be applied as a preprocessing step.

Most of the above-mentioned papers focus on modelling issues,
using either constraint (CP) or mathematical programming—
mainly Mixed Integer Programming (MIP). The resulting formula-
tions are then solved by directly invoking a MIP solver (with the
exception of Damhuis et al. (2015) and Kim et al. (2009) where
delayed constraint generation is applied). In our experience, how-
ever, this approach typically does not suffice to find exact solutions
to instances of a practical size. The main reason is that the classical
formulations for this class of problems are either too weak or too
large to work well in practice without additional algorithmic
enhancements. More specifically, the Hotspot Problem is a variant
of the job-shop scheduling problem with blocking and no-wait
constraints (see Mascis and Pacciarelli, 2002), where the sectors
can be seen as machines and the flights as jobs. The main issue
of this class of problems is that we have to introduce disjunctive
constraints to represent and solve conflicts in the use of shared
resources. Basically, two MIP models are competing in the litera-
ture: the big-M and the time-indexed formulations (see
Queyranne and Schulz, 1994). The former usually provides weak
bounds, and thus large search trees; the latter produces better
bounds but at the cost of increasing time to solve the relaxations.
While time-indexed formulations work well for some scheduling
problems, it is a well-known problem that they struggle when
the number of time slots becomes large, which is often the case
in modern transportation scheduling (Mannino and Mascis,
2009). So, the reduction in the number of branching nodes due to
a stronger bound is typically not enough to compensate for the
increase in running times.

Finally, while the Hotspot Problem takes into account en-route
conflicts, it only allows delaying airplanes at the airports. The Hot-
spot Problem, therefore, belongs to a larger class of air traffic
scheduling problems in terminal control areas, such as Avella
et al. (2017), Kim et al. (2009), Bianco et al. (2006), D’Ariano
et al. (2015), Samà et al. (2017).

In this paper, we experiment with a different MIP formulation
for job-shop scheduling in transportation, recently introduced by
Lamorgese and Mannino (2019) for rail traffic management, and
then extended to cope with air traffic in Mannino and Sartor
(2018). The Path&Cycle formulation is a MIP formulation for job-
shop scheduling problems. As the classical big-M formulation, it
uses a set of binary variables per disjunction, but without resorting
to the notorious big-M coefficients and constraints. This allows for
stronger relaxations, without the excessive increase in running
times typically associated with time-indexed formulations. For
the Hotspot Problem, the Path&Cycle formulation was indeed pro-
ven to be more effective than the big-M formulation (Mannino and
Sartor, 2018). In this paper, we develop a Path&Cycle formulation
for the Hotspot Problem, where delayed constraint generation is
applied to cope with the potentially large number of constraints.

Fig. 1. In this illustration a sector is considered to be a hotspot if it is occupied by more than two flights at any point in time. On the left, the highlighted sector is a hotspot. On
the right, we have delayed one flight to resolve the hotspot.

Fig. 2. Occupancy and entry counts with fixed windows of capacity 2. Aircraft entries are shown as dots to illustrate that only the first 10-minute window contains more than
2 entries.

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
To speed up the separation process, we also describe a projection-
based, preprocessing technique that has the potential to signifi-
cantly reduce the size of the alternative graph which is the input
to our solution algorithm. This projection technique can also be
applied to other problems that can be modelled using an alterna-
tive graph, for example, train scheduling. Finally, since real-life
instances were not available, we tested our approach on randomly
generated instances of sizes comparable with the real ones.

A preliminary to this work (Mannino et al., 2018) was presented
at SESAR Innovation Days 2018, organized by the Single European
Sky ATM Research (SESAR) Joint Undertaking under the Horizon
2020 framework.

Our contribution is twofold: modelling and algorithmic. From
the modelling standpoint, we introduce and model the concepts
of sliding window capacity constraints (Section 3.1) and and fixed
window capacity constraints (Section 5.1), counting either occu-
pancy (Section 3.2 and Mannino and Sartor (2018)) or entries (Sec-
tion 5.2) within the specific window towards capacity. Finally, we
3

discuss layering of capacity constraints (Section 5.3). These exten-
sions allow for a better representation of the actual controller
workload with respect to previous works. From the algorithmic
standpoint, we have extended the Path&Cycle solution algorithm
to tackle these model extensions.

The rest of the paper is organized as follows. In Section 2, we
describe in detail the Hotspot Problem, and in Section 3 we intro-
duce a mathematical model for the Hotspot Problem. We introduce
the Path&Cycle model for the Hotspot Problem in Section 4, and in
Section 5 we introduce extensions to this model. We discuss our
solution algorithm and its implementation in Section 6, and our
computational results in Section 7.

2. The hotspot problem

We are given a set F of flights through an airspace divided into
predefined control sectors S. Conventionally, we also include in S

a fictitious ‘‘arrival sector” af for every f 2 F, to represent the final

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
sector of flight f. Note that af may be an airport or the space outside
the control region. Also, we conventionally assume af–ag for any
pair of distinct flights f ; g 2 F. The route of each flight f 2 F is

given as an ordered set Sf ¼ fsf1; sf2; . . . ; sfnf g of sectors, with

af ¼ sfnf . Also, we let df ¼ sf1be the departure sector (departure sec-

tors of different flights may coincide). Note that the first sector sf1
may be the one immediately after the flight takes off from a con-
trolled airport, or the first sector in the controlled airspace when
the flight enters the control space already airborne. The travel time
Ks

f of flight f through sector s 2 Sf is the time f uses to travel

through s (we let Kaf
f ¼ 0). The release time Cf of f is either (i) the

(expected) earliest departure time of f (if the departure airport is
within the controlled airspace), or (ii) the time f enters the con-
trolled airspace. Release times are given relative to an arbitrary ref-
erence time to. Because the task is to schedule flights sometime in
the future, normally (but not necessarily) to coincides with the
time when such planning is carried out. We may assume to pre-
cedes all release times, so we have Cf P 0 for all f.

The planning horizon H is subdivided into a set of contiguous
intervals, the time windows. The subdivision is completely defined
by the starting time and the size of each time window. Typically,
one-hour intervals are considered, starting at 12 a.m., 1 a.m., . . .,
but other window sizes may be possible. Each control sector
s 2 S is assigned a capacity cs 2 Z. There are two alternative ways
to interpret such capacity.

2.1. Entry count

In this interpretation, the capacity cs of a sector represents the
maximum number of flights which can enter the sector in the time
window. Indeed, if things go according to plan, most of the (time-
consuming) activities carried out by controllers occur when a flight
enters the sector. This is the definition used by the European con-
trol authorities.

2.2. Occupancy count

The capacity cs of a sector represents the maximum number of
flights which can be in the sector during the time window. Note
that, depending on the travel time and window size, entry and
occupancy counts may differ significantly (see Fig. 2).

We finally define the schedule of a flight f 2 F as the time
tfs 2 IR the flight enters sector s 2 Sf .

The Hotspot Problem is then the problem of finding a feasible
schedule tf for each flight such that, for each sector s 2 S, the num-
ber of flights in s never exceeds the capacity cs of the sector in any
predefined time window.

Note that since the travel time in each sector is fixed, that is, it is
subject to a no-wait constraint, the schedule of a flight is com-
pletely determined once the departure time is established. As a
consequence, flights entering the controlled space from ‘‘outside”
will have fixed release times, and their schedules cannot be
modified.

2.3. Fixed and sliding windows

The official definition of hotspot (Flynn et al., 2003) is based on
the above described fixed window approach. This approach has
some major drawbacks. The first is that it may lead to unwanted
violations of capacity. Suppose we ensure that in given fixed win-
dows, say from 10 a.m. to 11 a.m. and from 11 a.m. to 12 a.m., the
number of aircraft in a given sector does not exceed the capacity,
say 10. This does not prevent that in ‘‘intermediate” windows,
say from 10:30 a.m. to 11:30 a.m., we have up to 20 flights in
4

the sector. The second is mainly an operational problem, namely
bunching. When the capacity of a sector is violated during a time
window, one possibility is to hold some of the involved flights at
the airport. Obviously, one would like to generate the least possible
delay, so a natural algorithm is to hold the flights precisely the
time necessary to skip the overloaded time window. However, this
may produce a schedule with many flights bunching up at the
beginning of the next time window.

An alternative approach that solves both the ‘‘intermediate”
capacity violations and bunching is the sliding window. It simply
states that for any time interval of a given size, the number of
flights in a sector should not exceed the capacity of the sector. In
other words, the starting time of the control window is not fixed
and can be anywhere in the time horizon. Depending on the
adopted time window, we have different definitions of a hotspot.

2.4. Fixed window hotspot

A fixed window hotspot occurs when too many flights occupy
the sector during one of the predefined fixed windows. In Fig. 3
the windows have width 10 min, and start at time 0;10;20;
In this example, the windows do not overlap, but in principle, they
could. The red shaded areas of the fixed window portion of Fig. 3
shows when the sector is a fixed window hotspot.

2.5. Sliding window hotspot

A sliding window hotspot occurs when too many flights occupy
the sector during any period of time at most as long as the window
width D. It may be viewed as a family of overlapping fixed win-
dows, where the next window starts one unit of time after the pre-
vious. In Fig. 3, the sliding window has width 10 min. The red
shaded areas of the sliding window portion of Fig. 3 shows when
the sector is a sliding window hotspot. The grey crosshatched area
around the last hotspot shows how far that window can slide with
the sector remaining a hotspot.

We summarize the above with the following formal definition.

Definition 1. Let nsðtÞ be some count of flights in sector s at time t
based on the current planned departure times. The sector s is a
hotspot at time t if nsðtÞ > cs, where cs is the capacity of s.

The form of nsðtÞ in the above definition depends on the type of
the corresponding capacity constraint. We will use D to denote
windowwidth, and we will subscript D to denote widths of specific
windows. We let WðtÞ denote the window corresponding to time t,
that is eitherWðtÞ ¼ W fixedðtÞ ¼ ½a; aþ D� is the fixed window inter-
val such that t 2 ½a; aþ D�, or WðtÞ ¼ WslidingðtÞ ¼ ½t; t þ D� is the
sliding window starting at t. Let Isf ¼ ½t0f ; t1f � be the time interval
flight f spends in sector s. Then

nsðtÞ ¼
jff 2 F : Isf \WðtÞ–£gj; for occupancy counts

jff 2 F : t0f 2 WðtÞgj; for entry counts:

(
ð1Þ

In order to model controller workload more realistically, we
also propose layering different hotspot definitions. We propose
using a long-term window to manage sustained workload, and a
simultaneous short-term window to manage peak workload (Sec-
tion 5.3). In this case, the capacity may not depend only on the sec-
tor, but also on the specific capacity constraint.

3. Modelling the sliding window hotspot problem

In this section, we present our MILP model for the sliding win-
dow hotspot problem. This model is an extension of the novel
Path&Cycle formulation, which is a special version of the job-

Fig. 3. Fixed time windows versus sliding time windows. The red boxes (and line) illustrate times when the section becomes a hotspot. In each case, we have set the capacity
to 2. In the sliding window case, the windows can move slightly to the left and right with the sector remaining a hotspot, as illustrated by the grey crosshatched areas on the
right side of the figure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
shop scheduling problem with blocking and no-wait constraints
(Mascis and Pacciarelli, 2002). The formulation was recently intro-
duced by Lamorgese and Mannino in Lamorgese and Mannino
(2019) for train scheduling and then extended by Mannino and
Sartor in Mannino and Sartor (2018) to flight scheduling.

Let f 2 F be a flight and s 2 Sf be a sector on the flight plan

Sf ¼ fdf ¼ sf1; s
f
2; . . . ; s

f
nf ¼ af g of f. With some abuse of notation, if

s 2 Sf n fsfnf g, we denote by tsþ1
f the time f enters the sector follow-

ing s in the flight plan.
Using this notation, since tsþ1

f is also the time when f leaves sec-
tor s. We get the schedule constraints

tsþ1
f � tsf ¼ Ks

f ð2Þ

that is the travel time of f through s is precisely Ks
f .

Next, recalling that the release time Cf P 0 is given relative to
the reference time to, we have

t
df
f � to P Cf ð3Þ
for all flight f, with equality holding if f enters the controlled region
already airborne.

Any feasible schedule t must satisfy (2) and (3). Linear con-
straints of the form tv � tu P luv are called time precedence con-
straints. We note that (2) can be written as a pair of time
precedence constraints.

3.1. Modelling sliding window constraints

Let D be the size of the sliding window and � > 0 be a small con-
stant. We say that two distinct flights f ; g 2 F do not meet in a sec-
tor s 2 Sf \Sg if either ðiÞ f leaves sector s at least D units of time
before g enters it, that is tsg � tsþ1

f P Dþ �; or ðiiÞ g leaves sector s at

least D units of time before f enters it, that is tsf � tsþ1
g P Dþ �. In

contrast, we say that f ; g meet in s if none of the two conditions
ðiÞ and ðiiÞ is satisfied, that is,

tsg � tsþ1
f 6 D ^ tsf � tsþ1

g 6 D:

Because f ; g either meet or do not meet in sector s, we have that
any feasible schedule must satisfy the following constraint:
5

tsg � tsþ1
f P Dþ �

_
tsf � tsþ1

g P Dþ �
_

tsg � tsþ1
f

6 D ^ tsf � tsþ1
g 6 D: ð4Þ

The above constraint is called a disjunctive constraint, and it is
the disjunction of three terms. The first two terms are time prece-
dence constraints, whereas the third term is a conjunction of two
time-precedence constraints. Any feasible schedule t will satisfy
exactly one of the three terms in disjunction (4).

In order to represent this disjunctive constraint in a MILP, we
introduce the selection variables. For any ordered pair ðf ; gÞ of
flights f ; g both flying through a common sector s 2 Sf \ Sg , we
define the precedence variable

ysfg ¼
1; if fprecedes g in s

0; otherwise

�
ð5Þ

and for any unordered pair ff ; gg of distinct flights f ; g both flying
through a common sector s, we define the meeting variable

zsfg ¼
1; if f and g mhboxmeetin s

0; otherwise

�
ð6Þ

where we have preferred the notation zsfg for zsffgg, with the conven-
tion that zsfg is the same as zsgf .

So, associated with a pair of distinct flights f ; g with a shared
sector s, we have three binary variables: two precedence variables
and one meeting variable. Each of these variables corresponds to
one of the terms of the disjunction (4) associated with f ; g, and s.
Since exactly one of the three terms must be satisfied by any fea-
sible schedule, the binary variables must satisfy the following se-
lection constraints:

ysfg þ ysgf þ zsfg ¼ 1: ð7Þ
We use (y; z) to denote the vector of selection variables, that is,

the selection vector. A schedule �t associated with a selection vector
ð�y;�zÞ must satisfy, for all pair of distinct flights f ; g 2 F, and all
s 2 Sf \Sg

ðiÞ tsg � tsþ1
f P Dþ �; if �ysfg ¼ 1

or ðiiÞ tsf � tsþ1
g P Dþ �; if �ysgf ¼ 1

or ðiiiÞ tsg � tsþ1
f 6 D ^ tsf � tsþ1

g 6 D; if �zsfg ¼ 1:

ð8Þ

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
In other words, the selection variables decide which time prece-
dence constraints in each disjunction must be satisfied by the
schedule t. Associated with any selection vector ðy; zÞ we have thus
a system of precedence constraints. This motivates the next:

Definition 2. We let Aðy; zÞ be the system of precedence con-
straints (2) and (3), and the constraints of the disjunctions (8)
associated with the selection vector ðy; zÞ.

The system of precedence constraints Aðy; zÞ ensures that each
flight’s schedule is feasible in isolation and that the precedence
decisions coded by y and z are respected. However, this system
of constraints does not take into account capacity.

3.2. Capacity constraints

The vector z determines which pairs of flights meet in a given
sector. We say that a set of flights F#F meet is a shared sector s
if there is a time window of size D when all flights are in s. Now,
a set F#F of flights meet in a sector s if and only if every pair
f ; g 2 F of distinct flights meet in s. In this case we have that

zsfg ¼ 1 for all distinct ff ; gg# F and
P

ff ;gg# Fz
s
fg ¼

jFj
2

� �
.

We denote by Fs #F the set of flights going through s and let
cs be the capacity of s, i.e. no set of cs þ 1 flights can meet in s. Then,
for every set of flight F#Fs where jFj ¼ cs þ 1; z must satisfy the
following constraint:

X
ff ;gg# F

zsfg 6
cs þ 1

2

� �
� 1: ð9Þ

A meeting (selection) vector is hotspot free if it satisfies (9).

3.3. A disjunctive formulation for the Hotspot problem

We can now state more formally our basic version of the Hot-
spot problem.

3.3.1. The sliding window hotspot problem
The Sliding Window Hotspot problem amounts to finding a hot-

spot free selection vector ðy; zÞ satisfying (7) and (9), and a sched-
ule t satisfying Aðy; zÞ, such that the cost wðtÞ of the schedule is
minimized.

The function w : t ! R determines the cost of the schedule and
typically increases monotonically with the delays (that is with tÞ).
Note that constraints (2), (3), (8) and (9), provide a disjunctive for-
mulation for the feasible solutions ðy; z; tÞ to the Hotspot problem.
A standard way to linearize (8) is by means of the so called big-M
trick (see, for instance, Queyranne and Schulz, 1994). However, as
discussed in the introduction, this leads to very weak relaxations.
Following (Lamorgese and Mannino, 2019), we prefer a different
model.

4. The Path&Cycle model

4.1. The route node graph

At the heart of the Path&Cycle formulation is an event graph
G ¼ ðV ; EÞ called the route node graph. The nodes are associated
with the time variables of the disjunctive formulation for the hot-
spot problem. In particular, V contains a special node o, the origin,
associated with the reference time variable to and a route node hf ; si
associated with the variable tsf , for each f 2 F; s 2 Sf . The node
hf ; si represents the event ‘‘flight f enters sector s”. The directed
6

arcs of the graph are associated with time precedence constraints
between the schedule variables. So, if u ¼ hf ; si 2 V and
v ¼ hg; ri 2 V , then ðu;vÞ 2 E with length luv represents the con-
straint tgr � tfs P luv . Note that the inequality tu � tv 6 l is equiva-
lent to tv � tu P �l, which in turn is associated with an arc ðu;vÞ
with length �l. Furthermore, an equality precedence constraint
tv � tu ¼ l can be transformed into two inequalities, which in turn
correspond to two anti-parallel arcs ðu;vÞ and ðv; uÞ of length l and
�l, respectively.

Release time constraints (3) are thus represented by arcs from
the origin to the node associated with the first sector of every
flight. Fig. 4 shows an example of a route node graph for two
flights.

When two flights f and g both fly through a common sector s,
then either they meet in s or one precedes the other as represented
by (4). Since each term in the disjunction is either a time prece-
dence constraint or the conjunction of two time-precedence con-
straints, it can be represented in the route node graph by arcs
called alternative arcs, as shown in Fig. 5. The alternative arcs,
which are drawn in the figure as either dashed or dotted arrows,
have length equal D or �D, according to (8). That is, the arc lengths
are determined by the window width D. Note that we have two
arcs associated with the ‘‘meet” case of the disjunction. Now, each
alternative arc (or pair of arcs) is associated with one term in the
disjunctive constraint (4), which in turn is associated with a selec-
tion variable. Consequently, each alternative arc is associated with
exactly one selection variable. For instance, in Fig. 5, the arc
ðhg; s2i; hf ; s3iÞ is associated with the meeting variable zs2fg .

We now summarize the above construction by giving a formal
definition of the route graph.

Definition 3. Let F be a set of flights and, for f 2 F, let Cf be the
departure time, and let Ks

f be the travel time for each s 2 Sf . Let
F� #F be the set of flights with fixed departure times. Let
UF ¼ fhf ; si : f 2 F; s 2 Sf } be the set of route nodes. The route
node graph is a directed graph G ¼ ðV ; ER [ET [EAÞ, where ER are
the release arcs, ET are the fixed precedence arcs, and EA ¼ EyA [EzA are
the alternative arcs. We have

V ¼ UF [fog
ER ¼ fðo; hf ;df iÞ : f 2 Fg

[fðhf ; df i; oÞ : f 2 F�g
ET ¼ fðhf ; si; hf ; sþ 1iÞ : f 2 F; s 2 Sf g

[fðhf ; sþ 1i; hf ; siÞ : f 2 F; s 2 Sf g
Ey
A ¼ fðhf ; sþ 1i; hg; siÞ : s 2 S; ðf ; gÞ 2 Fs �Fs; f–gg

Ez
A ¼ fðhf ; si; hg; sþ 1iÞ : s 2 S; ðf ; gÞ 2 Fs �Fs; f–gg:
For each arc e 2 E, its length le is the constant term in the corre-

sponding time precedence constraints. So, for e ¼ ðo; hf ; df iÞ 2 ER

we have le ¼ Cf ; for e ¼ ðhf ; df i; oÞ 2 ER we have le ¼ �Cf ; for
e ¼ fðhf ; si; hf ; sþ 1iÞ 2 ET we have le ¼ Ks; for
e ¼ fðhf ; sþ 1i; hf ; siÞ 2 ET we have le ¼ �Ks; for e 2 Ey

A with have
le ¼ D; and finally, for e 2 Ez

A we have le ¼ �D. If e is an alternative
arc, we let VarðeÞ be the variable associated with e. Since every
alternative arc is associated with a selection variable in the binary
vector ðy; zÞ, we may interpret ðy; zÞ as the incidence vector of a
subset EAðy; zÞ# EA. We use Gðy; zÞ ¼ ðV ; Eðy; zÞÞ to denote the sub-
graph of G induced by the set of arcs Eðy; zÞ ¼ ER [ET [EAðy; zÞ, that
is, the graph we obtain from G by removing all alternative arcs not
selected in ðy; zÞ.

We extend the definition of Var to a set of arcs E ¼ fe1; . . . ; eng
so that VarðEÞ ¼ fVarðeiÞ : ei 2 Eg.

Fig. 4. Route node graph for two flights f and g. g has a fixed departure time to þ Cg , while f has an earliest departure time to þ Cf . Both flights fly through sector s2. The arcs
represent time precedence constraints.

Fig. 5. Since both flights f and g fly through s2, they must either meet there, or one must precede the other. The dashed and dotted alternative arcs between nodes of different
flights represent each of these options. All the arc lengths have been omitted, and the alternative arcs have instead been labelled with their associated binary variables.

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
4.2. Positive cycles and longest paths

By construction, the route node graph contains a directed path
from the origin o to any other node of the graph. Indeed, there is a
directed edge from o to the node hf ; df i associated with the first
sector in the route of flight f 2 F, and a directed path from hf ; df i
to every node hf ; sf i associated with any sector sf 2 Sf on the route
of f. Note that this path does not make use of alternative edges, and
so for any selection vector ðy; zÞ, the graph Gðy; zÞ ¼ ðV ; Eðy; zÞÞ also
contains a path Pu from o to any other node u 2 V . By construction,
even if G contains negative length arcs, the length lðPuÞ of this path
is always non-negative.

It is well known that, if Gðy; zÞ does not contain a strictly
positive directed cycle (corresponding to an infeasible subset
of time precedence constraints), then it contains a maximum
length path from o to any other node u. For all u 2 V , let us
denote by L�ðy; z;uÞ such length. The following Lemma 4 follows
from well-known results (see, for instance, Bertsimas and
Tsitsiklis, 1997).
7

Lemma 4. Let ð�y;�zÞ be a selection vector. There exists a feasible
solution to the set of inequalities Að�y;�zÞ if and only if the graph Gð�y;�zÞ
does not contain strictly positive length directed cycles. Then, a feasible
solution is given by t�u ¼ L�ð�y;�z;uÞ, for u 2 V. Finally, if the cost
function wðtÞ is non-decreasing, then t� is a feasible solution which
minimizes wðtÞ.

We let Cþ be the set of all strictly positive directed cycles of the
route node graph G and let C 2 Cþ be one such cycle. We denote by
AltðCÞ ¼ C \ Ea the set of alternative arcs in C. We divide the alter-
native arcs into precedence arcs AltyðCÞ ¼ C \ Ey

a, and meeting arcs
AltzðCÞ ¼ C \ Ez

a. It follows from Lemma 4 that, for any feasible
solution ðy; z; tÞ to the hotspot problem, the graph Gðy; zÞ does
not contain a strictly positive directed cycle. So, for any C 2 Cþ,
at least one alternative arc in C must be excluded in any feasible
solution, and the selection vector ðy; zÞ satisfies the following set
of (no good) constraints:X
e2AltyðCÞ

ye þ
X

e2AltzðCÞ
ze 6 jAltðCÞj � 1; C 2 Cþ: ð10Þ

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
4.3. Path&Cycle MILP formulation

To simplify the following discussion, we assume now that the
objective function amounts to minimizing the sum of the delays
of all flights at their destinations; the extension to any function
non-decreasing with time is straightforward. With this assump-
tion, it follows by Lemma 4 that the Hotspot problem can be mod-
elled as follows. We let A ¼ fhf ; af i : f 2 Fg be the set of arrival
route nodes, and get the mathematical model

min
X
u2A

L�ðy; z;uÞ

s:t:

ðiÞ ysfg þ ysgf þ zsfg ¼ 1 s 2 S; ff ;gg#Fs

ðiiÞ
X

e2AltyðCÞ
ye þ

X
e2AltzðCÞ

ze 6 jAltðCÞj � 1 C 2 Cþ

ðiiiÞ
X

ff ;gg# F

zsfg 6
jFj
2

� �
� 1 s 2S; F#Fs; jFj ¼ cs þ 1

ysfg ;y
s
gf ; z

s
fg 2 f0;1g s 2S;ff ;gg#Fs:

ð11Þ
Note that this is a non-compact formulation since the size of Cþ

in (ii) is potentially exponential in G. To turn (11) into a MILP, we
need to deal with the objective function.

To this end, for an arrival node u 2 A, we introduce a non-
negative, continuous variable gu 2 IRþ such that, for any ðy; zÞ,
we have gu P L�ðy; z;uÞ. Equivalently, we want gu P lðPÞ for any
path P from o to u in Gðy; zÞ.

Now, let Pu be the set of all simple paths from o to u in
G ¼ ðV ; EÞ, let P 2 Pu, let lðPÞ be its length, and let AltðPÞ be the
set of alternative arcs of P. If all such arcs are selected in a solution
ðy; zÞ then P belongs to Gðy; zÞ and gu P lðPÞ. This can be expressed
by the following linear expression:

gu P lðPÞ
X

e2AltyðPÞ
ye þ

X
e2AltzðPÞ

ze � jAltðPÞj þ 1

0
@

1
A ð12Þ

where Alt is defined in the same way as for cycles. Indeed, if all
selection variables in (12) are 1, then the r.h.s reduces to lðPÞ, other-
wise the constraint is redundant.

Combining (11) and (12) we get the following MILP formulation

min
X
u2A

gu

s:t:

ðiÞ ysfg þ ysgf þ zsfg ¼ 1 s 2 S; ff ; gg#Fs

ðiiÞ
X

e2Alty ðCÞ
ye þ

X
e2Altz ðCÞ

ze 6 jAltðCÞj � 1 C 2 Cþ

ðiiiÞ
X

ff ;gg# F

zsfg 6
jFj
2

� �
� 1 s 2 S; F#Fs; jFj ¼ cs þ 1

ðivÞ gu P lðPÞ
X

e2Alty ðPÞ
ye þ

X
e2Altz ðPÞ

ze � jAltðPÞj þ 1

0
@

1
A u 2 A; P 2 Pu

ysfg ; y
s
gf ; z

s
fg 2 f0;1g s 2 S; ff ; gg#Fs

gu P 0 u 2 A:

ð13Þ

Now, since gu P L�ðy; z;uÞ for u 2 A, the optimal value of (13) is
an upper bound on the optimal value of (11). Actually, one can
show that the two formulations are equivalent, (see Lamorgese
and Mannino, 2019), and the following result holds

Lemma 5. Let g�; y�; z� be an optimal solution to (13) and let
t�u ¼ L�ðy�; z�;uÞ for u 2 V. Then t� is an optimal solution for the
Hotspot Problem, and wðt�Þ ¼ P

u2Ag�
u.

In the next section, we show how to adapt this basic formula-
tion to fixed windows and entry counts, respectively.
8

5. Model extensions

The mathematical program so far introduced is based on the
sliding windows model. We now show how to extend it to fixed
windows.
5.1. Modelling fixed windows

In the fixed-window hotspot problem, for each sector s 2 S the
planning time horizon is subdivided into windows Ws. For each
w 2 Ws we let Dw be the size of windoww (in the current air traffic
control practice, Dw is 60 min or 25 min) and Tw be the start time.
The capacity constraint now requires that, in anyw 2 Ws, the num-
ber of flights is bounded by cw. We model this by introducing new
selection variables to represent the fact that a flight traverses a sec-
tor before, after, or during a given time window. We introduce
variables similar to (5) and (6), namely

ysfw ¼ 1; if f flies through s before w

0; otherwise

�

yswf ¼
1; if f flies through s after w

0; otherwise

� ð14Þ

zsfw ¼ 1; if f flies through s during w
0; otherwise

�

and associated terms in the corresponding disjunctive constraint

ðiÞ tsþ1
f 6 Tw � � if ysfw ¼ 1

or ðiiÞ tsf P Tw þ Dw þ � if yswf ¼ 1

or ðiiiÞ tsþ1
f P Tw ^ tsf 6 Tw þ Dw if zsfw ¼ 1

ð15Þ

where � > 0 is a suitably small constant. Note that each term in the
above disjunction is a standard time precedence constraint and can
be represented by an arc with suitable length in the route node
graph. Fig. 6 (corresponding to Fig. 5 for the sliding window capac-
ity constraint) shows how we represent (15) in the route node
graph.

The capacity constraint for the fixed windows can now be writ-
ten as follows:

X
f2Fs

zsfw 6 cw; s 2 S; w 2 Ws: ð16Þ

Note that, for a given sector s, we may have fixed windows of
different sizes and overlapping windows. Also, fixed window and
sliding window constraints can easily be used together in a com-
bined formulation.
5.2. Modelling entry counts

It is very easy to amend our model to count entry rather than
occupancy. Without going into details, this is obtained by simply
replacing, in the disjunctive constraints (4), (8) and (15), variables
tsþ1
f and tsþ1

g with tsf and tsg , respectively, leaving sign and constants
unchanged. Accordingly, the alternative arcs in the node-route
graph will be ‘‘re-directed”, so that all tails and heads will be either
hf ; si or hg; si, but the lengths will stay unchanged.

The result of this is that we replace the occupancy time interval
of each flight with the single moment in time when the flight
enters the sector. That is, from the point of view of the algorithm,
the flight exists only at the moment it enters the sector. It is there-
fore irrelevant when the flight leaves the sector, or, equivalently,
when it enters the next sector.

; ff ; gg#Fs

2 Ws; f 2 Fs

s; jFj ¼ cs þ 1

2 S;w 2 Ws

C 2 Cþ

u 2 A; P 2 Pu

; ff ; gg#Fs

u 2 A:

ðHPÞ

Fig. 6. Route node and arcs for a fixed window. The solid arcs between o and w represent the starting time of the window. The dashed and dotted arcs to and from w are
disjunctive arcs. The disjunctive arcs are labelled with both their weights and their associated binary variables.

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
5.3. Modelling layered workload constraints

We are now ready to state our general MILP. The alternative
arcs of the route node graph G ¼ ðV ; EÞ will be associated with each
of the terms in the disjunctions (8) and (15). Then Cþ will be the
set of strictly positive directed cycles of G, whereas, for u 2 V ;Pu

is the set of directed simple paths from o to u in G.

min
X
u2A

gu

s:t:
ðiaÞ ysfg þ ysgf þ zsfg ¼ 1 s 2 S

ðibÞ ysfw þ yswf þ zsfw ¼ 1 s 2 S;w

ðiiaÞ
X

ff ;gg# F

zsfg 6
jFj
2

� �
� 1 s 2 S; F#F

ðiibÞ P
f2Fs z

s
fw 6 cw s

ðiiiÞ P
e2AltyðCÞye þ

X
e2AltzðCÞ

ze 6 jAltðCÞj � 1

ðivÞ gu P lðPÞ
X

e2AltyðPÞ
ye þ

X
e2AltzðPÞ

ze � jAltðPÞj þ 1

0
@

1
A

ysfg ; y
s
gf ; z

s
fg 2 f0;1g s 2 S

gu P 0

In order to model multiple simultaneous fixed windows, we
simply add more windows to the sets Ws. We can also model mul-
tiple simultaneous sliding windows, but then we must add indexed
copies of the selection variables (5) and (6) with corresponding
copies of ðiaÞ and ðiiaÞ.Summary of notation The schedule related
variables gu are introduced in Section 4.3, while the decision vari-
ables ysfg ; z

s
fg ; yfw; ywf , and zfw are introduced in Eqs. (5), (6) and (14).

S is the set of all sectors, Fs is the set of all flights using sector s,
and Ws is the set of all fixed windows of sector s. cs is the sliding
window capacity of sector s, and cw is the capacity of the fixed win-
dow w. The sets Cþ (of strictly positive cycles) and Pu (of longest
paths) are introduced in Section 4.2, along with the notation
Alt;Alty , and Altz (alternative arcs in a set of arcs).
6. Solution algorithm and implementation

In principle, HP could be solved by simply feeding it to an off-
the-shelf MILP solver. However, we would quickly find out that
9

even for very small instances both the number of variables and
constraints would grow prohibitively large.

In order to deal with the size of the model, we apply delayed
variable and constraint generation. We present the details of our
custom row and column generation algorithm (Section 6.1) and
and show how we separate violated constraints (Section 6.2).
Finally, we show how to significantly reduce the size of the route
node graph in order to speed up the constraint generation process
(Section 6.3).
6.1. Delayed variable and constraint generation

Following the typical framework of a row and column genera-
tion algorithm, we build a sequence HP0, HP1; . . .of subproblems
of HP, where each MILP is obtained from the previous one by add-
ing some constraints and/or some variables. The initial subProblem
HP0 is obtained from HP by removing all variables but g and all the
constraints but the non-negativity constraints on g.
min
P

u2Agu

s:t: gu P 0 u 2 A:
HP0

At iteration k ¼ 0;1; . . . we solve Problem HPk to optimality.
Since HPk is a relaxation of HP, if HPk is infeasible, so is HP, and
we are done.

Otherwise, let (gk; yk; zk) be the optimal solution to HPk at iter-
ation k and let Gðyk; zkÞ be the corresponding route node graph as
described throughout Section 4. Then, we exploit Gðyk; zkÞ to look

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
for violated inequalities (the details are described in Section 6.2) by
performing the following steps:

1. We start by searching for strictly positive directed cycles in the
graph Gðyk; zkÞ, which is equivalent to searching for violated
cycle inequalities. If any such cycle is found, we add the corre-
sponding inequality to HPk and iterate.

2. Otherwise, Gðyk; zkÞ does not contain strictly positive directed
cycles and we can construct a feasible schedule tk by Lemma
4, which can then be used to look for violated path inequalities.
If any is found, we add it to HPk and iterate.

3. Finally, if no cycle and path inequalities are violated, we look for
capacity constraints violations. If no capacity constraints are
violated, then (gk; yk; zk) is feasible and thus optimal for the
overall Problem HP, and tk is the optimal schedule by Lemma
5. Otherwise, we add the violated capacity constraint and
iterate.

Note that during step 3 it might happen that HPk does not yet
contain all the variables z that are needed for separating a particu-
lar violated capacity constraint. For example, at the very first iter-
ation, HP0 does not contain any variable y; z, which means that no
positive cycle can be generated, and the length of a path associated
to a certain airplane will be simply equal to the corresponding
minimum travel time. This is usually called free-running and it
represents the situation in which all airplanes travel as if there
were no other airplanes (see Fig. 4). The schedule t0 that arises
from this situation might violate some of the capacity constraints,
which means that some decisions must be made to prevent it. As
we have seen in Section 4, these decisions are represented by the
variables y; z. In general, if one of the violated capacity inequalities
contains a certain variable zsfg and that variable is not present in
HPk, then we need to add to HPk the set of variables ysfg ; y

s
gf ; z

s
fg that

is associated with zsfg together with its corresponding constraint
ysfg þ ysgf þ zsfg ¼ 1. In other words, we need to give the model the
ability to prevent a certain capacity violation by adding the appro-
priate decision variables and constraints. However, the newly
added decision variables, which are associated to newly added arcs
in the route node graph (see Fig. 5), will now contribute to possibly
generating more violated cycle and path inequalities.
6.2. Separating violated inequalities

The effectiveness of the solution algorithm described in the pre-
vious section is clearly conditional to the effectiveness of the pro-
cedure for separating violated inequalities. Here we describe the
details of such a procedure for each class of inequality (capacity
HP:ii, cycle HP:iii, and path HP:iv), and we show that it can be per-
formed efficiently.

It is important to recall that the different classes of inequalities
are separated sequentially. Given a vector (�g; �y;�z), with �y;�z 0,1-
vectors, we generate first all the violated cycle inequalities. There-
fore, when we separate new classes of inequalities for the current
point (�g; �y;�z), the associated graph Gð�y;�zÞ contains no strictly pos-
itive directed cycles. As stated in Lemma 4, this is indeed a neces-
sary condition for generating a feasible schedule �t. Also, we do not
look for capacity violations until we have found a feasible schedule
�t that is optimal for the current subproblem, or in other words until
there are no more path inequalities violated. Finding an optimal
schedule is not a necessary condition for the separation of capacity
inequalities, but we still separate capacity inequalities last, since
this separation may require the introduction of binary variables.
10
� Cycle inequalities. This problem is reduced to that of finding a
strictly positive directed cycle in graph Gð�y;�zÞ. In turn, this
can be performed in OðjV j � jEjÞ time by applying a specialized
label correcting algorithm (see Ahuja et al., 1993). If the algo-
rithm returns a strictly positive directed cycle C of Gð�y;�zÞ, then
we add the corresponding cycle inequality to the current MILP.

� Path inequalities. Let Puð�y;�zÞ#Pu be the set of ou-paths in
Gð�y;�zÞ. Recall that when we separate path inequalities, Gð�y;�zÞ
does not contain strictly positive directed cycles. Assume that,
for some u 2 A, there exists a path inequality associated with
�P 2 Pu, which is violated by (�g; �y;�z), that is
�gu < lð�PÞ
X

e2Altyð�PÞ
�ye þ

X
e2Altzð�PÞ

�ze � jAltð�PÞj þ 1

0
@

1
A ð17Þ

Note that �P is contained in Gð�y;�zÞ, otherwiseP
e2Altyð�PÞ�ye þ

P
e2Altzð�PÞ�ze < jAltð�PÞj, and the r.h.s. of (17) is non-

positive, a contradiction since �gu P 0. So, �P 2 Puð�y;�zÞ, and we
denote by P�

u 2 Puð�y;�zÞ the path of maximum length in Gð�y;�zÞ
(such path exists because the graph does not contain strictly
positive directed cycles). By definition, lð�PÞ 6 lðP�

uÞ and thus
there exists a violated path inequality if and only if

�gu < lð�P�
uÞ ð18Þ

So, the separation of a path inequality violated by (�g; �y;�z)
amounts to computing the maximum ou-path in Gð�y;�zÞ, for
u 2 A. As for cycles, this can be performed in OðjV j � jEjÞ time. If,
for some u, we have �gu < lðP�

uÞ, then we add the constraints asso-
ciated with P�

u to the current MILP. Otherwise, no violated path
inequalities exist.

� Capacity constraints. When separating violated capacity con-
straints for point (�g; �y;�z), the associated graph Gð�y;�zÞ contains
no strictly positive directed cycles, and we can compute a ten-
tative schedule �t by letting �tu ¼ L�ð�y;�z;uÞ for u 2 V . Note that,
since �t is constructed on Gð�y;�zÞ, then �t will respect all meetings
imposed by the (arcs associated with the) meeting variables �z,
and we can use �t to check whether any of the capacity con-
straints are violated.
Fixed window. Checking if �t violates a fixed window constraint
can be done by inspection, and thus in linear time in the num-
ber of flights and the number of windows.
Sliding window. This case a bit more tricky. First, recall from (8)
that if two flights f ; g are in the same sliding window (with
width D) in sector s, then we have
tsf 6 tsþ1
g þ D ^ tsg 6 tsþ1

f þ D: ð19Þ
The above condition is satisfied if and only if the intervals
Isf ¼ ½tsf ; tsþ1

f þ D� and Isg ¼ ½tsg ; tsþ1
g þ D� overlap. Consider the lar-

gest set F�
s #Fs of flights mutually satisfying condition (19) in

s. If jF�
s j > cs then we have identified a violated sliding window

capacity constraint (associated with F�
s). This reduces to the

problem of finding a maximum cardinality clique in an interval
graph, that is the undirected graph obtained by associating a
node with each interval and an edge with every pair of overlap-
ping intervals. Finding a maximum clique in an interval graph
H ¼ ðF;WÞ can be performed in OðjWj log jWjÞ (see Gupta et al.,
1982).

6.3. Reduction of the route node graph

The time spent separating violated path and cycle inequalities
depends on the size of the route node graph. Since we use
Bellman-Ford for both separations, the worst-case complexity is
OðnmÞ, where n is the number of nodes and m the number of arcs.

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
In this section, we will show that we can look for cycles and paths
in a reduced graph with only jFj þ 1 nodes and potentially far fewer
arcs than in the original route node graph. The reduced graph is
quickly computed as a preprocessing step and has the potential
to save significant time in each iteration of path and cycle con-
straint separation process. The effectiveness of the reduction has
been confirmed by a set of experiments carried out during the
development of our implementation. The greatest effect is
expected when the number of sectors on each flight path is large.

Recall that the nodes of the route node graph correspond to the
continuous schedule variables of a disjunctive formulation of the
hotspot problem (see Section 2). The basic idea for our reduction
is to project out all continuous-time variables except one for each

flight (the arrival time t
af
f) and the reference time variable to. To this

end, we use an analogue of the Fourier-Motzkin elimination scheme
applied to the original disjunctive formulation. Indeed, if the formu-
lation only contains precedence constraints and no disjunctions,
then the projection operation has an immediate interpretation on
the route-node graph. Namely, projecting out one variable tv corre-
sponds to removing the corresponding node v from the route node
graph and replace each pair of arcs ðu;vÞ; ðv ;wÞ (of length luv ; lvw,
respectively), with a single arc of length luv þ lvw (see, for instance,
Mannino and Mascis, 2009). The new arc corresponds to the time
precedence constraint obtained by Fourier-Motzkin combining
the precedence constraints associated with ðu;vÞ and ðv;wÞ (see
Wolsey and Nemhauser, 1999). This operation can in principle cre-
ate an exponential number of constraints, and thus exponentially
many arcs in the reduced graph. In case only time precedence con-
straints are involved in the projection, however, this does not hap-
pen. We can see this on the reduced graph, where the proliferation
is prevented by the fact that when parallel arcs are created, we can
remove all but the one with the largest length.

Unfortunately, when dealing with disjunctive precedence con-
straints, things become complicated and Fourier-Motzkin cannot
be applied straightforwardly. In the following, we show one way
to adapt the procedure to cope with disjunctive precedence con-
straints and avoid that exponentially many arcs appear. The
reduced graph will however contain parallel edges. Before intro-
ducing the reduced graph G0 ¼ ðV 0; E0Þ, we need a few definitions.

Definition 6. Let f be a flight flying through sectors
s ¼ s1; . . . ; sk ¼ s0 in sequence, where k P 2. Then the flight time of
f from s to s0 is
df ðs; s0Þ ¼ Ks1
f þ . . .þKsk�1

f

We also define df ðs0; sÞ ¼ �df ðs; s0Þ.
In other words, if s precedes s0 on the route of f, then df ðs; s0Þ is

the travel time of f from s to s0, otherwise it is the negative of the

travel time. In both cases, df ðs; s0Þ is the length lðPf
ss0 Þ of the path

Pf
ss0 from s to s0 on the route of f in the route node graph.
Note that since df ðs; s0Þ includes the flight time through sector s,

but not through s0, we have

df ðs; s00Þ ¼ df ðs; s0Þ þ df ðs0; s00Þ ð20Þ
In fact, this holds regardless of the order in which f flies through

s; s0, and s00.
We will also use the notation dðhf ; si; hf ; s0iÞ ¼ df ðs; s0Þ and

dðo; hf ; df iÞ ¼ Cf . We observe that dðu;vÞ ¼ �dðv ;uÞ and that
dðu;wÞ ¼ dðu;vÞ þ dðv;wÞ if u; v;w 2 Uf are route nodes of the
same flight f, and that if G contains the edge ðhf ; df i; oÞ, then
dðhf ; df i; oÞ ¼ �Cf .

We now go back to define the reduced graph G0. The nodes of
the reduced graph are the origin o0 and a node n0

f for each flight
11
f 2 F, corresponding to, respectively, the reference time to and
the arrival times tnf . Note that these nodes correspond to the origin
o and the arrival nodes nf ¼ hf ; af i in the route node graph. The arcs
of the reduced graph are of two types:

� Fixed arcs, all incident in o0 (either incoming or outgoing). In
particular, for every f 2 F we have that ðo0;n0

f Þ 2 E0. The length
kðo0;n0

f Þ ¼ Cf þ df ðdf ; af Þ is the minimum arrival time of flight f

at destination, and equals the length lðPf
o;nf

Þ of the path from o

to nf in the route of f on the route node graph. When the flight
f has fixed departure time Cf , then we also have the backward
arc ðn0

f ; o
0Þ 2 E0. The length kðn0

f ; o
0Þ ¼ �Cf � df ðdf ; af Þ ¼

�kðo0;n0
f Þ is the length of the path from nf to o on the route of

f in the route node graph.
� Alternative arcs. The alternative arcs are ‘‘copies” of the original
alternative arcs, and each is associated with the same decision
variable as is associated with its original version. In particular,
if e ¼ ðu;vÞ ¼ ðhf ; si; hg; s0iÞ 2 E is an alternative arc of G with
length le, then e0 ¼ ðn0

f ;n
0
gÞ 2 E0 is an alternative arc of G0 and

we have Varðe0Þ ¼ VarðeÞ. The length of e0 is defined as
ke0 ¼ kðe0Þ ¼ le þ dgðs0; agÞ � df ðs; af Þ:
Note that the reduced graph may contain parallel arcs between
pairs of nodes.
Definition 7 (Reduced route node graph). Let G ¼ ðV ; EÞ be a route
node graph. The reduced route node graph is the graph
G0 ¼ ðV 0; E0Þ, where V 0 ¼ fo0g [fn0

f : f 2 Fg; E0 ¼ E0
R [E0

A, and

(i) for each f 2 F, we have e0 ¼ ðo0;n0
f Þ 2 E0

R and
ke0 ¼ Cf þ df ðdf ; af Þ;
(ii) for each f 2 F with fixed departure time we have
e0 ¼ ðn0

f ; o
0Þ 2 E0

R, and ke0 ¼ �Cf � df ðdf ; af Þ;
(iii) for each alternative arc e ¼ ðu;vÞ ¼ ðhf ; si; hg; s0iÞ 2 EA , we
have e0 ¼ ðn0

f ;n
0
gÞ 2 E0

A; ke0 ¼ le þ dgðv ; af Þ � df ðu; af Þ, and
Varðe0Þ ¼ VarðeÞ.

Fig. 7 shows an example of a reduced route node graph. If two
flights f and g share more than one sector, then there will be mul-
tiple sets of alternative arcs between ðf ; af Þ and ðg; agÞ in the
reduced route node graph, each labelled according to the corre-
sponding shared sector.

Lemma 8. There is a simple path P from o to ng in G ¼ ðV ; EÞ of length
lðPÞ if and only if there is a simple path P0 from o0 to n0

g in G0, with

lðPÞ ¼ kðP0Þ. Moreover, the alternative arcs of P0 corresponds one-to-
one to the alternative arcs of P so that VarðP0Þ ¼ VarðPÞ.
Proof. If. Let e1 ¼ ðu1;v1Þ; e2 ¼ ðu2;v2Þ; . . . ; eq�1 ¼ ðuq�1;vq�1Þ be
the sequence of alternative arcs encountered on P, with f q ¼ g. Path
P is the concatenation of P1 � e1 � P2 � . . . � Pq�1 � eq�1 � Pq, where P1

is the path from the origin o ¼ v0 to u1 on the route of flight f 1; Pq is
the path from vq to uqþ1 ¼ ng on the route of flight f q ¼ g and, for
1 < i < q; Pi is the path from route node v i�1 to route node ui on
the route of flight f i (note that v i�1 does not necessarily precedes
ui on the route of f i). Now, we have that
lðPÞ ¼ lðP1Þ þ le1 þ . . .þ leq�1 þ lðPqÞ. Note that lðPiÞ can be negative
(i.e. ui precedes v i�1 on the route of f i). By (20), for
i ¼ 1; . . . ; q� 1 we have lðPiÞ ¼ dðv i�1;uiÞ ¼ dðv i�1;nf i Þ � dðui;nf i Þ,
whereas lðPqÞ ¼ dðvq;nfq Þ. So, we have:

Fig. 7. Reduced route node graph with three flight f ; g, and h. Flights f and g are as
shown in Figure 5 and both fly through sector s2, while flights g and h both fly
through sector s4. Flights f and h have no common sectors, so there are no
alternative arcs between them. The reduced route node graph may have parallel
alternative arcs, so we label the alternative arcs to distinguish them.

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
lðPÞ ¼
Xq�1

i¼1

lei þ dðv i�1;nf i Þ � dðui; nf i Þ
� �þ dðvq�1;nfq Þ

¼ dðv0;nf 1 Þ þ
Xq�1

i¼1

lei þ dðv i;nf iþ1
Þ � dðui;nf i Þ ð21Þ
Fig. 8. A simple ong-path P in the route node grap

12
where the last equality is obtained by simply rearranging the terms
(i.e. taking the first term of the summation out and bringing the
term outside the summation in). The above steps are illustrated in
Fig. 8.

Now, the path P0 on G0 associated with P will be
P0 ¼ ðo0;n0

f 1
Þ � ðn0

f 1
;n0

f 2
Þ � . . . � ðn0

f q�1
;n0

f q
Þ, as shown in Fig. 9, and we

have
kðP0Þ ¼ kðo0;n0
f 1
Þ þ

Xq�1

i¼1

kðn0
f i
;n0

iþ1Þ

¼ dðo;nf 1 Þ þ
Xq�1

i¼1

lei þ dðv i;nf iþ1
Þ � dðui;nf i Þ: ð22Þ

Only if. The proof goes like in the if case, only by reversing the
construction (i.e. from P0 to P).
Lemma 9. There is a simple cycle C in G ¼ ðV ; EÞ of length lðCÞ if and
only if there is a simple cycle C0 from in G0, with lðCÞ ¼ kðC0Þ. Moreover,
the alternative arcs of C0 corresponds one-to-one to the alternative
arcs of C and VarðC0Þ ¼ VarðCÞ.

The proof of the above lemma is very similar to the one of
Lemma 8 and we omit it. The main idea is to prove two cases sep-
arately: one case for cycles that go through the origin, and one case
for cycles that do not go through the origin.

7. Computational results

In order to test the performance of our model and our algorithm
in the presence of layered capacity constraints, we run two differ-
ent numerical experiments. In the first, we compare different
capacity constraint combinations on a collection of small instances
in order to highlight the differences in solutions and performance.
In the second, we test a particular capacity constraint combination
on a series of larger instances to test performance on a larger scale.
h G. The dotted arcs represent path lengths.

Fig. 9. The ong 0-path P0 in the reduced route node graph G0.

Table 1
The table shows 6 different capacity constraint setups. Baseline represents a common
existing solution, and Goal represents our suggested ideal solution. The alternative
solutions represent various simplifications of Goal.

Baseline (B) FW (6, 60 min); FW (3, 15 min)

Alternative 1 (A1) FW (6, 60 min)
Alternative 2 (A2) SW (6, 60 min)
Alternative 3 (A3) FW (3, 15 min)
Alternative 4 (A4) SW (3, 15 min)
Alternative 5 (A5) FW (6, 60 min); SW (3, 15 min)
Goal (G) SW (6, 60 min); SW (3, 15 min)

1 Each successive MILP was solved without a time cut-off. In one case (S3, A4) an
optimal solution was found after the global time cut-off. This solution has been

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
Our experiments were run on a MacBook Pro (15-inch, 2016)
with a 2.9 GHz Quad-Core Intel Core i7 processor and 16 GB
2133 MHz LPDDR3 memory, running macOS Catalina version
10.15, Python 3.7.3, and CPLEX 12.9 running on a single thread
with default settings.

7.1. Comparison of capacity constraint combinations

For our first experiment, we simulate traffic in a small sector.
The simulated traffic follows a realistic pattern, for example for a
smaller airport, and highlights the differences in performance
between different capacity constraints we study. With only a few
notable exceptions, most Norwegian airports have no more than
6 aircraft movements per hour on average across the year, accord-
ing to 2019 data from Avinor (2020).

We simulate 7 different capacity constraint setups. The setups,
summarized in Table 1, are as follows

Baseline (B). Maximum 6 flights in fixed windows of 1 h, and
maximum 3 flights in fixed windows of 15 min. This solution
can easily be found by conventional time-indexed formulations,
so we use it as the baseline for comparison.
Alternative 1 (A1). Maximum 6 flights in fixed windows of 1 h.
This is a relaxation of the baseline (B).
Alternative 2 (A2). Maximum 6 flights in sliding windows of
1 h. This is similar to (A1), but the sliding window should
reduce bunching. (A2) is a strengthening of (A1), in the sense
that (A1) is a relaxation of (A2).
Alternative 3 (A3). Maximum 3 flights in fixed windows of 15
min. This is a relaxation of the baseline (B).
Alternative 4 (A4). Maximum 3 flights in sliding windows of 15
min. This is similar to (A3), but the sliding window should
13
reduce bunching. (A4) is a strengthening of (A3), in the sense
that (A3) is a relaxation of (A4).
Alternative 5 (A5). Maximum 6 flights in fixed windows of 1 h,
and maximum 3 flights in sliding windows of 15 min. This com-
bination of (A1) and (A4) is a strengthening of (B). The conver-
sion of the shorter fixed windows to sliding windows is
expected to reduce any bunching introduced by the longer fixed
windows.
Goal (G). Maximum 6 flights in sliding windows of 1 h, and
maximum 3 flights in sliding windows of 15 min. This combina-
tion of (A2) and (A4) is a further strengthening of (A5). The use
of sliding windows for both constraints is expected to further
reduce bunching. However, this setup is expected to be compu-
tationally heavy.

Our main interest is to compare the performances of (B), (A5),
and (G). We have also included (A1), (A2), (A3), and (A4) to show
the benefit of combining capacity constraints. In each of our setups
using fixed windows, the fixed windows partition the timeline,
with a window starting at the beginning of every hour. We use
occupancy counts in each capacity constraint. The bar graphs
labelled I in Fig. 10 show the initial traffic density in each simu-
lated schedule.

The results of our experiments are shown in Fig. 10 and Tables 2
and 3. We have used a time cut-off of 1800 seconds1. The figure
shows the number of flights entering the sector every 10 min. It
shows that the solution for (A5) is very similar to that of (G) for
the schedules where both are computed.

For all of the capacity constraint setups, the processing time
starts growing very rapidly when the schedule becomes too
crowded and too many conflicts must be resolved. Most cases that
were solved before the cut-off took only a few seconds to solve,
and in many cases were solved in the presolve, even after a few
conflicts were added.

Looking at Fig. 10, we see that (A5) generates schedules with
similar flight distributions to those generated using (G) in the cases
where both schedules could be computed. That is, (A5) does not
significantly increase bunching when compared to (G) in our
experiments. (A4) also compares favourably to (A5) and (G) in
most cases, but allows a larger sustained load since it only limits
peak capacity. In our simulations, (A5) comes out as a strong com-
included for comparison.

Fig. 10. An illustration of bunching. The bars show number of arrivals in 10-minute windows. The initial schedule I is shown in red; the baseline B, alternative A5, and the goal
G, all combinations of two capacity constraints, are shown in shades of green; and the alternatives A1, A2, A3, and A4, all single capacity constraints, are shown in shades of
blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
promise between lower sustained loads, less bunching, and lower
processing times.

Table 3 shows the total and maximum delays in each solution.
We have included maximum delays to show that our solutions do
not tend to heavily delay a small number of flights, even though
the maximum delay is not taken into account in our models. That
is, our solutions tend to retain some measure of fairness between
flights.
14
Tables 2 and 3 and Fig. 10 together show a fuller picture of how
(A5), which is a combination of two capacity constraints, compares
to a set of different single capacity constraints. The comparisons to
(A1), (A2) and (G) are of particular interest. (A1) is the 1 h fixed
window that is part of (A5). Since (A1) is a relaxation of (A5), it
is expected to be easier to compute. However, (A5) gives signifi-
cantly less bunching. (A2) is the sliding window version of (A1).
(A2) is slower to compute than (A1), but does reduce bunching

Table 2
Processing time t, number of nodes processed n, and number of conflicts resolved c. For each schedule, we list the number of flights jFj. For the computations that did not complete
before the processing time cut-off, we still show the number of nodes processed and conflicts resolved before the cut-off was reached. When the number of processed nodes for an
instance is 0, each successive MILP for that instance was solved in the presolve. The instances are sorted according to the processing time of A5.

B A1 A2 A3 A4 A5 G

jFj t n c t n c t n c t n c t n c t n c t n c

S1 25 0.0 0 0 0.0 0 0 2.1 548 8 0.0 0 0 0.0 0 2 0.0 0 2 3.4 1324 9
S2 24 0.0 0 2 0.0 0 0 3.1 2694 15 0.0 0 2 0.1 3 4 0.1 3 4 6.0 7083 17
S3 26 0.0 0 3 0.0 0 2 — 1.3e6 63 0.0 0 1 0.1 8 6 0.1 14 8 — 1.3e6 63
S4 27 0.1 0 6 0.0 0 2 — 1.8e6 53 0.0 0 4 21.0 4.9e4 30 4.0 1.4e4 16 — 1.8e6 53
S5 25 0.1 1 6 0.0 0 2 — 2.1e6 73 0.1 4 6 — 4.2e6 59 5.6 2.0e4 20 — 2.1e6 73
S6 29 0.1 0 5 0.0 0 2 — 1.8e6 103 0.0 0 4 2143.1 3.2e6 54 1159.9 2.1e6 60 — 1.8e6 103

Table 3
Total delay R and maximum delay m. The maximum delay was not taken into account by the model, but is included as a measure of how delays are distributed.

B A1 A2 A3 A4 A5 G

R m R m R m R m R m R m R m

S1 0 0 0 0 39 13 0 0 7 5 7 5 45 13
S2 3 2 0 0 64 22 3 2 20 12 20 12 81 22
S3 18 8 7 6 — — 11 8 25 12 32 12 — —
S4 75 21 62 21 — — 15 8 65 10 107 21 — —
S5 144 25 120 25 — — 30 11 — — 180 25 — —
S6 59 24 44 24 — — 29 9 114 22 133 26 — —

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
in some cases. (A5) is faster than (A2), but still appears to reduce
bunching even more. In fact, (A5) seems to reduce bunching almost
as much as the very much slower (G), where (G) is the standard we
are aiming for.
7.2. Larger-scale performance test

In order to test the performance of our algorithm and explore its
limits, we compute optimal schedules for 40 randomly generated
instances with a higher traffic load. These instances all cover 6 h,
with between 10 and 15 flights per hour. This traffic density range
is representative for the average hourly traffic density of larger air-
ports in Norway, like Stavanger or Bergen, according to data from
Avinor (2020). The capacity constraint combination used is similar
to A5, but with a fixed window capacity constraint allowing 12
entries per hour, and a sliding window constraint allowing 4 occu-
pants in any 10-minute window. Table 4 shows the performance
data.

As seen in Table 4, the number of flights in the smallest instance
M1 is 63. With a sliding window capacity limit of 4, the total num-
ber of capacity constraints in the full formulation, HP, would be
63
5

� �
, which is just over 7 million constraints in almost 2 thou-

sand binary variables. Had the hourly limit of 12 flight also been
a sliding window, the total number of capacity constraints in the
full HP would be over 1013. As shown in the table, the number of
capacity constraints generated is only a tiny fraction of the total
number of such constraints. Furthermore, since every permutation
(down to rotational symmetry) of every subset of the flights corre-
sponds to a cycle, the number of cycle constraints in the full HP
would be 62!þ 61!þ . . ., which is about 1085. Computing the num-
ber of path inequalities would require an in-depth analysis of the
individual instance. A comparison of ttotal and tlast shows that a sig-
nificant amount of the total processing time is spent solving the

final formulation HPklast . Since the final formulation can be very
small compared with the total formulation, the overhead in pro-
cessing time from delayed variable and constraint generation is
comparatively small.

Figs. 11 and 12 show how the total processing time varies with
other solution statistics. The size of each dot represents the
15
number of flights in the related instance, but not in direct propor-
tion. Differing sizes are used to show that total processing time is
affected by more than just the number of flights in the instance.

Fig. 11 shows how the total processing time varies with the
number of time the MIP solver is invoked, and the total number
of MIP nodes processed. We use a logarithmic scale for total pro-
cessing time since the time tends to increase exponentially with
some measure of instance size. In Fig. 11 we use log-log axes since
the quantities being compared appear to have a near-linear
relationship.

Fig. 12 shows how the total processing time varies with the
number of binary variables and the number of generated con-
straints. In this case, we use log-linear axes, since the total process-
ing time appears to increase exponentially with the number of
variables, and near exponentially in the number of constraints.

As we can see in Table 4, our model solves most instances very
quickly and only breaks down when the traffic becomes very dense
and the number of separated capacity conflicts exceeds a few
dozen. Since the schedules we are targeting are ones initially cre-
ated to be handled by controllers, we can reasonably expect that
real-world instances will have a relatively small number of capac-
ity conflicts to be resolved.
8. Conclusions and future work

We have shown that the Path&Cycle approach can be used to
model the Hotspot Problem with occupancy counts and layered
capacity constraints. We have also discussed how we can speed
up the solution process so that we can use our model to solve
instances with novel capacity constraint setups that are of interest
to air-traffic control authorities.

It is clear from the model HP that sliding window capacity con-
straints can generate a very large number of variables, should the
number of conflicts grows too large. This has led us to propose
(A5), where fixed windows are used to spread the flights out, and
a sliding window is used to smooth away bunching. With access
to real-world instances, we could further validate our approach
and test its scalability under a variety of conditions.

Table 4 shows how our model performs on a collection of ran-
domly generated instances with a larger number of flights. We

Table 4
Computational performance on 40 randomly generates instances. In each case, the traffic is divided across 6 h, with between 10 and 15 flight per hour. The capacity constraint is
similar to A5, with at most 12 entries per hour, and at most 4 occupants in any 10-minute window. The instances are sorted according to the total number of flights and total
processing time. Each instance was run with a cut-off where no new calls were made to the MIP solver after 1 h. Instance M22 has a node count of 0 because it was solved in the
initial presolve.

jFj MIP nodes MIP solves ttotal tlast tcallback nvars ncapacity npath ncycle

M1 63 4805 12 1.29 0.30 0.05 90 11 190 6
M2 64 59 6 0.22 0.05 0.03 57 5 129 5
M3 65 3340 7 1.33 0.43 0.05 117 6 252 0
M4 65 39849 23 10.30 3.98 0.24 153 22 432 55
M5 66 88 4 0.15 0.08 0.03 72 3 142 1
M6 66 138 4 0.22 0.13 0.03 90 3 159 0
M7 66 488582 139 165.82 4.05 1.18 240 138 576 147
M8 67 2 2 0.02 0.02 0.01 30 1 54 0
M9 67 1858 9 1.13 0.57 0.09 111 8 324 20
M10 67 5429 12 1.55 0.76 0.09 120 11 257 12
M11 68 14 4 0.05 0.02 0.02 45 3 100 0
M12 68 10 3 0.07 0.05 0.02 60 2 109 0
M13 68 266 4 0.25 0.16 0.03 90 3 163 0
M14 68 3663575 163 2829.23 329.72 2.71 285 162 1312 427
M15 68 6178644 45 — — — 210 45 1149 410
M16 68 8196053 38 — — — 219 38 815 82
M17 69 2 2 0.02 0.02 0.01 30 1 54 0
M18 69 19 3 0.11 0.08 0.03 60 2 108 0
M19 69 1606 9 0.83 0.51 0.08 132 8 353 4
M20 69 6118 8 2.33 1.45 0.15 219 7 401 13
M21 69 31692 29 14.57 1.12 0.89 162 28 373 222
M22 70 0 1 0.00 0.00 0.00 0 0 0 0
M23 70 145229 20 52.90 32.43 0.46 303 19 735 74
M24 70 443948 20 247.86 38.50 1.62 213 19 1132 343
M25 71 57 20 0.69 0.10 0.40 240 19 279 80
M26 71 23364 11 7.00 5.10 0.19 204 10 415 23
M27 71 35420 71 13.72 3.43 0.71 309 70 419 101
M28 71 120844 27 60.08 20.77 2.44 321 26 603 450
M29 71 221104 27 78.66 41.22 0.52 177 26 695 125
M30 71 196980 24 97.81 62.80 0.79 348 23 807 135
M31 71 4296321 125 — — — 468 125 1251 526
M32 72 98 9 0.45 0.08 0.19 153 8 171 48
M33 72 425 15 0.82 0.32 0.54 243 14 242 108
M34 72 143 16 1.03 0.21 0.52 252 15 297 100
M35 72 1457 17 1.33 0.26 0.29 219 16 309 50
M36 72 6649 19 3.75 1.22 0.57 300 18 422 95
M37 72 19707 13 6.64 1.96 0.26 216 12 657 41
M38 72 6212160 55 5222.85 1955.66 1.26 282 54 1158 229
M39 73 9541090 295 — — — 339 295 873 186
M40 73 7633255 420 — — — 423 420 665 272

Fig. 11. Total processing time against, respectively, the total number of MIP nodes and the number of calls to the MIP solver. Since the running time appears to increase
exponentially with somemeasure of the difficulty of the instance, the processing time is shown on a logarithmic scale. Since the processing time is approximately linear in the
number of MIP nodes and solves respectively, these are also shown on a logarithmic scale. The size of each dot represents the number of flights in the instance, but not in
direct proportion.

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
see that even for quite dense traffic patterns, a relatively small
number of variables and constraints are generated before an
optimal solution is found. Figs. 11 and 12 show that the total
16
processing time of an instance depends more on the number of
conflicts (variables and constraints) detected than on the number
of flights in the instance. This is in line with the findings in

Fig. 12. Total processing time against respectively, the number of variables, capacity constraints, path constraints, and cycle constraints. Since the running time appears to
increase exponentially with some measure of the difficulty of the instance, the processing time is shown on a logarithmic scale, while the number of variables and constraints
are shown on a linear scale. The size of each dot represents the number of flights in the instance, but not in direct proportion.

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
Mannino and Sartor (2018), where the Path&Cycle approach is
used to solve a version of the Hotspot problem for multiple, low-
capacity sectors. This scaling property makes the Path&Cycle
approach well suited to last-minute Air Traffic Flow Management,
where the current schedule in nearly feasible.

In the future, we would like to build a more precise understand-
ing of the problems surrounding bunching. In order to show
bunching effects, we use Fig. 10 to illustrate the density of flights
in 10-minute intervals. This gives a good visual indication of the
bunching effect, and studying the figure can give us an indication
about how to tweak our capacity constraints. Working with con-
trollers and control authorities we could further our understanding
of how bunching affects the workload on controllers, which in turn
would allow us to further improve our analysis of different capac-
ity constraint setups.

The Hotspot Problem as we define it falls under last-minute Air
Traffic Flow Management (ATFM), which does not take into
account aircraft separation and other local feasibility constraints.
Instead, capacities are set low enough that local Air Traffic Control
(ATC) can handle feasibility in each sector of the airspace. The sep-
aration of ATFM and ATC requires ATFM to be very conservative. By
expanding our model into the domain of ATC, we could potentially
allow higher capacities in the ATFM problem by enforcing local
feasibility already at the ATFM level. Our model can already handle
temporal aircraft separation constraints, so the major challenge
would be to expand the model to route and flight level selection.
17
In this case, we may have to resort to heuristic approaches, like
the ones presented in Kim et al. (2009), Samà et al. (2017), or other
tried approaches for job-shop scheduling (Allahverdi, 2016).
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
CRediT authorship contribution statement

Carlo Mannino: Conceptualization, Methodolody, Writing -
review & editing, Supervision, Funding acquisition. Andreas Nak-
kerud: Methodology, Software, Writing - original draft, Writing -
review & editing, Visualization. Giorgio Sartor: Conceptualization,
Methodolody, Writing - review & editing.

References

Ahuja, Ravindra K., Magnanti, Thomas L., Orlin, James B., 1993. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall Inc., USA.

Allahverdi, Ali, 2016. A survey of scheduling problems with no-wait in process. Eur.
J. Oper. Res. 255 (3), 665–686.

Allignol, Cyril, Barnier, Nicolas, Flener, Pierre, Pearson, Justin, 2012. Constraint
programming for air traffic management: a survey: in memory of pascal brisset.
Knowl. Eng. Rev. 27 (3), 361–392.

http://refhub.elsevier.com/S0305-0548(20)30276-8/h0005
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0005
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0010
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0010
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0015
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0015
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0015

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159
Avella, Pasquale, Boccia, Maurizio, Mannino, Carlo, Vasilyev, Igor, 2017. Time-
indexed formulations for the runway scheduling problem. Transp. Sci. 51 (4),
1196–1209.

Avinor, 2020. Avinor Statistics Archive. https://avinor.no/en/corporate/about-us/
statistics/archive, (visited September 2020)..

Bertsimas, Dimitris, Tsitsiklis, John N., 1997. Introduction to Linear Optimization.
Athena Scientific Belmont, MA.

Bianco, Lucio, Dell’Olmo, Paolo, Giordani, Stefano, 2006. Scheduling models for air
traffic control in terminal areas. J. Schedul. 9, 223–253.

Damhuis, E.J.H., Visser, H.G., de Jonge, Hugo.W.G., Seljée, Ron.R., 2015. Optimising
air traffic flow management. Technical Report NLR-TP-2015-180, National
Aerospace Laboratory NLR, 2015..

D’Ariano, Andrea, Pacciarelli, Dario, Pistelli, Marco, Pranzo, Marco, 2015. Real-time
scheduling of aircraft arrivals and departures in a terminal maneuvering area.
Networks 65 (3), 212–227.

de Jonge, Hugo.W.G., Seljée, Ron.R., 2011. Optimisation and Prioritisation of Flows
of Air Traffic through an ATM Network. Technical Report NLR-TP-2011-567,
National Aerospace Laboratory NLR..

Dubot, Thomas, Bedouet, Judicaël, Degrémont, Stéphane, 2016. Modelling,
generating and evaluating sector configuration plans. In: 30th Congress of the
International Council of the Aeronautical Sciences (ICAS 2016).

Geraldine Flynn, Benkouar, A., Christien, R., 2003. Pessimistic sector capacity
estimation. Technical Report EEC Note No. 21/03, Eurocontrol Experimental
Centre..

Guibert, S., Fitzpatrick, M., Criscuolo, P., Dohy, D., Iliev, B., Allard, E., Fabio, A.,
Puntero, E., Iglesias, E., Carrera, T., Valle, N., Neyns, V., Karahasanovic, A., 2019.
SESAR Solution 08.01 Validation Report (VALR) for V2. Technical Report
D2.1.050, SESAR Joint Undertaking..

Gupta, Udaiprakash I., Lee, Der-Tsai, Leung, Joseph Y.-T., 1982. Efficient algorithms
for interval graphs and circular-arc graphs. Networks 12 (4), 459–467.

Joondong Kim, Alexander Kroeller, Mitchell, Joseph S.B., 2009. Scheduling aircraft to
reduce controller workload. In: Jens Clausen, Gabriele Di Stefano (Eds.), ATMOS
2009 – 9th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems, IT University of Copenhagen, Denmark, September
10, 2009, Volume 12 of OASICS. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany.
18
Lamorgese, Leonardo, Mannino, Carlo, 2019. A noncompact formulation for job-
shop scheduling problems in traffic management. Oper. Res. 67 (6), 1586–1609.

Mannino, Carlo, Mascis, Alessandro, 2009. Optimal real-time traffic control in metro
stations. Oper. Res. 57 (4), 1026–1039.

Mannino, Carlo, Nakkerud, Andreas, Sartor, Giorgio, Schittekat, Patrick, 2018.
Hotspot resolution with sliding window capacity constraints using the
Path&Cycle algorithm. SESAR Innov. Days.

Carlo Mannino, Giorgio Sartor, 2018. The Path&Cycle formulation for the hotspot
problem in air traffic management. In: Ralf Borndörfer and Sabine Storandt,
editors, 18th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS 2018), volume 65 of
OpenAccess Series in Informatics (OASIcs), pp. 14:1–14:11, Dagstuhl,
Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik..

Mascis, Alessandro, Pacciarelli, Dario, 2002. Job-shop scheduling with blocking and
no-wait constraints. Eur. J. Oper. Res. 143 (3), 498–517.

Maurice Queyranne, Schulz, Andreas S., 1994. Polyhedral approaches to machine
scheduling. Technical Report 408/1994, Technische Universitat Berlin..

Tolebi Sailauov, Zhao Wei Zhong, 2016. An optimization model for large scale
airspace. Int. J. Model. Optim. 6 (2), 86..

Samà, Marcella, D’Ariano, Andrea, Corman, Francesco, Pacciarelli, Dario, 2017.
Metaheuristics for efficient aircraft scheduling and re-routing at busy terminal
control areas. Transp. Res. C Emerg. Technol. 80, 485–511.

Nina Schefers, Miquel Angel Piera, Juan José Ramos, Jenaro Nosedal, 2017. Causal
analysis of airline trajectory preferences to improve airspace capacity. Procedia
Comput. Sci. 104, 321–328..

SESAR Joint Undertaking, 2020. Single European Sky ATM Research (SESAR) Joint
Undertaking. https://www.sesarju.eu, (visited April 2020)..

Vaaben, Bo, Larsen, Jesper, 2015. Mitigation of airspace congestion impact on airline
networks. J. Air Transp. Manage. 47, 54–65.

Wolsey, Laurence A., Nemhauser, George L., 1999. Integer and Combinatorial
Optimization, vol. 55. John Wiley & Sons.

Zhao Wei Zhong, 2018. Overview of recent developments in modelling and
simulations for analyses of airspace structures and traffic flows. Adv. Mech.
Eng. 10 (2)..

http://refhub.elsevier.com/S0305-0548(20)30276-8/h0020
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0020
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0020
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0030
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0030
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0035
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0035
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0045
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0045
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0045
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0055
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0055
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0055
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0070
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0070
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0080
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0080
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0085
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0085
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0090
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0090
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0090
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0100
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0100
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0115
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0115
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0115
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0130
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0130
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0135
http://refhub.elsevier.com/S0305-0548(20)30276-8/h0135

	Air traffic flow management with layered workload constraints
	1 Introduction
	2 The hotspot problem
	2.1 Entry count
	2.2 Occupancy count
	2.3 Fixed and sliding windows
	2.4 Fixed window hotspot
	2.5 Sliding window hotspot

	3 Modelling the sliding window hotspot problem
	3.1 Modelling sliding window constraints
	3.2 Capacity constraints
	3.3 A disjunctive formulation for the Hotspot problem
	3.3.1 The sliding window hotspot problem

	4 The Path&Cycle model
	4.1 The route node graph
	4.2 Positive cycles and longest paths
	4.3 Path&Cycle MILP formulation

	5 Model extensions
	5.1 Modelling fixed windows
	5.2 Modelling entry counts
	5.3 Modelling layered workload constraints

	6 Solution algorithm and implementation
	6.1 Delayed variable and constraint generation
	6.2 Separating violated inequalities
	6.3 Reduction of the route node graph

	7 Computational results
	7.1 Comparison of capacity constraint combinations
	7.2 Larger-scale performance test

	8 Conclusions and future work
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References

