
SoftwareX 23 (2023) 101436

s
H
a

b

d
s
4
t
b
a
t
c
m
S
f

g

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

net_chan: Deterministic network channels for distributed real-time
ystems
enrik Austad a,∗, Geir Mathisen b

SINTEF Digital, Mathematics and Cybernetics, Strindveien 4, N-7035 Trondheim, Norway
NTNU, Engineering Cybernetics, O.S. Bragstads plass 2D, N-7034 Trondheim, Norway

a r t i c l e i n f o

Article history:
Received 22 February 2023
Received in revised form 22 May 2023
Accepted 7 June 2023

Keywords:
TSN
Real-time Linux
Reliable network-channels
Composable systems

a b s t r a c t

Network Channels (net_chan) is an open-source library that provides a network construct for dete-
rministic channels between systems in distributed systems. net_chan is built to harness the Quality
of Service guarantees offered by Time Sensitive Networking and the clock accuracy provided by the
Precision Time Protocol. The software provides a simple and intuitive API for building distributed
systems over packet-switched networks. When run on a system with a deterministic Linux kernel, the
system provides an accurate synchronization mechanism between applications running on different
hosts.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Code metadata

Current code version v0.1.2
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-23-00124
Permanent link to Reproducible Capsule
Legal Code License MPLv2
Code versioning system used git
Software code languages, tools, and services used C, Python3, bash
Compilation requirements, operating environments & dependencies C11, Linux PREEMPT_RT, AvNU mrpd, LinuxPTP
If available Link to developer documentation/manual https://github.com/ElsevierSoftwareX/SOFTX-D-23-00124#readme
Support email for questions henrik.austad@sintef.no
1. Motivation and significance

Since the 1970s, industrial systems have undergone a tremen-
ous digital transformation. This third industrial revolution has
ince evolved into a fourth, affectionately known as ‘‘Industry
.0’’. Characterized by pervasive sensor coverage and deeper sys-
em integration, previously standalone production cells are now
eing integrated into complete systems capable of flexible and
dvanced assembly. When faced with the ‘‘IT/OT convergence’’
hat enables back-office systems to directly monitor industrial
ontrol loops, traditional Operational Technology (OT) networks
ust move towards an IT network architecture, and vice-versa.
mart manufacturing is the next logical step where this increased
lexibility leads to Virtual Factories, where producers can specify

∗ Corresponding author.
E-mail addresses: henrik.austad@sintef.no (Henrik Austad),

eir.mathisen@ntnu.no (Geir Mathisen).
ttps://doi.org/10.1016/j.softx.2023.101436
352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
a distributed production facility and let a partially assembled
component travel between different factories on its way to com-
pletion. This ‘‘Factory-as-a-Service‘‘ is still somewhere over the
horizon, both logistics and local automation flexibility require
a level of systems integration previously unheard of before this
production panacea can be realized.

One key difference between OT and IT systems is the real-time
requirements as OT equipment manages physical processes and
systems. A real-time system is a system that alongside the logical
requirements also has temporal requirements, meaning that not
only must a computation be correct, but it must also be so before
a specified time. When such a real-time system is composed of
elements located on different systems connected using some sort
of networking medium, the resulting distributed real-time system
will extend the same real-time requirements to the network [1].

Legacy industrial protocols and real-time ethernet variants are
rarely compatible, causing equipment from various vendors to
be largely incompatible [2]. With the onset of the fourth indus-
trial revolution, the growth of both sensors and network-aware
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2023.101436
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101436&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00124
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00124#readme
mailto:henrik.austad@sintef.no
mailto:henrik.austad@sintef.no
mailto:geir.mathisen@ntnu.no
https://doi.org/10.1016/j.softx.2023.101436
http://creativecommons.org/licenses/by/4.0/

Henrik Austad and Geir Mathisen SoftwareX 23 (2023) 101436

c
a

a
i
(
s
T
h
c
U
a
t
f
e
d
s

g
o
f
s
t
(
b
t
(
l
i
a

s
D
i
f
u
a
l

m
c
a

a
c
F
c

ontrollers is growing rapidly, making this problem even more
cute.
A crucial piece in this puzzle is thus open standards that

llow for equipment interoperability and avoids ‘‘vendor lock-
n’’. Such heterogeneous systems using Commercial Off-the-Shelf
COTS) IT networks have the potential to scale to much larger
ystems than what traditional OT systems have typically handled.
ime Sensitive Networking (TSN) is a set of open standards that
ave been developed to provide a common set of traits that
an provide robust, real-time capabilities to Ethernet networks.
sing TSN terminology, critical traffic is declared as ‘‘streams’’ [3],
nd each stream is described such that sufficient bandwidth or
ransmission slots can be reserved along the path the traffic
lows using a stream reservation protocol [4,5]. This reservation
nsures that no frames belonging to critical streams are dropped
ue to exhausted buffers. To manage the flow of traffic, TSN
pecifies a set of shapers [6–9] that policies when (or if) packets
can be transmitted [10], and within a ‘‘TSN Domain’’, time is
synchronized to less than 1 µs error using PTP [11]. If further
uarantees are needed, it is also possible to duplicate streams
ver separate, disjoint network paths [12]which will ensure that
rames are protected in the case of a physical network outage. The
tandards are defined in such a way that one can select a subset of
he available standards to reflect the needs of the target network
i.e. for a sensor network that only sees periodic traffic, it may
e enough to support a credit-based shaper (CBS [6]), whereas if
ight control loops need to co-exist, then the Time Aware Shaper
TAS [7]) should also be supported). Although this reduces vendor
ock-in when planning and configuring distributed systems, the
ncreased networking subsystem complexity adds new technical,
rchitectural, and organizational obstacles.
Popular communications frameworks in the industry have

een efforts to improve network reliability using TSN, such as
DS [13] and OPC-UA [14,15]. All of these have shown that TSN
s capable of meeting stringent network real-time constraints, yet
or constrained systems, or rapid prototyping, s small, simple-to-
se library is often desirable. Another framework, EnGINE [16], is
framework for specifying the TSN network itself with network

ayout, test scenarios, fault injection and careful monitoring.
To help tackle the implementation complexity for effectively

oving data from the application to the network layer, we have
reated net_chan [17], a simple-to-use library that is primarily
imed at the end stations (ES) and provides a logical channel into

which any data value, or type, can be written. net_chan expects
time to be synchronized using PTP (using LinuxPTP [18]), that
the network is TSN Capable, and a Credit-Based Shaper for Linux’
QDisc [19] to be available on the ES. Through net_chan, a clear
C-API is provided, as well as a companion set of preprocessor
macros is provided which greatly reduces the burden placed upon
the developer. Behind the scenes, net_chan will handle the
network complexities, ensuring sockets are properly configured,
data correctly formatted and the required resources reserved
throughout the network using the stream reservation protocol.
The accuracy and efficiency have been thoroughly evaluated
[20,21] and tested in real network scenarios with heavy interfer-
ing network traffic. By having access to an easy-to-understand,
robust and efficient construct, extending existing and developing
new distributed systems with low latency and high reliability are
within easier reach for both research and industrial prototyping
alike.

2. Software description

The guiding design principle of net_chan is to introduce a
deterministic network channel that can be used with minimal
setup and configuration. During the setup phase, a set of channel
2

attributes must be provided such as expected data rate, destina-
tion address and a unique identifier (see Listing 1). Whereas TSN
provides bounded latency and protection against dropped frames,
further guarantees can be given to a stream (such as stream dupli-
cation), but this lies outside the scope of net_chan as it requires
a centralized network control. Once such a channel is established
and both sender (talker) and receiver (listener) are active, no data
will be lost, nor excessively delayed. A reader will then block
on a channel until data is received, whereas a write operation
will be non-blocking. This is provided that the sender does not
send more data than what is specified in the channel manifest
(and thus reserved through the network). net_chan can also
place a fixed delay on a channel that, when paired up with a
corresponding reader, will ensure that both writer and reader
continue simultaneously. As a general principle, any safety-critical
system should be wary of blocking operations. What TSN, and
ultimately net_chan provides, is a much lower timeout value
that enables a much lower watchdog timeout value, thus letting
the system react swiftly should the network suffer a catastrophic
failure.

2.1. Architecture

For a distributed application, a net_chan channel appears
s a logical channel which for all practical purposes is a direct
onnection to the receiving end as shown as the lower pipe in
ig. 1. Each system can have multiple incoming and outgoing
hannels and this is multiplexed/demultiplexed by net_chan.
For C applications, a set of helper macros are also provided that
makes the initial setup easy. It is important to note that this
simplified usage comes with reduced type safety and no obvious
way to handle returned error codes. The macros are a good place
to start, but once the application is connected, the C-functions
are the recommended approach. For C++ applications, it is also
a small wrapper available that provides an OOP approach and
is documented in the code repository [17]. The same repository
also contains an example/ directory with more elaborate examp-
les.

2.2. Initialization

The first step is to describe each channel used in the system
on the form shown in Listing 1 where the destination address,
unique id and other relevant stream characteristics are listed.
In the application code, a channel must be declared as either
Tx (sender/talker) or Rx (receiver/listener). Architecturally, the
way outgoing traffic is managed is fundamentally different than
how incoming data is treated. Once declared, an outgoing channel
cannot be used for incoming traffic and vice versa. In Listing 2, the
macro NETFIFO_TX() is used to declare a new outgoing channel
and during this step, it can also announce the stream capabilities
to the network if SRP is enabled (nf_use_srp()).

The other end of the channel is described in Listing 3 where a
new Rx-channel is declared using pdu_create_standalone().
This step will create a new data channel, connect it to the receiv-
ing socket, configure timeouts and also announce to the network
that a new listener is ready for the particular channel. The stan-
dalone suffix indicates that the library should declare and initial-
ize required support structures and keep an internal reference to
these. For more advanced usage, the overall governing nethandler
can also be instantiated and managed directly.

The sample manifest shown in Listing 1 contains fields for a
single channel. The name "sensor" is used by both ends of the
channel to identify the needed attributes, such as payload size,
target address and message frequency. To ensure that a stream
is properly identified, it also has a StreamID field, which must

Henrik Austad and Geir Mathisen SoftwareX 23 (2023) 101436

s
g
s

b
S
d
s

2

o
n
T
m
t
f
p
e

/

w
f
T
p

s

Fig. 1. Overall construction diagram for net_chan showing how data flows from one node in a distributed system through the layers, over the network and up
the stack at the other end. Each tx-channel has a dedicated socket, which is multiplexed onto a single NIC. Conversely, on the receiving side, a single worker listens
on a socket and de-multiplexes incoming data to the correct channels on which the listening application block.
1 #pragma once
2 struct net_fifo net_fifo_chans[] = {{
3 .dst = {0x01, 0x00, 0x5E, 0x01, 0x11, 0x03},
4 .stream_id = 3,
5 .sc = CLASS_A,
6 .size = sizeof(uint64_t),
7 .freq = 50,
8 .name = " sensor " ,
9 }};

Listing 1: Shared channel manifest file. The file must be included and referenced by each part of a distributed application and except
for class, size and freq, all other fields must have unique values (i.e. no overlapping stream_id). .dst is an exception as net_chan also
upports unicast addresses, which must be identical for all streams destined for the same location. However, when using multicast
roups, each stream should use its group address. In this example, the payload is a single 8-byte variable, but the payload can be
pecified to any size (up to max MTU, 1500 bytes).
e unique amongst all the published streams in the network.
pecifying all channels in a single manifest-file, it allows tools to
etermine required bandwidth, assert StreamID uniqueness and
o on.

.3. Usage

Sending data through net_chan is done using either WRITE()
r pdu_send_now(). It is also possible to create a synchro-
ized writer-reader pair where we exploit the determinism in
SN to trigger both the talker and the listener to continue si-
ultaneously. For a TSN class A stream, we are guaranteed

hat the total end-to-end latency will be within 2 ms (50 ms
or a class B stream). To use this, either WRITE_WAIT() or
du_send_now_wait()1 which will pause the writer for 2 ms,
xpecting the reader to do the same. This is illustrated in Fig. 2.
Likewise, the API available to a listener consists of READ()

pdu_read(), which will block in a read-operation on the un-
derlying pipe. The reader also has a READ_WAIT()/pdu_read_
ait() function which will take the timestamp from when the
rame was sent and wait to the same point in time as the talker.
he accuracy of this is made possible by the time synchronization
rovided by TSN.

1 The somewhat awkward name reflects the behavior, the network frame is
ent immediately and then the thread will wait
3

2.4. Shutdown and cleanup

Omitted in both Listing 2 and 3 is the call to CLEANUP()
which will tear down all channels, unannounce streams and free
resources. If an application is terminated without cleaning up, the
network will have stale stream reservations lingering, which may
cause denied reservations at a later stage.

2.5. Other requirements

The period is an upper bound on the transmission rate and
when coupled with payload size yields the needed bandwidth for
each channel. Currently, the design allows for multiple incom-
ing and outgoing channels but is limited to a single NIC, i.e. it
cannot connect to multiple networks. Furthermore, net_chan is
designed for Linux and its Qdisc infrastructure, and a few key
steps must be performed before running an application extended
with net_chan.

• ptp4l must be started and attached to the same NIC
net_chan will use.

• AvNU’s mrpd [22] must be started (running with MMRP,
MVRP and MSRP enabled). net_chan will interface directly
with mrpd using a client library extracted from the AvNU
project to publish stream reservation messages and parse
incoming messages. This allows the library to seamlessly
reserve the required bandwidth and buffer capacity between
a talker and listeners.

Henrik Austad and Geir Mathisen SoftwareX 23 (2023) 101436

u

t
o
a
i
t

o
o
l
o

3

a
s
b
c
u

t
o
r

Fig. 2. Timing diagram for a composable channel as described in [20]. With the bounded delay guarantees provided by TSN, it is possible to continue simultaneously
sing a single writer/reader pair.
t

a
a
g
v
C

s
i
r
w
o
a

• A hierarchical Qdisc using mqprio is needed to associate
different queues to the available HW queues on the I210
NIC.

• A Credit-Based Shaper (CBS) Qdisc with appropriate idle
slope specified.

It is important to note that net_chan can function without
hese steps, but for optimal results, and to reproduce the results
btained in [20], this is needed. Configuration details for mqprio
nd CBS can be obtained by running the helper-script nic-bw.py
n the script/ subfolder and specifying the manifest file for the
arget application.

Note: net_chan currently expects to be the sole application
n the ES with active TSN streams, i.e. by using the aggregated
utgoing bandwidth specified in the manifest, the resulting idleS-
ope value used to rate limit outgoing data is not compatible with
ther applications.

. Illustrative examples

1 #include <netchan.h>
2 #include " manifest.h "
3 void talker() {
4 NETFIFO_TX(sensor);
5 uint64_t data = 42;
6 while (1) {
7 WRITE(sensor, &data);
8 usleep(20000);
9 }

10 }

Listing 2: Minimal talker example using the C Macro helpers. A
talker sending a sensor value every 20 ms (50 Hz), details of data
acquisition omitted.

The talker/listener pair shown in Listing 2 and 3 implement
minimum version of the system shown in Fig. 1. As can be

een, the extra code needed to declare a logical channel "sensor"
etween the two tasks is minimal, allowing the developer to
oncentrate on the structure of the program rather than setting
p and managing the network itself.
In Listing 3, the C-API is referenced directly and as we can see,

he code is slightly more verbose. Even so, the benefit should be
bvious as we now have access to return codes and can pass along
eferences to the channel to other contexts.
4

4. Impact

net_chan specifically targets small to medium systems where
it is relevant to investigate the benefits of using a distributed
architecture or the performance difference between distributed
and monolithic systems. The primary use case is academic, the
software is not intended for high criticality or production systems
even though TSN can be used in such scenarios. In net_chan, we
have taken steps to improve real-time performance such as major
page faults (no dynamic memory allocation after channel cre-
ation), minor page faults (by using mlockall()) and preventing
c-state transitions.

With TSN it is possible to create robust, deterministic dis-
tributed real-time systems using COTS network hardware which
opens up new possibilities for both research projects as well as
commercial ideas. Using the provided network channel primitive,
we can easily construct more complex mechanisms such as net-
work rendezvous or multicast signaling to trigger multiple hosts
at the same time.

This software has been used extensively in our paper [20]
where we demonstrate and quantify its ease of use, robust-
ness and accuracy. Using the time-delayed pair (WRITE_WAIT()/
READ_WAIT()), net_chan provides a composable network pri-
mitive. We plan to continue to use net_chan for both sensor in-
egration and control systems in the future and expect net_chan
to grow alongside the new projects.

5. Conclusions and future work

In this paper, we have presented net_chan that provides
network primitive called ‘‘network channels’’. This is made

vailable as a library that can be included in any C or C++ pro-
ram that instantly provides deterministic network channels pro-
ided a GNU/Linux system and a supported Network Integrated
ard.
Current testing of net_chan has been limited to only a few

imultaneous channels of fairly low data volume and -rate. The
nitial tests have been targeted toward delivery accuracy and
eliability with unrelated high interference to determine how
ell TSN can protect critical traffic. The next set of tests will focus
n how non-related critical streams in a TSN network can, or will,
ffect the timing and determinism of traffic.

Henrik Austad and Geir Mathisen SoftwareX 23 (2023) 101436
1 #include <netchan.h>
2 #include " manifest.h "
3 void listener() {
4 struct netchan_avtp *nc = pdu_create_standalone(" sensor " , false,
5 net_fifo_chans ,
6 ARRAY_SIZE(net_fifo_chans));
7 uint64_t data;
8 while (1) {
9 if (pdu_read(nc, &data) == -1) {

10 // handle error
11 break;
12 }
13 /* use data */
14 }
15 }

Listing 3: Minimal listener example using the C-API. Errors are caught (but not handled for brevity).
For the future, we aim to further broaden the size of sys-
tems being tested from only a few simultaneous channels, to
many more and increase the complexity of the systems using
net_chan substantially. The current implementation uses the
cbs Qdisc, the near future will see an update where we instead
will use the etf Qdisc which uses SO_TXTIME to send a packet
at a specific time. We also plan to extend net_chan to smaller
systems running FreeRTOS and Zephyr to open the possibility
for wider sensor integration. Finally, we hope to extend other
real-time coordination frameworks such as Lingua Franca with
net_chan.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article

Acknowledgments

This work was funded through the Norwegian Research Coun-
cil under grant 323340.

References

[1] Kopetz H. Real-time systems - design principles for distributed embedded
applications. Real-time systems series, Springer; 2011, http://dx.doi.org/10.
1007/978-1-4419-8237-7.

[2] Lázaro J, Cabrejas J, Zuloaga A, Muguira L, Jiménez J. Time sensitive net-
working protocol implementation for Linux end equipment. Technologies
2022-06;10(3):55. http://dx.doi.org/10.3390/technologies10030055, URL
https://www.mdpi.com/2227-7080/10/3/55.

[3] IEEE Audio Video Bridging (AVB) systems. 2021, p. 1–45. http://dx.doi.org/
10.1109/IEEESTD.2021.9653970, IEEE Std 802.1BA-2021.

[4] IEEE Stream Reservation Protocol (SRP). 2010, p. 1–119. http://dx.doi.org/
10.1109/IEEESTD.2010.5594972, IEEE Std 802.1Qat-2010.

[5] IEEE Stream Reservation Protocol (SRP) enhancements and performance
improvements. 2018, p. 1–208. http://dx.doi.org/10.1109/IEEESTD.2018.
8514112, IEEE Std 802.1Qcc-2018.
5

[6] IEEE forwarding and queuing enhancements for time-sensitive streams.
2010, p. 1–72. http://dx.doi.org/10.1109/IEEESTD.2010.8684664, IEEE Std
802.1Qav-2009.

[7] IEEE enhancements for scheduled traffic. 2016, p. 1–57. http://dx.doi.org/
10.1109/IEEESTD.2016.8613095, IEEE Std 802.1Qbv-2015.

[8] IEEE asynchronous traffic shaping. 2020, p. 1–151. http://dx.doi.org/10.
1109/IEEESTD.2020.9253013, IEEE Std 802.1Qcr-2020.

[9] IEEE cyclic queuing and forwarding. 2017, p. 1–30. http://dx.doi.org/10.
1109/IEEESTD.2017.7961303, IEEE 802.1Qch-2017.

[10] IEEE Per-stream filtering and policing. 2017, p. 1–65. http://dx.doi.org/10.
1109/IEEESTD.2017.8064221, IEEE Std 802.1Qci-2017.

[11] IEEE timing and synchronization for time-sensitive applications. 2020,
p. 1–421. http://dx.doi.org/10.1109/IEEESTD.2020.9121845, IEEE Std
802.1AS-2020.

[12] IEEE standard for local and metropolitan area networks–frame replication
and elimination for reliability. 2017, p. 1–102. http://dx.doi.org/10.1109/
IEEESTD.2017.8091139, IEEE Std 802.1CB-2017.

[13] Agarwal T, Niknejad P, Barzegaran MR, Vanfretti L. Multi-level Time-
Sensitive Networking (TSN) using the Data Distribution Services (DDS)
for synchronized three-phase measurement data transfer. IEEE Access
2019;7:131407–17. http://dx.doi.org/10.1109/ACCESS.2019.2939497.

[14] Bruckner D, Stănică M-P, Blair R, Schriegel S, Kehrer S, et al. An intro-
duction to OPC UA TSN for industrial communication systems. Proc IEEE
2019;107(6):1121–31. http://dx.doi.org/10.1109/JPROC.2018.2888703.

[15] Li Y, Jiang J, Lee C, Hong SH. Practical implementation of an OPC UA
TSN communication architecture for a manufacturing system. IEEE Access
2020;8. http://dx.doi.org/10.1109/ACCESS.2020.3035548.

[16] Rezabek F, Bosk M, Paul T, Holzinger K, Gallenmüller S, Gonzalez A,
et al. EnGINE: Developing a flexible research infrastructure for reliable
and scalable intra-vehicular TSN networks. In: 2021 17th international
conference on network and service management. 2021-10, p. 530–6. http:
//dx.doi.org/10.23919/CNSM52442.2021.9615529.

[17] Austad H. Netchan v0.1.2. 2023, http://dx.doi.org/10.5281/zenodo.7635611,
Zenodo.

[18] Cochran R. The Linux PTP Project. 2021, URL https://linuxptp.sourceforge.
net.

[19] Costa Gomes V. TSN: Add QDISC based config interface for CBS. 2017, LWN,
URL https://lwn.net/Articles/736335/.

[20] Austad H, Rennemo Jellum E, Hendseth S, Mathisen G, Håland bryne T,
Nyborg Gregertsen K, et al. Composable distributed real-time systems with
reliable network channels. J Syst Archit 2022. http://dx.doi.org/10.2139/
ssrn.4229860.

[21] Austad H, Mathisen G. Bounding the end-to-end execution time in dis-
tributed real-time systems: Arguing the case for deterministic networks
in Lingua Franca. In: Proceedings of cyber-physical systems and internet
of things week 2023. CPS-IoT Week ’23, New York, NY, USA: Association for
Computing Machinery; 2023, p. 343–8. http://dx.doi.org/10.1145/3576914.
3587499.

[22] AvNU. OpenAvnu git repository. 2022, URL https://github.com/Avnu/
OpenAvnu.

http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.3390/technologies10030055
https://www.mdpi.com/2227-7080/10/3/55
http://dx.doi.org/10.1109/IEEESTD.2021.9653970
http://dx.doi.org/10.1109/IEEESTD.2021.9653970
http://dx.doi.org/10.1109/IEEESTD.2021.9653970
http://dx.doi.org/10.1109/IEEESTD.2010.5594972
http://dx.doi.org/10.1109/IEEESTD.2010.5594972
http://dx.doi.org/10.1109/IEEESTD.2010.5594972
http://dx.doi.org/10.1109/IEEESTD.2018.8514112
http://dx.doi.org/10.1109/IEEESTD.2018.8514112
http://dx.doi.org/10.1109/IEEESTD.2018.8514112
http://dx.doi.org/10.1109/IEEESTD.2010.8684664
http://dx.doi.org/10.1109/IEEESTD.2016.8613095
http://dx.doi.org/10.1109/IEEESTD.2016.8613095
http://dx.doi.org/10.1109/IEEESTD.2016.8613095
http://dx.doi.org/10.1109/IEEESTD.2020.9253013
http://dx.doi.org/10.1109/IEEESTD.2020.9253013
http://dx.doi.org/10.1109/IEEESTD.2020.9253013
http://dx.doi.org/10.1109/IEEESTD.2017.7961303
http://dx.doi.org/10.1109/IEEESTD.2017.7961303
http://dx.doi.org/10.1109/IEEESTD.2017.7961303
http://dx.doi.org/10.1109/IEEESTD.2017.8064221
http://dx.doi.org/10.1109/IEEESTD.2017.8064221
http://dx.doi.org/10.1109/IEEESTD.2017.8064221
http://dx.doi.org/10.1109/IEEESTD.2020.9121845
http://dx.doi.org/10.1109/IEEESTD.2017.8091139
http://dx.doi.org/10.1109/IEEESTD.2017.8091139
http://dx.doi.org/10.1109/IEEESTD.2017.8091139
http://dx.doi.org/10.1109/ACCESS.2019.2939497
http://dx.doi.org/10.1109/JPROC.2018.2888703
http://dx.doi.org/10.1109/ACCESS.2020.3035548
http://dx.doi.org/10.23919/CNSM52442.2021.9615529
http://dx.doi.org/10.23919/CNSM52442.2021.9615529
http://dx.doi.org/10.23919/CNSM52442.2021.9615529
http://dx.doi.org/10.5281/zenodo.7635611
https://linuxptp.sourceforge.net
https://linuxptp.sourceforge.net
https://linuxptp.sourceforge.net
https://lwn.net/Articles/736335/
http://dx.doi.org/10.2139/ssrn.4229860
http://dx.doi.org/10.2139/ssrn.4229860
http://dx.doi.org/10.2139/ssrn.4229860
http://dx.doi.org/10.1145/3576914.3587499
http://dx.doi.org/10.1145/3576914.3587499
http://dx.doi.org/10.1145/3576914.3587499
https://github.com/Avnu/OpenAvnu
https://github.com/Avnu/OpenAvnu
https://github.com/Avnu/OpenAvnu

	net_chan: Deterministic network channels for distributed real-time systems
	Motivation and Significance
	Software Description
	Architecture
	Initialization
	Usage
	Shutdown and cleanup
	Other requirements

	Illustrative Examples
	Impact
	Conclusions and Future Work
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

