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The present study is focused on assessing the impact of the performance of baseline load prediction pipelines 
on the estimation (by the grid operator) accuracy of the flexibility offered by different categories of buildings. 
Accordingly, the corresponding impact of employing different machine learning (ML) algorithms, with sliding-

window and offline training schemes, for hour-ahead baseline load prediction has been investigated and 
compared. Using a smart meter measurements dataset, training window sizes and the most promising pipeline 
for each building category are first identified. Next, the consumption profiles of five buildings (belonging to each 
category), with the regular operation (baseline load) and while offering flexibility, are physically simulated. 
Finally, the identified pipelines are used for predicting the baseline loads, and the resulting error in estimating 
the provided flexibility is determined. Obtained results demonstrate that the identified most promising prediction 
pipeline (extra trees algorithm with a sliding window of 5 weeks) offers a notably superior performance compared 
to that of offline training (average 𝑅2 score of 0.91 vs. 0.87). Employing these pipelines permits estimating the 
provided flexibility with acceptable accuracy (flexibility index’s mean relative error between -2.45% to +2.79%), 
permitting the grid operator to guarantee fair compensation for buildings’ offered flexibility.
1. Introduction

As one of the key measures to reduce fossil fuel consumption and 
the corresponding consequent emissions [1], global efforts have been 
specifically dedicated to expanding the scale of distributed renewable 
generation [2,3]. Introducing distributed renewable energy sources, 
particularly at the individual building level, given their intermittent 
generation due to their variable and unpredictable nature, imposes 
a challenge of balancing energy supply and demand in real-time (to 
ensure a consistent and steady energy supply) [4,5]. Smart grids are ac-

cordingly introduced to balance the load by integrating the data from 
end-users, producers, and prosumers while improving the efficiency of 
operations and controlling the distribution systems [6]. To avoid im-

balances in the electrical grid, the Transmission System Operator (TSO) 
needs to acquire large quantities of active power reserves and ancillary 
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services to control the system’s frequency and ensure the reliability and 
resilience of the grid [7]. The electrical grid imbalances can be handled 
using flexibility on the supply side (for instance, throttling the power 
generation rate) or from the demand side [8]. One of the promising al-

ternatives in this context is utilizing the demand flexibility that can be 
offered by buildings.

1.1. Buildings energy flexibility as a solution to handle grid imbalance

Consumption of the building sector is responsible for approximately 
30% of global energy consumption by 2017. Furthermore, a jump from 
33% to 55% is expected in the share of electrical consumption of build-

ings in the corresponding overall demand by the year 2050 [9]. In the 
same context, the demand for heating, ventilation, and air-conditioning 
(HVAC) systems in buildings accounts for almost 38% of the energy 
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Nomenclature

airTemperature-nh Outdoor air temperature n hours ahead

ANN Artificial neural network

ASHRAE American Society of Heating, Refrigerating and Air-

Conditioning Engineers

CMY Current meteorological year

CNN Convolutional neural network

CV(RMSE) Coefficient of Variation of Root Mean Square Error

day_of_week_sin Day of the week encoded with sine function

dayTime_cos Time of the day encoded with cosine function

DR Demand response

electricity-nh Electrical consumption n hours ahead

ETR Extra trees regressor

FF Flexibility function

FI Flexibility index

GBE Grid-interactive efficient buildings

HVAC Heating, ventilation and air-conditioning

IPMVP International Performance Measurement and Verification 
Protocol

KNN K nearest neighbor regressor

LR Linear regression

LSTM Long short-term memory

MAPE Mean absolute percentage error

MI Mutual information

ML Machine learning

MLR Multi-linear regression

MRD Mean relative deviation

NMBE Normalized mean bias error

PACU Packaged air conditioning unit

PTR Peak time rebate

𝑅2 Coefficient of determination

RE Relative error

RNN Recurrent neural network

RFR Random forest regressor

SO System operator

solar-nh Direct solar radiation n hours ahead

SVM Support vector machine

SVR Support vector regressor

TCL Thermostatically controlled load

TMY Typical meteorological year

TSO Transmission system operator

UTC Coordinated universal time

XGBR XGBoost regressor

VAV Variable air volume
consumption in buildings constituting around 12% of the global energy 
demand [10].

Apart from the notable share of the building sector in the global 
demand (along with the corresponding expected rise), the role of this 
sector is pivotal in decarbonization scenarios, owing to the type of loads 
in buildings and specifically the HVAC systems (that are among the 
thermostatically controlled loads (TCLs) [11]), which makes them a 
promising choice for providing demand flexibility to the grid. In this 
context, the energy flexibility of a building is the capacity for altering 
demand and generation upon different climatic conditions, grid, or end-

user needs and will authorize demand side management [12]. The U.S. 
Department of Energy defines five demand-side management (DSM) 
strategies for grid-interactive efficient buildings (GEBs): efficiency, load 
shedding, shifting, modulating, and on-site electricity generation [4]. 
In this context, energy-flexible buildings are those that are capable of 
managing their energy demand and generation based on different re-

quirements such as grid congestion, environmental conditions, and user 
needs [12].

By providing the buildings with flexibility in operation, DSM allows 
adjusting the power consumption based on the grid supplies [4,13]. 
Therefore, the flexibility obtained from building’ DSM permits the in-

corporation of renewable energy sources into the grid with high effi-

ciency. Additionally, DSM cuts off operational expenses and is much 
more cost-efficient than investing in increasing generation capacity, 
new standby power plants, or reinforcing the grid. [14–17]. DSM is also 
facilitated due to the penetration of smart metering systems providing 
energy measurements with hourly or sub-hourly frequency [18].

Residential, industrial, and non-residential buildings (e.g., offices) 
can be utilized to provide flexibility to the grid in a demand response 
program where utility providers try to balance demand and supply by 
designing incentive/price-based programs to encourage energy users to 
change their consumption behaviors for balancing the supply and de-

mand [4,14]. Considering the application of demand-side strategies, the 
demand response can be applied based on direct or indirect control of 
the system operator (SO) [19]. In direct control, the consumer (or smart 
HVAC schedule management system [20]) can decide to shift/reduce 
the energy consumption of the building to reduce the bills based on 
incentive or penalty-aware signals, which can include 𝐶𝑂2 emissions, 
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energy efficiency, and energy price [21,22]. In an indirect control in-
stead, the system operator can decide in a group of buildings or in an 
urban area if it is possible and worth applying flexibility measures con-

sidering the welfare of each building [23].

In order to achieve demand-side flexibility, it is crucial to deter-

mine the horizon of action that the flexibility measure will have on 
the demand of the building, where time scales of seconds allow acting 
on balancing the grid under unpredictable fast changes. At the same 
time, more extended periods from minutes to hours permit modifying 
the consumption in response to changes in forecasted demand (balanc-

ing forecast error between load and generation) [24]. The baseline load 
refers to the load the building would have consumed if no demand re-

sponse (DR) measure was in place. Thus, the load reduction refers to 
the difference between the baseline load and the metered reduced load 
during the DR event [25]. In this context, the dynamic behavior of the 
energy demand of an energy-flexible building under a penalty signal can 
be characterized by the flexibility function (FF) proposed by Junker et 
al. [22], in which the energy produced at time 𝑡 based on signal re-

sponse is described as:

𝐸𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦,𝑡 =
∞∑
𝑘=0

ℎ𝑘(𝜃)𝜆𝑡−𝑘 +𝑅𝑡 (1)

where 𝑅𝑡 is the non-responsive load, ℎ𝑘(𝜃) corresponds to the impulse 
response function triggered by the penalty signal 𝜆𝑡−𝑘, 𝑘 time -steps be-

fore time 𝑡. The response function depends on external variables 𝜃, such 
as weather conditions and occupancy, making the flexibility function 
non-linear and time-varying.

Accordingly, Fig. 1 shows the expected behavior of the demand 
response when a step-shaped penalty signal is imposed. The system 
considered a reaction time before responding to the penalty signal, to 
induce later a reduction (or increase) in demand that results in the flex-

ibility available during the investigated period.

Considering the energy load based on a signal response, it is possible 
to define the flexibility function considered in this study as the energy 
reduction [2,22,26]:

𝑇∑

𝐹𝐹 =

𝑡=0
𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑡 −𝐸𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦,𝑡 (2)
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Fig. 1. The expected load behavior of buildings when flexibility measures are implemented in response to grid signals is represented, as proposed by Junker et al. 
[22].
where 𝑇 is the duration of the demand response and 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑡 is the 
baseline energy demand or penalty-unaware demand considered in the 
event that no flexibility measure has been applied to the building.

Furthermore, the Flexibility Index (FI) [22] (that is a value between 
0 and 1) is used to quantify the cost related to reducing energy con-

sumption in the peak shaving period when the grid manager is aware of 
the penalty signal. The Flexibility Index is determined in its discretized 
form using the following formulation:

𝐹𝐼 = 1 −
∑𝑇

𝑡=0 𝜆𝑡𝐸𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦,𝑡∑𝑇

𝑡=0 𝜆𝑡𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑡

(3)

where 𝜆𝑡 corresponds to the normalized penalty signal at time t, and 
for this case, is considered as 𝜆𝑡 = 𝜆 = 1[ 𝐽

𝐽
] to obtain the reduced energy 

consumption in the peak shaving period.

1.2. Literature review on baseline prediction during demand flexibility in 
buildings

In order to accurately estimate the energy flexibility offered by a 
building to guarantee the corresponding fair compensation, the grid 
operator needs a precise prediction of the baseline load consumption 
[27], as the error in the corresponding prediction results in unjus-

tified financial penalization or over-compensation of DR participants 
[28]. Therefore, achieving an accurate and unbiased estimation of the 
participants’ expected baseline load is crucial; thus, it is extensively 
studied in the literature. The methodologies employed in this area can 
be broadly categorized into three main approaches: Averaging, Con-

trol group, and Regression methods [25]. Averaging methods calculate 
the average of the historical load values on normal days (without DR 
events) [29–31]. In the control group method, the baseline load for DR 
participants is assumed to be the concurrent load data of control cus-

tomers who do not participate in DR [32]. In the context of regression 
methods, the relationship between the input variables (features) and the 
target baseline load is found by fitting a linear/non-linear function [33]. 
Multiple Linear Regression (MLR) [29] and Support Vector Regression 
(SVR) are among the most commonly investigated algorithms. In this 
context, Chen et al. [34] used SVR to predict the demand response 
baseline for office buildings. The authors concluded that their model 
that is provided with outside temperature two hours before the DR 
event as an input performed better than the other DR baseline fore-

casting methods. To predict the energy consumption at the level of a 
single household to appropriately apply demand response, Estebsariand 
Rajabi [35] developed a hybrid model based on time-series image en-
3

coding and Convolutional Neural Network (CNN). They compared the 
results with other forecasting methods, such as SVM, Artificial Neural 
Network (ANN), and CNN, and achieved a mean absolute percentage er-

ror of around 12%. In a research conducted by Sha et al. [27], a toolkit 
for demand response baseline calculation was proposed. Data were col-

lected from 20 commercial buildings. The mean coefficient of variation 
of the root mean square error (CV-RMSE) of all the buildings aggregated 
was shown to be less than 8%.

In the general area of load forecasting, Khalid et al. [36] deployed 
a recurrent neural network (RNN) and long short-term memory (LSTM) 
to predict the electricity demand and price values for one week, one 
month, and three months. They used multiple variables as inputs for 
LSTM, which obtained more accurate results compared to the conven-

tional univariate LSTM. Fan et al. [37] proposed an approach based 
on integrating LSTM with human behavior pattern recognition to pre-

dict 24-hour demand. The dataset consisted of 8-week electricity con-

sumptions from 2337 residential customers. The model was addition-

ally improved with a multi-layer neural network. The obtained results 
demonstrated that in 24 hours, 94% of customers would receive hourly 
load prediction with a MAPE of less than 20%. However, deep learning 
models require a significant amount of data and would not perform on 
single building levels. Moreover, results obtained by SVR and Extreme 
Gradient Boosting (XGBoost) were shown to be outperforming LSTM in 
a benchmark analysis performed by Huang et al. [38]. They also con-

cluded that the selection of the machine-learning model should be based 
on building energy data’s natural characteristics, and the hyperparam-

eter tuning or mathematical modification within an algorithm would 
not be sufficient. In this research CV of 14.25% was obtained in the 
best-case results. Moreover, Cerquitelli et al. [39] collected smart data 
from 12 residential buildings with district heating in Italy over the win-

ter and the corresponding weather data to perform predictions on the 
buildings’ consumption using the sliding window method. The study 
was limited to using data between 5–10 p.m., and accuracy of MAPE 
between 6–19% was achieved for an hour ahead prediction. However, 
the results deteriorated when the procedure was expanded to the whole 
day [39]. Comparing the performance of five different state-of-the-art 
machine learning (ML) algorithms in predicting the heating energy of 
a Chinese residential district, Wang et al. [40] discovered that random 
forest outperforms the other algorithms owing to its precision, robust-

ness, and interpretability. A systematic literature review by Al-Shargabi 
et al. [41] demonstrated that most studies focus on load forecasting for 
residential buildings.

However, no previous comprehensive study has been dedicated to 
assessing the impact of the performance of load prediction pipelines 
on the estimation (by the grid operator) accuracy of the flexibility of-
fered by different categories of buildings. Specifically, the baseline load 
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prediction performance of tree-based machine learning algorithms, par-

ticularly while employing the sliding window training scheme, and 
the resulting impact on offered flexibility estimation should still be 
assessed. Furthermore, given the particular characteristics of the load 
profiles of buildings belonging to specific use type categories, the aggre-

gate benchmarking results (for all buildings with different categories) 
reported in the literature do not necessarily provide useful insights 
for specific building categories. Moreover, to the best of the authors’ 
knowledge, non of these studies have tested the performance of the 
benchmarked pipelines through physics-based simulations to predict 
the baseline load during a demand response event to quantify the ex-

tent to which the baseline load prediction error is propagated in the 
estimation of the demand flexibility offered by a building.

1.3. Contributions of the present study

Motivated by the above-mentioned research gap, the present work 
is focused on investigating the accuracy of the estimation (by the grid 
operator) of offered flexibility (by buildings), which is achieved by 
employing ML-based baseline load forecasting pipelines with sliding 
window and offline training schemes. Accordingly, the first part of 
the study is focused on implementing machine learning (ML)-based 
pipelines using benchmark (state-of-the-art) ML algorithms aimed at 
one-hour ahead load prediction for a large set of buildings belonging to 
different categories of use. Offline and sliding window training schemes 
are implemented and, for each building category, the most promising 
algorithm as well as the optimal size of the training window (for the 
second scheme), which leads to the highest accuracy, are identified. It 
is noteworthy that the prediction horizon is chosen to be one hour as 
it is one of the most commonly utilized sampling rates of smart me-

ters, and it is coherent with the flexibility time horizon considered for 
commercial and industrial buildings [42]. This time horizon is already 
in use in some implemented policies, such as the emergency load re-

duction program of the California State [43], which targets voluntary 
energy flexibility in a specific time schedule for a time horizon between 
1 and 6 hours.

In the second part, the physical modeling of five example buildings 
belonging to the investigated service categories has been performed 
to simulate the corresponding consumption profile with the regular 
operation schedule (baseline load) and while undergoing a flexibility 
measure (increase in the cooling setpoint in the context of a demand re-

sponse program). By comparing these two profiles, the real flexibility 
offered by the building (represented in terms of the Flexibility Index) 
is determined. Next, in order to determine the estimated offered flexi-

bility (by the grid operator or the demand side management program’s 
authority), pipelines proposed in the first phase of the work are uti-

lized for predicting the baseline load. By comparing the simulated and 
estimated flexibility index, the corresponding achieved accuracy for dif-

ferent building categories is investigated. Hence, The contributions of 
this paper can be summarized below:

• Evaluating the performance of different regression algorithms, in-

cluding ensemble models that use decision trees, for predicting the 
baseline load during demand response events.

• Investigating the performance of ML-based baseline load forecast-

ing pipelines with offline and sliding window training schemes and 
identifying the most promising algorithm and training window size 
for each building category

• Physics-based simulations of regular operation (baseload) and de-

mand response scenario for modeled sample buildings (belonging 
to each of the categories under investigation).

• Assessing the performance of the benchmarked pipelines in pre-

dicting the baseline load, while undergoing the DR scenarios, and 
quantifying the impact of the corresponding prediction error on the 
4

estimation accuracy of the offered demand flexibility.
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2. Case study

This section first describes the dataset used to benchmark the ML-

based pipelines for baseline load forecasting. Next, the physical mod-

els that are utilized to simulate the flexibility scenario and assess the 
offered flexibility (deploying the predictive pipelines to estimate the 
baseline load and assess the load reduction) are presented.

2.1. Utilized dataset

‘Building Data Genome Project 2’ [44] a publicly available dataset, 
which comprises two years (2016 and 2017) of hourly measurements 
of electrical, heating, chilled water, and steam consumption from sites 
scattered in North America and Europe is employed. The database of 
each building comes with additional metadata, which includes the cat-

egory (and sub-category) of the building, along with the corresponding 
specific energy consumption. Lastly, the weather data per location are 
included in the same database. In the present work, the incident so-

lar radiation obtained from Prediction of Worldwide Energy Resource 
(POWER) [45] is also added to the available weather data, and some 
corrections regarding the time zones and units are applied.

2.2. Characteristics of the physical models

The modeling procedure was performed using EnergyPlus V9.4 [46]

software and its Python API [47]. The models used in this study consist 
of an office, a primary school, a mid-size residential building, a swim-

ming pool for the entertainment category, and a library for the public 
services category, as shown in Fig. 2. The first three buildings were de-

veloped under the ANSI/ASHRAE/IES Standard 90.1 [48] and have been 
provided by a study conducted by Deru et al. [49]. The library building 
model instead corresponds to a small office model from the same study, 
where the internal gains, occupancy, and lighting were adapted fol-

lowing the ASHRAE criteria. The swimming pool building simulated in 
this study is present in the example buildings provided by EnergyPlus. 
The simulations are conducted assuming that the models are situated 
in Los Angeles, California (Climatic zone 3B), one of the locations in-

cluded in the validation approach’s data set. Moreover, the weather file 
corresponding to the exact location was first converted to the current 
meteorological year (CMY) for 2016 and 2017 starting from the typi-

cal meteorological year (TMY) weather file using diyepw tool [50], and 
then were added and deployed in the simulations. The detailed specifi-

cations of the buildings are presented in Table 1.

3. Methodology

The first step of the present work is dedicated to implementing and 
benchmarking ML-based pipelines for baseline load forecasting (an hour 
ahead) of different categories of commercial buildings. The second step 
is instead focused on simulating the offered flexibility employing the 
physical models of 5 different categories of buildings. Finally, the pre-

dictions provided by the most suitable pipelines (identified in the first 
step) are utilized together with the results of the flexibility simulations 
(second step) to assess the accuracy of the estimation of offered flexi-

bility (represented as the flexibility index) that is performed by the grid 
operator.

A schematic summary of the implemented methodology is presented 
in Fig. 3.

3.1. Benchmarking ML-based pipelines for baseline load forecasting

The first part of the work is focused on benchmarking ML-based 
pipelines with a sliding window training scheme for one-hour-ahead 
baseline load prediction in large buildings. In this context, the utilized 
dataset is first described, and the methodology employed for imple-
menting the ML-based pipelines is then presented.
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Fig. 2. Sample buildings utilized in physical phenomena-based simulations in EnergyPlus.

Table 1

Description of the buildings used in the physical-based simulations in EnergyPlus.

Type Education Office Lodging / Residential Entertainment / Public Assembly Public Services

Total Floor Area 6871 [𝑚2] 4979.6 [𝑚2] 3135 [𝑚2] 463.6 [𝑚2] 511 [𝑚2]

Orientation 0° NE 0° NE 0° NE 30° NE 0° NE

Thermal Zones 25 18 27 5 5

Window Fraction 35% 33% 15% 29% 21%

Heating type Gas water boiler/Furnace Gas water boiler Gas furnace Gas water boiler Gas furnace

Cooling type
Packaged air

PACU Split system
Compression chiller with

Unitary split
conditioning unit (PACU) air cooled condenser

Distribution
Centralized air-handling Variable air volume Centralized air-handling

VAV system
Centralized air-handling

unit - PACU (VAV) system unit - PACU unit - Split
3.1.1. Data cleaning and filtering
Based on the scope of this work and considering the information 

provided that was provided about the utilized dataset (section 2.1), only 
the buildings in which the smart meter data includes the consumption of 
an electrically fed cooling system should be considered. Therefore, only 
the buildings with chilled water meters (along with the electrical smart 
meter) are included. Then, a correlation analysis was performed since it 
was observed that there is a low correlation between the ‘chilled water 
and electrical meter’ in some buildings. For that, Pearson’s correlation 
and normalized Mutual Information have been considered to find the 
correlation between electricity and chilled water consumption (along 
with the corresponding lagged value). A moderate correlation of 0.4 
[51] has been defined and utilized as a threshold to filter the buildings 
5

for which a correlation is observed.
The next step consists of filtering out the buildings without a cate-

gory or a specified service, followed by the outlier detection based on 
the work shown by Kissell [52], which consists of removing the build-

ings outside of the range 𝜇 ± 2𝜎 of specific energy consumption (where 
𝜇 represents the average, and 𝜎 is the standard deviation of the feature 
used for the filtering).

Considering the data processing and the filtering of the building, the 
final dataset used for this study consists of 99 buildings in which chilled 
water demand is correlated to electrical consumption. These buildings 
belong to five service categories: education, office, lodging/residential, en-
tertainment/public assembly, and public services; and are positioned in 
seven locations in North America, as observed in Fig. 4.

The buildings of the various categories are widely spread in different 

areas (see Fig. 5) where the educational and office building categories, 
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Fig. 3. Summary of the implemented methodology in this work.

Fig. 4. Geographic distribution of the sample buildings used in the benchmarking ML-based pipelines for baseline load forecasting. (For interpretation of the colors 
6

in the figure(s), the reader is referred to the web version of this article.)
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Fig. 5. Buildings’ distribution in the different locations, aggregated by category.
with 53 and 23 each, incorporate most of the buildings of this study, as 
shown in Fig. 5.

3.1.2. Implementation of machine learning-based pipelines
Five different machine learning regressor algorithms, such as: ‘ran-

dom forest’, ‘extra trees’, ‘XGBoost’, ‘support vector machine’ and ‘k nearest 
neighbor’, and linear regression are used for the hour ahead prediction 
of each building’s consumption. The outdoor conditions (ambient tem-

perature and direct solar radiation), the encoded day of the week, the 
time of the day, and the lagged features of these variables, along with 
the lagged values of the electricity consumption, are employed as input 
features. The features regarding the chilled water meter consumption 
are deployed in the filtering stage to ensure the correlation of the elec-

trical consumption of the building with chilled water usage and are not 
used in the modeling procedure. Various features are utilized to train 
the regression models for hour-ahead prediction of the baseline electri-

cal load, including the outdoor temperature, direct solar radiation, and 
electrical consumption, considering 1, 2, 3, and 4 hours ahead of the 
prediction. Furthermore, the day of the week (encoded in a sine func-

tion) and the hour of the day (encoded in a cosine function) serve as 
additional training features. Although the flexibility scenarios in the 
physics-based simulation are triggered by setpoint modifications, in 
order to develop generalizable models (only employing hourly smart 
meter data) that are not bound to limitations in the dataset (as in the 
case of the ‘Building Genome Data Project 2’, which only provides smart 
meter data and does not include any information about indoor tem-

perature setpoint), this feature is not used in the training procedure of 
ML-based algorithms.

Two different training approaches are next implemented while uti-

lizing the summer period (from July to September) of the first year 
(2016) for the training/validation procedure. In the first approach, of-

fline (batch) learning is implemented and assessed using time-series 
cross-validation. In the second approach instead, the sliding window 
training scheme [53] (the description of which is provided in the sec-

tion 4.3) is implemented. In order to determine the most suitable size 
of the training window, this training and validation scheme is imple-

mented with six window sizes of one week (168 hours), two weeks (336 
hours), three weeks (504 hours), four weeks (672 hours), five weeks 
(840 hours), and six weeks (1008 hours). It is noteworthy that in order 
to assess the general performance of machine learning models with-

out being optimized for a specific building, the corresponding hyper-

parameters are not fine-tuned. Furthermore, the implementation of 
around 172800 pipelines and the utilization of a sliding window train-

ing scheme in this research makes optimizing the algorithms’ hyper-
7

parameters impractical, while it also impedes the above-mentioned aim 
of reporting models’ generalizable performance. Mean absolute percent-
age error (MAPE) and coefficient of determination (𝑅2 score), are utilized 
to assess the performance of the prediction pipelines, while the latter 
one is used as the primary metric. The resulting determined average 
performance for each category of buildings is then calculated. The most 
promising pipelines that result in the highest 𝑅2 score (using the of-

fline and sliding window approaches, respectively) for each category 
of buildings are next determined. Finally, in order to assess the per-

formance of identified most promising pipelines, the corresponding 
performance over the test subset (the same period in the next year) 
is investigated.

3.2. Physical simulation of the offered flexibility

This subsection presents the second stage of this work, which in-

volves simulating the baseline load profile and the offered flexibility 
employing physics-based energetic behavior simulation models.

3.2.1. Simulation methodology
Two scenarios are considered to simulate the offered demand flex-

ibility. The first case (Case A), referred to as the “simulated baseline 
consumption”, includes the regular working schedule of the buildings 
involving predefined setpoint temperatures for the different zones dur-

ing working hours. The second scenario (case B), referred to as “flexible 
consumption”, simulates the implementation of a load-shifting scheme 
for a demand response program, such as Peak Time Rebates (PTR), 
where pre-established peak periods are considered, during which the 
customers receive an incentive upon the reduction of their demand [4]. 
A case of this demand response program has already been deployed 
by the State of California [43], in which buildings can reduce conges-

tion on the electrical grid during peak hours between June and October 
each year. In this simulation, the cooling setpoint is raised for an inter-

val of one hour once a signal (for reducing consumption) is received at 
4 p.m. (the maximum rise in zones’ temperature is kept below 2 °C). By 
comparing the two simulated consumption profiles, the corresponding 
real offered flexibility (represented in terms of flexibility index) is de-

termined. The simulations are conducted considering two CMY weather 
files (2016 and 2017) for Los Angeles, CA, to provide a similar compar-

ison with the ML-based pipeline benchmarking procedure. The results 
obtained from the simulation of the year 2016 are employed as the 
training data with the offline approach, while both sliding window and 
offline training methods are tested on the simulations performed for the 
year 2017. Details of these two scenarios are provided in the following 

subsections:
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Case A The first case consists of baseline consumption simulation un-

der the standard operation schedule of the building. Therefore, a yearly 
simulation with a frequency of 10 minutes is conducted considering a 
standard setpoint temperature of 24 °C for cooling. During off-schedule 
hours, the cooling setpoint temperature was increased to 30 °C to avoid 
the operation of HVAC equipment. The working hours are defined from 
Monday to Friday (except for holidays) from 7 a.m. to 6 p.m., while 
the off-schedule hours include all the other intervals, weekends, and 
holidays.

Case B In Case B, the flexibility measures proposed for the Califor-

nia State for grid decongestion based on incentives are applied under 
the same conditions of Case A. Therefore, in the period between June 
1st and October 31st and at 4 p.m. and for a maximum of one hour, a 
simulation is performed, considering a reduction in the electricity con-

sumed based on setpoint modifications for cooling demand, establishing 
a maximum increase of 2 °C (till 26 °C) in this period. The process is ter-

minated if any of the zones of the building independently exceed their 
corresponding setpoint temperature and the building is restored to the 
standard conditions. Since this strategy is based on a signal, the mod-

ifications in the setpoints are produced randomly (50% of possibilities 
to occur) on each day of the working week. The setpoint management 
and control have been implemented by the package EMSPY, developed 
by [54], which provides an interface for the interaction between Ener-
gyPlus and its Python API.

3.2.2. Offered flexibility estimation and the assessment of the 
corresponding accuracy

In order to estimate the real offered flexibility while a building is 
undergoing a flexibility measure in the context of a demand response 
program, the modified consumption of the building should be compared 
with the consumption profile that the building would have had if flex-

ibility measures were not taken (baseline load), which is clearly not 
available. In this context, an alternative would be employing predic-

tion pipelines that are trained using historical data of buildings’ regular 
operation. Accordingly, the most promising offline and the sliding win-

dow (with optimal training window size) training schemes pipelines 
proposed in the first phase are next utilized to predict the (simulated) 
baseline consumption during the periods where the flexibility mea-

sures are implemented. Therefore, simulations are conducted for each 
building using the 2016 weather data, and the corresponding electri-

cal baseline consumption is found, which allows for the training of the 
offline pipelines prior to their deployment for predicting the baseline 
of 2017. Next, the real offered flexibility index is determined using the 
simulated baseline load consumption with the weather data of 2017 and 
the demand profile while undergoing flexibility measure. The estimated 
flexibility is instead calculated while employing the predicted baseline 
load instead of the simulated one. Finally, the average (global) relative 
error in the estimation of the offered flexibility (represented in terms of 
the Flexibility Index) for each category of buildings is calculated.

4. Machine learning-based pipeline implementation: description 
of correlation indexes, algorithms, sliding window training 
scheme, and utilized accuracy metrics

In the present section, the description of the correlation index, algo-

rithms, sliding window training schemes, and the accuracy metrics that 
have been used in machine-learning-based pipeline implementation are 
provided.

4.1. Importance and relations between features

This present sub-section explains a theoretical description of two 
8

different correlation methods used to filter the data.
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4.1.1. Pearson’s correlation
Pearson’s correlation coefficient is a measure of the linear relation-

ship between two variables [55]. It is calculated as the covariance ratio 
of the two variables to the product of their standard deviations, as 
shown in Eq. (4).

𝜌𝑋,𝑌 = cov(𝑋,𝑌 )
𝜎𝑋𝜎𝑌

(4)

where 𝑟 is the Pearson’s correlation coefficient, and cov(𝑋, 𝑌 ) is the co-

variance of 𝑋 and 𝑌 , with 𝜎𝑋 and 𝜎𝑌 being the standard deviations of 
𝑋 and 𝑌 , respectively. This coefficient ranges from -1 to 1, where -1 in-

dicates a strong negative relationship, 0 indicates no relationship, and 
1 indicates a strong positive relationship.

For comparison purposes, the results of Pearson’s correlation are 
presented as absolute values between 0 and 1.

4.1.2. Mutual information
Mutual information (MI) is a metric that quantifies the non-linear 

dependence between two random variables. It is a non-negative value 
representing the level of information that a variable can provide about 
the other, capturing the overall relationship between the variables, and 
can be used to assess the strength of that relationship. In the following 
equation, based on the results of two random variables X and Y, Mutual 
Information can be calculated in its discrete expression [56,57]:

𝐼(𝑋;𝑌 ) =
∑
𝑥∈𝑋

∑
𝑦∈𝑌

𝑝(𝑥, 𝑦)𝑙𝑜𝑔 𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)

(5)

where 𝐼(𝑋; 𝑌 ) is the mutual information of random variables 𝑋 and 𝑌 , 
and 𝑝(𝑥, 𝑦), 𝑝(𝑥), and 𝑝(𝑦) are the joint probability, the marginal proba-

bility of 𝑋, and the marginal probability of 𝑌 , respectively.

In the development of this work, a python package named Ennemi
[58] has been used to calculate the Mutual information of different vari-

ables using the k-nearest neighbor search (by default, three neighbors). 
Additionally, the results are normalized in a range between 0 and 1 
using Eq. (6), where 0 indicates a strong negative relationship, and 1 
indicates a strong positive relationship. In the case of total linearity be-

tween the two different variables and if (𝑋, 𝑌 ) is normally distributed, 
Pearson’s correlation coefficient will have the same absolute value as the 
normalized mutual information proposed by Laarne et al. [58].

𝜌𝐼(𝑋;𝑌 ) =
√

1 − 𝑒𝑥𝑝(−2 𝐼𝑋;𝑌 )) (6)

4.2. Regression algorithms

In the present sub-section, five different machine learning regres-

sion models and linear regression that are utilized in the presented work 
and are sourced from the Scikit-learn [59] and XGBoost [60] python 
libraries are briefly presented.

4.2.1. Linear regression (LR)
Linear regression is a statistical method that is used to determine the 

linear relationship between a dependent variable and one or more in-

dependent variables. The goal of linear regression is to minimize the 
residual sum of squares between the observed data and the predicted 
values by using a linear approximation [61]. In the case of multiple 
independent variables, linear regression can be mathematically repre-

sented as follows:

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ...+ 𝑏𝑛𝑥𝑛 (7)

where the dependent variable is represented by y, the independent 
variables are represented by 𝑥1, x2, ..., 𝑥𝑛, and the coefficients are rep-

resented by 𝑏0, 𝑏1, 𝑏2, ..., 𝑏𝑛.

4.2.2. Random forest regressor (RFR)
Random forest [62,63] is a machine learning model based on an en-
semble of decision trees to make predictions. Each tree in the forest is 
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trained on a random sample of the data, and the final prediction is made 
by combining the outputs of all the individual trees. This approach may 
be used to reduce overfitting and improve the model’s overall accuracy 
by creating a more generalized model that is less sensitive to the spe-

cific details of the training data. Given the scope of this work, random 
forest is used for regression tasks.

4.2.3. Extra tress regressor (ETR)
Extra trees regressor [64] is a machine learning algorithm based on 

the principles of random forest, which similarly employs an ensemble 
of decision trees to make predictions. However, the trees in an extra 
trees model are trained using a more randomized approach that helps 
to improve their ability to generalize and make accurate predictions on 
new data.

4.2.4. XGBoost regressor (XGBR)
XGBoost (extreme gradient boosting) [60] is a machine learning li-

brary that uses gradient boosting to make predictions, which in this 
work’s context is the regression tasks. It trains weak decision trees, then 
combines them to create a strong learner that can accurately predict 
outcomes. At each iteration, the algorithm uses the errors from the pre-

vious iteration to train the next tree, with the goal of minimizing the 
overall error of the model. This process is repeated until the desired 
number of trees has been trained, at which point the model is ready to 
make predictions on new data.

4.2.5. Support vector regressor (SVR)
A support vector regressor [65] is a specialized form of support vec-

tor machine (SVM) designed to perform regression tasks. At its core, a 
support vector regressor seeks to identify the hyperplane that best di-

vides the data, maximizing the margin between the hyperplane and the 
data points. By maximizing this margin, the support vector regressor can 
improve the generalizability and robustness of the model. Additionally, 
the support vector regressor has several advantages compared to other re-

gression methods, such as the ability to handle high-dimensional data 
and the use of regularization to prevent overfitting.

4.2.6. k-Neighbors regressor (KNR)
k neighbors regressor [66] is an instance-based learning algorithm 

that can be used for regression tasks. Here, the value of k is a user-

defined hyperparameter that determines the number of nearest neigh-

bors to consider when making a prediction. The algorithm calculates 
the distances between the new data and the training data points. Then, 
it selects the k nearest neighbors based on these distances, and finally, it 
calculates the mean or median of those neighbors as the predicted value 
for the new data point. Because k neighbors regressor is an instance-based 
learning algorithm, it does not build a model to make predictions. Nev-

ertheless, it makes predictions based on the similarity of the new data 
point to the training data, which indicates that the algorithm can be 
computationally efficient and yet be sensitive to noise in the training 
data.

The choice of these algorithms is based on their different capabili-

ties. For example, three-based models are capable of modeling complex 
relationships between variables, but KNN and linear regression are sim-

pler to interpret and scalable since they can perform better when testing 
data is not present in the range of the training data (models are able to 
interpolate), property that is not shared with tree-based models.

4.3. Sliding window training

The offline learning method involves training the models utilizing 
the entire training set (batch training), whereas the sliding window 
training constantly performs training on a fixed-sized subset of the most 
recent data. In this approach, a training window with a fixed size is slid 
over the whole dataset (by continuously adding more recent data and 
discarding the old ones), providing prediction for each hour, the aver-
9

age accuracy of which is reported.
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4.4. Evaluation metrics

The present section illustrates the metrics used to compare the ac-

curacy of the different models and the physics-based simulation.

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)2∑𝑛

𝑖=1(𝑦𝑖 − �̄�)2
(8)

𝑅𝐸𝑖 =
𝑦𝑖 − �̂�𝑖

𝑦𝑖
(9)

𝑀𝐴𝑃𝐸 = 100%
𝑛

𝑛∑
𝑖=1

||𝑅𝐸𝑖
|| (10)

𝑀𝑅𝐷 = 100%
𝑛

𝑛∑
𝑖=1

𝑅𝐸𝑖 (11)

The coefficient of determination or 𝑅2 (Eq. (8)) is considered the main 
accuracy metric for the selection of the best pipelines for the different 
categories of buildings, while the mean absolute percentage error or MAPE
(Eq. (10)) is presented to quantify the mean absolute deviation error in 
terms of percentage, making it comparable among the different studied 
building. Nevertheless, the relative error (Eq. (9)) and the mean rela-
tive deviation or MRD (Eq. (11)) are utilized to present the associated 
accuracy when the flexibility index is calculated in the physics-based 
simulations.

Following the ASHRAE Guideline 14 [67,68], the Normalized Mean 
Bias Error (NMBE) and the Coefficient of Variation of the Root Mean 
Squared Error (CV(RMSE)) are also utilized for assessing the reliability 
of the results.

𝑁𝑀𝐵𝐸 = 100%
�̄�

∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)
𝑛

(12)

𝐶𝑉 (𝑅𝑀𝑆𝐸) = 100%
�̄�

√∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)2

𝑛− 1
(13)

The NMBE is a standard performance metric that calculates the 
mean error of a sample, with negative values indicating over-predictions 
and positive values indicating under-predictions. However, this metric 
can be affected by the cancellation of errors leading to underestimation 
of the actual error.

CV(RMSE) represents the capability of the model to predict the 
overall shape of the data, and contrary to NMBE, it is not subject to 
cancellation of errors [67–69].

ASHRAE Guideline 14 considers an hourly prediction model cali-

brated when the NMBE value is within the range of ±10%, while for 
CV(RMSE), the maximum acceptable error is 30%. Furthermore, the 
International Performance Measurement and Verification Protocol (IP-

MVP) [70] establishes a more stringent criterion, defining the permissi-

ble range for NMBE within ±5% and specifying that CV(RMSE) values 
must fall below 20%.

5. Results and discussion

In the first part of the present section, the results of the devel-

oped machine learning-based pipelines for base load prediction are 
presented. The subsequent part involves the conducted physics-based 
simulations of base and flexible loads to determine the offered flexibil-

ity. Lastly, employing the physics-based simulations of the flexibility 
provided by different categories of buildings and the corresponding 
base-load estimations presented in the first part, the accuracy of the 
resulting estimation of offered flexibility (utilizing the flexibility index
index as the metric) is investigated and discussed.

5.1. Results and discussions on ML pipeline implementation for base-load 
forecasting

As was pointed out in section 3.1.2, hour-ahead prediction pipelines, 

employing five machine learning algorithms and linear regression, uti-
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Fig. 6. Pearson’s correlation (left) and mutual information (right).
lizing an offline (batch) training approach, are first developed. For each 
building, the performance of the pipelines is assessed (through time se-

ries cross-validation considering coefficient of determination as the key 
evaluation metric) employing the available data from June to Septem-

ber 2016. The average performance achieved by each machine learning 
algorithm for each category of buildings is subsequently determined. 
Next, the performance of these pipelines while implementing the slid-

ing window training scheme employing five different training window 
sizes is assessed (with the same evaluation metric). In the next step, the 
most promising offline and sliding window pipelines for each building 
category, which result in the highest accuracy, are determined.

Fig. 6 presents the 14 features that are used to train the ML along 
with the heatmap of Pearson’s correlation and mutual information be-

tween each feature and the predicted consumption for each considered 
category. In general, there is a strong correlation and mutual informa-

tion (ranging between 0.6 to 1) between electrical consumption and its 
lagged values across all building categories. Public services and educa-

tion buildings exhibit a higher correlation with solar radiation variables 
and time of day, indicating a significant reliance on seasonal daily pat-

terns. Lodging, entertainment, and public services also show a relatively 
high correlation with outdoor temperature.

The obtained average performance of the implemented pipelines, 
for each building category, represented using 𝑅2 score and MAPE, are 
provided in Table 2. Considering 𝑅2 score as the key metric, it can be 
observed that in all of the investigated building categories, pipelines 
with sliding window training schemes offer a notably higher accuracy 
10

compared to pipelines with offline training. Furthermore, it is shown 
that using the extra trees regression algorithm in all of the implemented 
pipelines with sliding window training (regardless of the training win-

dow size) results in the most elevated performance. The optimal size of 
the training window is also demonstrated to be in the range of 4 to 6 
weeks for different categories of buildings. However, increasing the size 
of the training window beyond two weeks is shown to result in rather 
marginal improvements in all of the considered categories. For instance, 
the extra trees regressor offers an average 𝑅2 score of 0.935 with six 
weeks of training for educational category, while an only slightly lower 
𝑅2 score (0.93) could also be achieved using a window size of two 
weeks.

In addition, among the developed offline prediction pipelines, ex-
tra trees regressor has also been demonstrated to be the algorithm with 
the highest achieved performance for three building categories of ed-
ucational, entertainment/public assembly, and public services. For office
and lodging/residential categories instead, the linear regression algo-

rithm provides the highest performance. Moreover, it can be observed 
that support vector regressor or k nearest neighbors offers a notably lower 
performance compared to the other state-of-the-art algorithms. Thus, 
at least without any additional pre-processing step or hyper-parameter 
tuning, these two algorithms are clearly unsuitable choices for the im-

plemented baseline prediction pipelines.

Taking into account the mean absolute percentage error (MAPE) as the 
performance metric provides similar insights about the most promising 
pipelines. As can be observed in Table 2, pipelines implemented em-

ploying extra trees regressor with sliding window training scheme are 

shown to result in the lowest MAPE score, while the optimal size of the 
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Table 2

𝑅2 and MAPE scores grouped results of the baseline prediction for the validation dataset.

Model Education - 𝑅2 Education - MAPE [%]

1-week 2-weeks 3-weeks 4-weeks 5-weeks 6-weeks Offline 1-week 2-weeks 3-weeks 4-weeks 5-weeks 6-weeks Offline

LR 0.88 0.885 0.885 0.888 0.889 0.889 0.88 8.04 7.76 7.59 7.64 7.62 7.61 7.83

RFR 0.908 0.919 0.923 0.925 0.927 0.927 0.893 6.26 5.68 5.5 5.41 5.33 5.35 7.16

XGBR 0.898 0.912 0.917 0.918 0.921 0.923 0.879 6.18 5.67 5.5 5.37 5.32 5.29 7.4

ETR 0.923 0.93 0.932 0.933 0.933 0.935 0.896 5.57 5.2 5.11 5.05 5.19 5.13 7.11

SVR 0.612 0.715 0.75 0.764 0.772 0.778 0.732 16.55 14.2 13.36 13.03 12.9 12.86 12.52

KNR 0.68 0.725 0.739 0.745 0.749 0.749 0.684 13.08 11.5 10.97 10.77 10.71 10.41 12.37

Model Office - 𝑅2 Office - MAPE [%]

1-week 2-weeks 3-weeks 4-weeks 5-weeks 6-weeks Offline 1-week 2-weeks 3-weeks 4-weeks 5-weeks 6-weeks Offline

LR 0.854 0.863 0.864 0.864 0.864 0.863 0.854 9.7 9.49 9.42 9.38 9.34 9.32 9.43

RFR 0.877 0.887 0.891 0.891 0.892 0.892 0.791 7.44 6.71 6.43 6.25 6.16 6.16 7.12

XGBR 0.861 0.873 0.877 0.878 0.879 0.878 0.778 7.34 6.73 6.53 6.41 6.33 6.34 7.41

ETR 0.887 0.892 0.894 0.895 0.894 0.895 0.792 6.6 6.19 6.04 5.93 5.88 5.85 6.99

SVR 0.476 0.595 0.638 0.657 0.67 0.678 0.657 18.69 15.79 14.76 14.04 13.56 13.15 13.28

KNR 0.601 0.629 0.642 0.646 0.649 0.647 0.475 17.64 15.76 14.74 14.31 13.95 13.77 15.08

Model Lodging/residential - 𝑅2 Lodging/residential - MAPE [%]

1-week 2-weeks 3-weeks 4-weeks 5-weeks 6-weeks Offline 1-week 2-weeks 3-weeks 4-weeks 5-weeks 6-weeks Offline

LR 0.849 0.857 0.858 0.859 0.859 0.858 0.839 4.98 4.86 4.85 4.86 4.88 4.9 5.38

RFR 0.857 0.861 0.866 0.867 0.867 0.866 0.674 4.52 4.42 4.36 4.31 4.29 4.31 6.32

XGBR 0.833 0.839 0.848 0.85 0.853 0.855 0.636 4.76 4.62 4.57 4.53 4.5 4.49 6.65

ETR 0.866 0.87 0.875 0.876 0.877 0.876 0.671 4.34 4.26 4.19 4.18 4.18 4.19 6.35

SVR 0.623 0.65 0.662 0.662 0.66 0.662 0.541 8.23 6.83 6.79 6.75 6.72 6.72 8.25

KNR 0.715 0.713 0.695 0.682 0.668 0.654 0.264 7.25 7.08 7.31 7.48 7.63 7.77 11.08

Model Entertainment/public assembly - 𝑅2 Entertainment/public assembly - MAPE [%]

1-week 2-weeks 3-weeks 4-weeks 5-weeks 6-weeks Offline 1-week 2-weeks 3-weeks 4-weeks 5-weeks 6-weeks Offline

LR 0.857 0.861 0.861 0.861 0.861 0.86 0.853 8.25 8.07 7.99 7.98 7.94 7.92 8.09

RFR 0.886 0.896 0.901 0.904 0.906 0.905 0.86 6.43 6.02 5.8 5.72 5.66 5.69 6.92

XGBR 0.875 0.888 0.892 0.896 0.897 0.9 0.851 6.62 6.2 6.02 5.98 5.94 5.89 7.13

ETR 0.903 0.91 0.912 0.914 0.915 0.914 0.867 5.94 5.62 5.51 5.44 5.42 5.42 6.76

SVR 0.461 0.547 0.585 0.61 0.627 0.641 0.631 17.27 14.74 13.36 12.57 12.08 11.71 11.65

KNR 0.71 0.742 0.757 0.767 0.771 0.774 0.708 11.03 10.24 9.88 9.69 9.52 9.43 10.6

Model Public services - 𝑅2 Public services - MAPE [%]

1-week 2-weeks 3-weeks 4-weeks 5-weeks 6-weeks Offline 1-week 2-weeks 3-weeks 4-weeks 5-weeks 6-weeks Offline

LR 0.876 0.878 0.879 0.878 0.878 0.877 0.872 9.75 9.57 9.59 9.56 9.57 9.52 9.86

RFR 0.903 0.915 0.919 0.92 0.922 0.923 0.882 7.47 6.83 6.58 6.37 6.29 6.25 7.62

XGBR 0.898 0.91 0.915 0.916 0.919 0.921 0.876 7.49 6.89 6.74 6.56 6.38 6.37 7.82

ETR 0.921 0.931 0.934 0.935 0.936 0.937 0.888 6.54 6.0 5.78 5.68 5.59 5.54 7.24

SVR 0.375 0.504 0.553 0.586 0.612 0.631 0.62 28.84 25.87 24.17 22.99 22.09 21.31 20.73

KNR 0.763 0.818 0.84 0.845 0.847 0.85 0.8 12.51 10.49 9.71 9.46 9.27 9.13 10.28
training window is demonstrated to be between 4 and 6 weeks. Fur-

thermore, this algorithm is also shown to be the most suitable choice 
for pipelines with offline training for all building categories except that 
of lodging/residential buildings (for which linear regression leads to a 
slightly lower MAPE score). Moreover, pipelines with sliding window 
training scheme evidently result in lower MAPE scores compared to 
those offered by the pipelines trained using the offline approach.

Finally, to assess the performance of the determined most promis-

ing prediction pipelines for unseen data, the corresponding accuracy 
while being applied to the test subset (that includes the same period in 
the following year) is investigated. Accordingly, for each building cat-

egory, the pipelines that result in the highest validation 𝑅2 score, with 
sliding window and offline training schemes, are first chosen. Follow-

ing the previously discussed results, for pipelines with sliding window 
training, extra trees regressor is employed as the algorithm while a train-

ing window of 6 weeks is utilized for education, office and public services
categories. A training window of 5 weeks is instead employed for the 
rest of the categories. In the case of offline pipelines instead, linear re-
11

gression is chosen for the office and lodging/residential categories while 
extra trees regressor is selected for all the other categories. The extra 
trees regressor algorithm has also shown an outstanding performance in 
many energy-related applications [71–73]. Through implementing ex-

treme randomization without the need for exhaustive search at each 
decision tree node, extra trees regressor has been demonstrated to de-

liver superior performance compared to other tree-based algorithms, 
including random forest [74]. The additional level of randomness is in-

troduced by creating decision trees based on random subsets of features 
and introducing random thresholds. This makes extra trees regressor less 
prone to over-fitting, which is essential when the dataset is noisy or has 
high-dimensional input features. The superior performance of this algo-

rithm can thus be attributed to the building load data having noise and 
complex relationships between input features and output.

The result of applying the selected pipelines on the test dataset are 
presented in Table 3. It can be observed that using the identified opti-

mal pipelines with a sliding window training scheme for the test subset 
achieves a performance that is in a similar range as the one that was 
obtained for the validation subset (for the case of the office category 

even an improvement is observed and the 𝑅2 score is enhanced from of 
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Table 3

Test results obtained using the best pipeline with the online and offline approaches.

Category Pipeline 𝑅2 MAPE [%] CV (RMSE) [%] NMBE [%]

Sliding window training

Education ETR - 6 weeks 0.936 (std=0.051) 4.35 (std=3.62) 6.79 (std=3.60) 0.20 (std=0.30)

Office ETR - 6 weeks 0.937 (std=0.074) 5.80 (std=4.63) 11.74 (std=16.13) 0.15 (std=0.26)

Lodging/residential ETR - 5 weeks 0.872 (std=0.075) 4.31 (std=2.94) 7.19 (std=4.06) 0.05 (std=0.40)

Entertainment/public assembly ETR - 5 weeks 0.913 (std=0.039) 5.41 (std=2.58) 8.75 (std=3.15) 0.16 (std=0.39)

Public services ETR - 6 weeks 0.948 (std=0.021) 5.84 (std=3.00) 7.88 (std=3.41) 0.40 (std=0.19)

Offline training

Education ETR 0.796 (std=0.272) 8.19 (std=6.08) 11.65 (std=8.63) 0.37 (std=6.18)

Office LR 0.833 (std=0.249) 12.81 (std=13.43) 16.97 (std=16.31) -2.62 (std=5.94)

Lodging/residential LR 0.822 (std=0.138) 5.64 (std=2.97) 7.87 (std=4.22) -0.28 (std=0.41)

Entertainment/public assembly ETR 0.866 (std=0.063) 7.58 (std=2.94) 10.69 (std=3.34) -0.16 (std=3.38)

Public services ETR 0.923 (std=0.026) 8.13 (std=4.68) 9.87 (std=4.59) -0.17 (std=0.66)
0.895 to 0.937). Furthermore, the calculated standard deviation demon-

strates that the accuracy obtained for different buildings belonging to 
each category is also in a similar range (and close to the correspond-

ing determined average). Comparing the performance of the offline 
pipelines over the test subset with the one obtained for the validation 
set shows a reduction in the 𝑅2 score (except for the public services cate-

gory, where an improvement is observed). Furthermore, the CV(RMSE) 
values are lower than the threshold specified by ASHRAE (30%) and 
IPMVP (20%). However, there is a significant performance improve-

ment when using the sliding window training approach compared to the 
offline method. This result indicates that the proposed pipelines can ef-

fectively generalize the shape of the load curve. Similarly, the pipelines 
exhibit a remarkably low level of uncertainty concerning NMBE, falling 
within the recommended range of ±10% as suggested by ASHRAE 
Guideline 14, indicating an accurate and reliable representation of load 
prediction throughout the entire period, minimizing the overall occur-

rence of over or under predictions. Moreover, similar to the validation 
subset, the accuracy offered by the pipelines with the sliding window 
training scheme is higher than the one that can be achieved using of-

fline training.

It is thus demonstrated that the identified pipelines with sliding win-

dow training scheme (that were shown to have superior performance 
compared to the ones with offline training over the validation set) are 
not prone to over-fitting. It is also revealed that the re-training proce-

dure (with recent data) that is implemented in these pipelines permits 
achieving an elevated performance also for the unseen (test) data (while 
a decrement in performance is commonly observed utilizing offline 
training). These pipelines are thus employed for hour-ahead prediction 
of the (simulated) base load for the buildings during flexibility mea-

sures, with the results presented in the following subsection.

5.2. Results and discussions on the estimation of offered flexibility

As described in section 3.2, for all of the considered building models, 
two simulation scenarios were considered: i) the baseline consumption 
of the building with the regular (default) setpoint schedules ii) the flex-

ible consumption while undergoing a setpoint modification procedure 
in the context of a demand response program. Fig. 7 illustrates an ex-

ample of the indoor temperature with two thermal zones: Zone 0 (760 
[𝑚3]) with a west-facing wall and Zone 1 (1260 [𝑚3]) with north and 
east-facing walls. Additionally, Fig. 8 displays the total electrical con-

sumption profile of the building while it interacts with the grid. The 
increase in setpoint at 16:00 is evident in both figures, where evading 
the conditioning load (which in turn results in a rise in the temperature) 
leads to a reduction in the total load of the building. The correspond-

ing baseline (default consumption profile without undergoing setpoint 
modification) is also demonstrated in Fig. 8. The difference between the 
baseline load and the flexible load in 8 represents the flexibility offered 
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by the building.
However, the grid management authority does not commonly have 
access to the baseline load in order to quantify the offered flexibility 
accurately. Accordingly, the prediction pipelines, developed in the pre-

vious part for different building categories, are utilized to estimate the 
building’s baseline load (simulated using the physics-based energy be-

havior models). In this context, the difference between the predicted 
and the simulated (real) baseline load results in an error in the esti-

mated flexibility (compared to the simulated one), which should be 
quantified. In other words, the baseline load prediction error is prop-

agated to the estimation accuracy of the offered flexibility (represented 
by the flexibility index), the extent of which should be assessed. The 
flexibility index, in each day, is first measured employing the simula-

tion results (where both flexible and base load are simulated), and the 
corresponding estimated flexibility index is instead determined using 
simulated flexible load and the predicted baseline load for the sliding 
window and offline training. The difference between the simulated and 
estimated flexibility index is consequently quantified for each day. The 
resulting average error (presented using 𝑅2, MAPE, and MRD scores 
as accuracy metrics) for all of the considered buildings is represented 
in Table 4. A strong agreement can be observed between the average 
values of simulated and estimated FI for the sliding window scheme, 
which is also confirmed by the resulting elevated 𝑅2 scores and low 
(MAPE) values. Overall, the application of the sliding window training 
scheme has yielded better results, considering all of the used metrics, 
compared to the offline version. In particular, the Lodging/Residential 
and Public Services categories show notably lower 𝑅2 and higher MAPE 
achieved for the offline approach compared to the sliding-window one. 
These results demonstrate the accuracy and consistency of the predic-

tion pipelines developed in the previous part, which permit estimating 
the flexibility offered by buildings belonging to different categories. 
Moreover, the low values acquired for MRD scores for sliding-window 
training also demonstrate that there is no tendency to overestimate or 
underestimate the flexibility index, helping to minimize the unjustified 
global penalization or overcompensation of the user. As observed in sec-

tion 5.1, the achieved CV(RMSE) for both sliding-window and offline 
training approaches remains below the designated threshold. However, 
the sliding window scheme exhibits comparatively lower values, par-

ticularly in Lodging/residential, Entertainment/public assembly, and 
Public services. The incorporation of NMBE confirms that all categories 
utilizing the sliding window scheme lie within the error range specified 
by ASHRAE Guideline 14 and IPMVP. Nonetheless, in the case of offline 
training, Lodging/residential and Public services fall outside the range 
of ±5% proposed by IPMVP.

In order to further assess the accuracy of the estimated flexibility in-
dex in each building model, the distribution of the relative error for 
the sliding-window training approach (which is due to the propagation 
of the corresponding baseline load prediction error) on different days 
is demonstrated in the boxplot represented in Fig. 9. Firstly, the sym-

metrical distribution of the error can be observed in all cases, with the 

50th percentile located near zero with a small box size indicating that 
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Fig. 7. Change in temperature profile in different zones when flexibility strategies are applied in a physical-based model.

Fig. 8. Change in load when flexibility strategies are applied in a physical-based model. The baseline load and the load while undergoing a flexibility measure are 
both provided by the energy simulation in EnergyPlus.

Table 4

Average flexibility index results and metrics accuracy obtained from the comparison between the simulated case and the predicted case using the 
best ML pipelines for the baseline prediction in year 2017.

Model Category Average Flexibility Index [%] 𝑅2 MAPE [%] MRD [%] CV (RMSE) [%] NMBE [%]

Simulation Estimation

Sliding window training

Educational 13.79 13.25 0.92 5.54 3.83 7.59 3.90

Office 9.79 9.74 0.97 3.32 1.39 6.22 0.50

Lodging/residential 13.89 14.22 0.91 2.86 −2.44 3.75 −2.40

Entertainment/public assembly 6.86 6.92 0.96 1.75 −0.72 2.21 −0.81

Public services 13.28 12.97 0.98 2.79 1.98 5.66 2.36

Offline training

Educational 13.79 14.45 0.91 5.64 −4.19 8.00 −4.77

Office 9.79 10.03 0.93 3.45 −1.61 9.47 −2.48

Lodging/residential 13.89 16.02 −0.62 15.40 −15.40 15.97 −15.34

Entertainment/public assembly 6.86 7.01 0.93 2.47 −2.18 3.09 −2.16

Public services 13.28 14.00 0.86 7.52 −4.29 14.12 −5.42
the 25th percentile and 75th percentile of error values are clustered 
tightly around the median. In addition, the interquartile range of er-

rors is limited to values less than 5% (except for the education category 
model with a 7.0% relative error), displaying the accuracy of the mod-

els. Moreover, whiskers are shown to be not long, which indicates there 
are no extreme outliers which further confirms the consistency of the 
predictions.

6. Conclusion

The current work introduced a data-driven approach, implement-

ing machine learning-based pipelines to predict baseline consumption 
of buildings whilst they are providing flexibility in a summer cooling 
13

scenario. A dataset including the consumption profiles of 99 buildings 
belonging to different categories of services was accordingly utilized. 
A collection of five machine learning algorithms and linear regression, 
considering both offline and sliding window training schemes (with five 
different training window sizes), were assessed to benchmark a machine 
Learning-based pipeline for each one of the considered buildings cate-

gories. The performance of each pipeline was evaluated while keeping 
the coefficient of determination (𝑅2) score considered as the primary 
evaluation metric. Next, the most promising offline and sliding window 
pipeline (and the corresponding optimal training window) leading to 
the highest accuracy was identified for each building category.

It was revealed that using the extra trees regression algorithm with 
sliding window training outperforms other pipelines, and the optimal 
size of the training window for different categories of buildings was 

shown to be in the range of 4 to 6 weeks (with slight improvement be-
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Fig. 9. Relative error distribution for the Flexibility Index obtained in calculating the available flexibility with the simulated baseline consumption and the predicted 
baseline consumption using the selected pipelines for the online case.
yond two weeks of training). Exerting the discovered pipelines with a 
sliding window training scheme on the test dataset achieved a similar 
or slightly better performance than that of the validation subset, indi-

cating that the over-fitting issue has been avoided. Additionally, the 
calculated low values of standard deviation demonstrated that the ob-

tained performance for different buildings belonging to each category 
is in a similar range.

The absence of a baseline load during the flexibility measures im-

pedes the accurate calculation of the offered flexibility. Therefore, the 
second part of the study was dedicated to the deployment of the iden-

tified ML-based pipelines to predict the baseline load consumption of 
model buildings belonging to five different categories at the time the 
building provides flexibility. Therefore physics-based simulations (us-

ing the EnergyPlus software) were performed to model the baseline load 
and the flexible consumption during a setpoint modification procedure 
for a demand response program. The scenario of building offering flex-

ibility was simulated by increasing the cooling setpoints for an interval 
of 1 hour on different days while ensuring that the temperature did 
not rise by more than 2 degrees, leading to the deactivation of the 
HVAC system and a consequent reduction of the load. Next, the pro-

posed pipelines were employed for baseline load prediction, and the 
estimated flexibility index was determined using the predicted baseline 
and the simulated consumption while undergoing the flexibility mea-

sure. By comparing the determined estimated FI and the corresponding 
simulated values, an elevated agreement with a low MRD score (val-

ues between -2.45% to +2.79%), was observed, indicating the accuracy 
of the prediction that permit estimating the offered FI with acceptable 
accuracy. Finally, for all of the considered building models, the sym-

metrical distribution of the FI estimation’s relative error on different 
days, with the 50th percentile close to zero, further confirmed the fact 
that using the proposed pipelines evades unjustified global penaliza-

tion or overcompensation of the user. Consequently, the proposed set 
of pipelines was demonstrated to be an effective tool for predicting the 
baseline of different categories of buildings in order to achieve an accu-
14

rate estimation of the offered flexibility index.
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