
Information and Software Technology 160 (2023) 107230

A
0

M
E
F
a

b

c

A

K
M
A
C
M
M
E
C

1

d
t
v
m
v
r
e
t
m

G

h

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

igrating monoliths to cloud-native microservices for customizable SaaS✩

spen Tønnessen Nordli a, Sindre Grønstøl Haugeland a, Phu H. Nguyen b,∗, Hui Song b,
ranck Chauvel c

TietoEvry, Norway
SINTEF, Norway
Axbit AS, Norway

R T I C L E I N F O

eywords:
icroservices
rchitecture
loud native
igration
ulti-tenancy

vent-based
ustomization

A B S T R A C T

Context: It was common that software vendors sell licenses to their clients to use software products, such as
Enterprise Resource Planning, which are deployed as a monolithic entity on clients’ premises. Moreover, many
clients, especially big organizations, often require software products to be customized for their specific needs
before deployment on premises.
Objective: However, as software vendors are migrating their monolithic software products to Cloud-native
Software-as-a-Service (SaaS), they face two big challenges that this paper aims at addressing: (1) How to
migrate their exclusive monoliths to multi-tenant Cloud-native SaaS; and (2) How to enable tenant-specific
customizations for multi-tenant Cloud-native SaaS.
Method: This paper suggests an approach for migrating monoliths to microservice-based Cloud-native SaaS,
providing customers with a flexible customization opportunity, while taking advantage of the economies
of scale that the Cloud and multi-tenancy provide. We develop two proofs-of-concept to demonstrate our
approach on migrating a reference application of Microsoft called SportStore to a customizable SaaS as well
as customizing another Microsoft’s microservices reference application called eShopOnContainers.
Results: We have shown not only the migration to microservices but also how to introduce the necessary
infrastructure to support the new services and enable tenant-specific customization.
Conclusions: Our customization-driven migration approach can guide a monolith to become SaaS having
(synchronous and asynchronous) customization power for multi-tenant SaaS. Furthermore, our event-based
customization approach can reduce the number of API calls to the main product while enabling different
tenant-specific customization services for real-world scenarios.
. Introduction

Following the trend of cloud computing, enterprise software ven-
ors are moving from single-tenant on-premises monolithic applica-
ions to multi-tenant (cloud native) SaaS [1]. Migrating to microser-
ices architecture is the right way forward for legacy systems to be
odernized [2–4]. There are huge benefits for migrating to microser-

ices architecture such as maintainability and scalability in the long
un [5], e.g., by adopting DevOps and benefiting from cloud-native
lasticity [6]. However, software vendors are facing two big inter-
wined challenges: (1) How to migrate their monoliths to cloud-native
icroservices; and at the same time (2) How to enable tenant-specific

✩ The research leading to these results has partially received funding from the European Union’s Horizon 2020 Research and Innovation programme under
rant Agreement No. 958363 (DAT4.Zero), and from the Research Council of Norway under the grant agreement number 309700 (FLEET).
∗ Corresponding author.
E-mail addresses: espen.nordli@tietoevry.com (E.T. Nordli), sindre.haugeland@tietoevry.com (S.G. Haugeland), phu.nguyen@sintef.no (P.H. Nguyen),

ui.song@sintef.no (H. Song), franck.chauvel@axbit.com (F. Chauvel).

(deep) customization in the multi-tenant Cloud native SaaS context.
A deep customization may affect any parts of a software product,
including the user interface (UI), the business logic (BL), the database
schemas (DB) or any combination thereof that goes beyond the ven-
dors’ prediction [7,8]. Moreover, in the cloud-based multi-tenant SaaS
model, every customer must run the same code base (main prod-
uct), which cannot be customized for one customer without affect-
ing other customers. Running a different version for each customer
would directly negate any economies of scale of the multi-tenant SaaS
model [9]. Software vendors desperately need a novel approach to
migrate their monoliths to cloud-native microservices while still em-
powering deep customization for the multi-tenant SaaS model.
vailable online 24 April 2023
950-5849/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2023.107230
eceived 15 February 2022; Received in revised form 3 February 2023; Accepted 1
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2 April 2023

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:espen.nordli@tietoevry.com
mailto:sindre.haugeland@tietoevry.com
mailto:phu.nguyen@sintef.no
mailto:hui.song@sintef.no
mailto:franck.chauvel@axbit.com
https://doi.org/10.1016/j.infsof.2023.107230
https://doi.org/10.1016/j.infsof.2023.107230
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107230&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.
In this paper, we first explore the current approaches used in
the industry when migrating enterprise applications from a mono-
lithic architecture to the microservices architecture and the different
approaches used when transitioning an application from single to multi-
tenant. Through reviewing the existing literature we found a number of
different approaches that all accomplish one of these two goals, either
focusing on the migration from one architecture type to the other or
transitioning from single- to multi-tenant. Both microservices architec-
ture and multi-tenancy offer additional benefits to the end-users of
the application and the developers. Combining these two principles
allows us to better utilize the economies of scale and the resource
sharing found in SaaS applications. To this end, our first contribution
focuses on a migration approach (extended from [10]) for cases where
the target application follows a microservice architecture while also
allowing tenants to customize the business logic to better fit their needs
in a multi-tenant context. Our approach focuses on three stages during
the migration, analyzing and breaking down the application into small
bounded contexts, transforming the existing infrastructure to fit the
new architecture and implementing functionality from the contexts as
separate microservices, and finally adding the necessary components to
support tenant-specific customization in the multi-tenancy context.

Most existing approaches for customizable SaaS such as depen-
dency injection, software product lines, middleware [9,11–14] can
only provide predefined customization capacity at design time. The
mainstream multi-tenant SaaS vendors such as Salesforce and Oracle
NetSuite provide built-in scripting languages for more fine-grained,
code-level customization [15–17]. To maximize customization capabil-
ity, both vendors have developed very extensive, sophisticated APIs and
platforms. This way requires huge up-front investments and extensive
training for developers, which are not affordable by smaller software
vendors. More recently, leveraging the microservices architecture [18–
20] for enabling deep customization of multi-tenant SaaS is a very
promising direction as presented in [7,8,21–23]. These microservices-
based customization approaches vary in how they balance isolation
and assimilation. In general for any customization approach, isolation
guarantees that tenant-specific customization only affects that one
single tenant, whereas assimilation guarantees that customization ca-
pability can alter anything in the main software product. Intrusive
microservices [8,21,22] provide tight assimilation at the cost of se-
curity (tenant isolation), whereas the non-intrusive approach called
MiSC-Cloud [7,23,24] trades assimilation for higher security. MiSC-
Cloud orchestrates customization using microservices via API Gate-
ways. Via API Gateway(s), the APIs of the main product and the APIs of
tenant-specific microservices implementing customization are exposed
for tenant-specific authorized access.

In this paper, our second contribution focuses on an event-based
non-intrusive deep customization approach (extended from [25]), in
combination with the synchronous way of customization as described
in [7]. By enabling event-based non-intrusive deep customization, the
MiSC-Cloud framework can coordinate the execution of the BL compo-
nents (microservices) of the main product as well as the customization
microservices of tenants to obtain the desired customization effects in
the multi-tenant context. Using event-based communication between
customization microservices and the main product BL components is
important not only for the microservices architecture but also for non-
intrusive deep customization capability. This asynchronous way of
customization means that customization microservices can have event-
based communication with the main product BL components for cus-
tomization purposes. Therefore, this event-based deep customization
approach can help reducing the number of API calls to the main prod-
uct, which is a big concern for software vendors. The main extensions
in this paper compared to our previous work [10,25] are:

– We present in this paper not only the migration approach but
also the full customization approach to make a more complete
solution, from migrating monoliths to multi-tenant SaaS, and then
2

customizing the target SaaS.
– We apply our full migration-customization approach to two case
studies. Firstly, we have migrated the monolith SportStore to
multi-tenant SportStore-aaS and then customized the multi-tenant
SportStore-aaS. Secondly, we have further customized the micro-
services-based eShopOnContainers.

– We present a complete customization approach that combines
synchronous customization and asynchronous customization to
offer flexible ways to implement deep customization. Synchro-
nous customization via API calls is suitable for UI customiza-
tion, and for querying more ‘‘contexts’’ from the main software
product for customization if needed. Asynchronous customiza-
tion via events orchestration is suitable for BL customization,
especially when the microservices of the main software product
communicating via events. Event-based customization can help
reducing the number of API calls to the main software product.
Synchronous customization via API calls can also help triggering
event-based customization for the customization scenarios where
no events from the main product can be used as triggers.

In the remainder, Section 2 gives the background concepts of this
work. In Section 3, we present a motivational example. Our approach
is given in Section 4. In Sections 5 and 6, we show the application
of the proposed approach to two different reference applications of
Microsoft called SportStore [26] and eShopOnContainers.1 Section 7
discusses related work. Finally, we provide in Section 8 our conclusions
and future research directions.

2. Background

In this section, we first recall the main concepts for the migra-
tion. Then, we explain our technical objective, i.e., to achieve deep
customization of SaaS. After that, we briefly present our previous
approach [7] as the baseline of this work.

2.1. Monolithic applications

A monolithic architecture is a simple software architecture, where
all parts of the applications (i.e., presentation, business logic and stor-
age) are packaged into one unique deployment unit. This architecture
is simple to develop, deploy and operate, but often difficult to scale.
A single component implies a single technology that will seldom (if
ever) fits all the newest features request. Over the time, monoliths
may becomes difficult to scale, without simply over dimensioning the
underlying infrastructure. On the human side, having multiple teams
working on a single code base requires difficult team-synchronization
to avoid half-backed features to land in production.

2.2. Microservice applications

At the other end of the complexity spectrum is the microservices
architecture. It divides the application into dozen (or hundreds) of
independent microservices that are not only independent deployment
units, but also independent execution units that interact through the
network. Each has a specific software stack and storage technology, an
independent lifecycle, and dedicated development and operation team.
These services do not face the customer and operate behind an unified
API or proxy such as an API gateway for example.

1 https://github.com/dotnet-architecture/eShopOnContainers

https://github.com/dotnet-architecture/eShopOnContainers

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.
2.3. Migration

Software migration (also called modernization) refers to any chan-
ges meant to run the system on a different execution environment.
Legacy mainframe systems, enterprise systems and other long lived
systems will generally require one or more ‘‘migrations’’ through their
lifespan. Migration remains notoriously difficult, error prone and ex-
pensive and architects must carefully weight migration cost against a
simpler ‘‘rewrite’’ alternative.

A migrating software often includes three main phases [27]: Recov-
ering existing functionality, transformation of the current architecture,
and re-implementation following the target architecture. We outline
below the Strangler and Blueprint approaches, two well-documented
migration techniques.

2.3.1. Strangler
The Strangler approach [28] builds the new logic literally ‘‘around’’

the old one. At first the new logic does nothing and merely delegates
incoming requests to the old system. Gradually, one can replace some
delegations with a new implementation until the old system becomes
unreachable and can be decommissioned. This approach includes dif-
ferent ways of diverting the calls to the old system, either by event
interception, where the edge system taps into the message-stream
intended for the original system and redirecting calls as new services
are implemented. The alternative is to use asset capture, working with
simple orders or specific customers.

2.3.2. Blueprint
The blueprint approach serves as a template for further adjustment,

depending on the goals of the migration. The approach consists of
two parallel tasks, building the required infrastructure to support the
new system, and the actual migration. This approach uses aspects from
domain-driven design (DDD) [29] to separate different functionality
into bounded contexts. These contexts are then repeatedly migrated
into services or a set of services in the new architecture. Identifying
these contexts is normally done by analyzing source-code, technical
documentation, and in some cases, from interviews with developers
that have worked on the pre-existing system [30]. The services mi-
grated should ideally include everything except the UI, implementing
the logic of the bounded context and a form of storage for the data
related to the service.

In parallel to this process, the required infrastructure for the new
architecture should be set up. While the existing infrastructure might
be able to support a small number of services, future migration and
expansion might require a more specialized infrastructure that better
support the system.

2.4. Multi-tenancy

A multi-tenant application serves multiple customers or tenants
through an application shared by all the users [31]. Multi-tenancy is
prevalent, particularly in cloud-hosted software. Since the application
instance is shared among the different users, the software only solves
a common set of problems for the users or a problem that the majority
of the different users have [32]. As the application is shared among
multiple tenants, costs associated with the infrastructure and operations
of the servers are also shared between the tenants, resulting in lower
overhead for the application compared to running individual instances
for each customer.
3

2.5. Deep customization

By contrast with other customization means such as settings, script-
ing languages or API, deep customization demands that one can possi-
bly make any change to the system, as one can do with direct access to
the source code. Changes can therefore affect the user interface (UI),
the business logic (BL), the database schema (DB), or any combination
thereof.

– As for the UI, developers must have means to modify existing
screens, that is reorder UI elements (labels, text fields, etc.), add
new UI elements (or remove existing ones), or modify the related
validation code. They should also be able to add new screens or
to remove existing ones.

– As for the BL, developers must have the means to override existing
logic (i.e., code) but also to remove or add new logic. In addition,
they must be able to emit events and to create new type of events
(or delete existing ones). Finally, they must be able to integrate
with external services.

– As for the DB, developers must be able to add new columns to
tables (or delete existing ones), or create new tables including
foreign keys (or delete existing ones). In addition, they should
also be able to override the whole data source, with a new
dedicated one.

Deep customization turns out difficult in multi-tenant SaaS environ-
ments, where all tenants originally run the same code (UI, BL and DB)
[21]. Tenant-specific customization must affect only one single tenant.
From an extra functional standpoint, the challenge is to offer tightly
assimilated customization while preserving tenant isolation, and, in
turn, privacy and security.

This work focuses on the customization of BL, especially based on
events. In this way, customization microservices communicate with the
main product, either in a synchronous way by requesting data and
waiting for the response (RPC-like), or in an asynchronous way, by
publishing and subscribing to events (pub/sub). The customization of
UI and DB can be found in [7,8,21–23].

2.6. TheMiSC-Cloud framework

Fig. 1 shows an overview of the MiSC-Cloud framework [7] using
microservices and API gateways to approximate deep customization
without sacrificing on security. In this framework, the WebApp MVC
and the Business Logic Components are the main SaaS product. Five
main modules have been introduced to enable deep customization
of the main product in a non-intrusive way: WebMVC Customizer,
API Gateways, Tenant Manager, Identity & Access Management (IAM)
Service, and Event Bus. The non-intrusive customization approach
presented in [7] shows that there are two possibilities for enabling
tenant-specific customization for the main SaaS product. The first way
is called ‘‘synchronous customization’’ using synchronous API calls via
the API gateways. We have presented in details the ‘‘synchronous
customization’’ approach in [7]. The synchronous customization ap-
proach orchestrates customization using API Gateways to which the
APIs of the main product and the APIs of tenant-specific microservices
implementing customization are exposed. As presented in [7], the key
point in the non-intrusive customization approach is that it enables
the authorized access of the tenants’ customization microservices to
the main product BL via the API gateways. In this way, the tenants’
customization microservices can have access to the necessary execu-
tion context of the main product BL if needed. Deep customization is
also possible because using API gateways even allows a customization
service to replace a BL component of the main product if needed.

The second way is called ‘‘asynchronous customization’’, which
orchestrates tenant-specific customization using tenant-specific events
via the (customization-empowered) Event Bus. Using event-based com-

munication between customization microservices and the main product

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.
Fig. 1. The MiSC-Cloud framework [7].
Fig. 2. Companies often need to customize software deployed for them.
BL components is one of the key parts of our customization solution that
has not been detailed in [7]. In Section 4, we detail our event-based
customization approach.

3. A motivational example

In this section, we present a motivational example based on a
SportStore application, to show why we need to migrate a monolith
to customization-ready microservice architecture, and what are the
requirements for this migration.

SportStore, a web-based store for sports equipment, is a software
product of software vendor A. It provides many of the essential features
of an online shopping system such as user management, catalogue,
shopping cart and checkout. It was implemented in .NET Core with
Views, Models, and Controllers for ordering, product catalogs, and a
session-based shopping cart. Software vendor A has sold the SportStore
product to many sporting good retailers, who deployed the product as
separate instances. Among them, retailer X and retailer Y are the big
ones (Fig. 2). Such big retailers often do not use the SportStore as-is but
hire either software vendor A or a third-party consultant to customize
or redevelop the SportStore product further according to their own
specific needs. Retailers could have different business models leading
4

to different requirements for customization.
Following the trend of cloud computing [1], software vendor A is
migrating their software products such as SportStore to become multi-
tenant (Cloud-based) Software as a Service (SaaS). Customer companies
such as sporting goods retailers no longer buy a license from software
vendor A and install it in their own premises. Instead, they subscribe
to an online service, which is also used by other customers, known as
tenants of the service. From each tenant’s perspective, they still have
the SportStore product as their own even though this SportStore-aaS is
also used by other tenants simultaneously. The SaaS model brings new
challenges to software vendor A with regard to enabling customization,
which is often required by big retailers like retailer X and retailer Y. It
is not possible for any tenant to directly edit the source code, since
it is shared by other tenants. A major challenge is to ensure tenant-
isolation while enabling tenant-specific customization, which means
that no customization specific to a tenant shall ever affect any other
tenants. What software vendor A must do to keep their business in the
cloud computing era is finding a method to refactor and migrate their
monolithic SportStore product to become multi-tenant customizable
(Cloud-based) SaaS.

4. Our approach for migrating to customizable saas

In this section, we give a brief overview of our migration approach
(Section 4.1) and how it relates to multi-tenancy and the ability to

provide deep customization for tenants (Section 4.2). We present the

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.

f
o
t
m
w
P
c
d

o
i
t
s
a
s
c
t
e
o
e
c
i
d

4

t
p
f
b
o
t
a
t
s
v
t
b
c
t
t

s
m
c
t
t

main components for enabling (event-based) customization of multi-
tenant SaaS in Section 4.3. Then, Section 4.4 gives the details of
how the event-based customization approach works. In Section 4.5,
we discuss how the event-based customization approach fulfill the
requirements of tenant isolation.

4.1. Overview of our migration approach

Our approach focuses on migrating applications that follow the
MVC design pattern. It draws inspiration from the migration approach
proposed by E. Wolff [33] in a survey about migration approaches, and
the generic re-engineering tool in [27]. Note that in this paper we do
not address the constraints of migrating currently in-use applications,
which the Strangler approach [28] can do best. We rather focus on how
to logically migrate a monolithic application to become customizable
in a multi-tenant context. Our approach can be adopted to be part of
the Strangler approach for migrating currently in-use applications.

The three different phases of our approach are the analysis, trans-
ormation, and implementation. Each of these different phases focuses
n a separate aspect of the migration. We use Fig. 3 to demonstrate
his process. During the first phase, we analyze the application we are
igrating in order to determine how the internals of the application
orks, and how we can split up the different modules (e.g., Cart,
roductionCatalog and Ordering) in the application into separate mi-
roservices. The goal is to identify and group these modules into
omains or contexts that focus on specific areas of the application.

The second phase consists of transforming the existing infrastructure
f the application to fit the new architecture target. If the exist-
ng infrastructure cannot be transformed, or if more effort needed to
ransform the infrastructure, we implement additional infrastructure to
upport the new application architecture. Fig. 3 shows that we added
dditional infrastructure to the relevant modules, includes isolated
torage for the different services, a gateway that connects external
lients, like a web-application or external third party applications,
o the microservices, and a back-end communication system (e.g., an
vent bus for enabling event-based customization [25]). The migration
f existing components into microservices could be partially automated,
.g., using the approach by Christoforou et al. [34]. The final phase
onsists of implementing the services we have identified during the
nitial phase, and connecting them to the infrastructure we added
uring the second phase.

.2. Migrating to multi-tenancy and deep customization

Our approach aims at enabling the target architecture to be cus-
omizable for multi-tenant context as presented in [7,23]. The ap-
roaches in [7,8,22,23] offer tenants a way to (deeply) customize the
unctionality of the multi-tenant application without interfering with
ehavior for other tenants. The customization-driven aspect makes
ur approach different from other migration approaches. Adding cus-
omization support for tenants can be done using the tenant-manager as
lookup table (Fig. 3). Tenants register their tenant-specific customiza-

ions with the tenant manager. These customizations can be standalone
ervices outside the main application, exposing endpoints that the ser-
ice can redirect calls to. The services and the customized functions that
hey provide need to adhere to a predetermined stable interface defined
y the developers of the main application. This interface serves as a
ontract between the service and the customized endpoint, describing
he expected result that the service needs to continue operations after
he customized function has been called.

First, we focus on introducing multi-tenancy to the application. To
upport multi-tenancy, we need a system for Identity Access Manage-
ent (IAM) to work in tandem with the tenant manager to support

ustomization of the application for the tenants with application-level
enant-isolation (via tenant-specific authorization mechanisms), and
o configure the storage to isolate tenant data. The tenant manager
5

provides all the registered customizations and endpoints for the logged-
in tenant user, which is retrieved using a bearer token issued by the
IAM system. Tenant isolation at application level is crucial to avoid
data leaks problem between tenants as raised in [35]. With the tenant
manager and the IAM system in place, we start adding support for
customization. We use the tenant manager to return external endpoints
to customized functionality in cooperation with the IAM system to
ascertain the ‘‘tenantID’’ of the user. The main service then reroutes the
request to the external endpoint along with the information required for
customization.

To support the customization of the services, they need to use both
the identity manager and tenant manager. The tenant manager keeps
a record of all the customizations associated with a specific tenant,
which can be looked up by services after querying the identity server
for the user profile of the token attached to the request. We have two
different scenarios for how the tenant manager is used by the services.
One scenario is where the tenant has registered customization for some
of the functionality, and another where the tenant uses the default
functionality implemented in the service already. For both of these
scenarios, the configurations are retrieved from the tenant-manager
by the service. The response is cached for quick access and reduced
network traffic. The tenant manager then push updates to the services
when configurations are updated. In the end, the target architecture
conforms to the MiSC-Cloud framework as presented in Section 2.6. In
the next section, we present how we make the MiSC-Cloud framework
more complete by enabling event-based customization.

4.3. Enabling customization ofMulti-Tenant SaaS

Among the five main components of the MiSC-Cloud framework in
Fig. 1, we focus on presenting the Tenant Manager and the Event Bus
as the key parts of the event-based customization approach. The API
Gateways, IAM Service, and WebMVC Customizer are the same as we
described in [7].

4.3.1. Tenant manager
is a service that manages the registration of customization microser-

vices, including the events registered for customization for different
tenants. The service has a simple database that stores all the tenants
that are using the application, all the different events that exist in
the main product and finally all the customization microservices that
exist for tenants and tenant-specific events. Additionally, it stores an
endpoint for each customization that is used for halting the flow of
events to be discussed further in the next section.

The Tenant Manager provides an administration API that can be
used to add, remove or alter customization registrations without having
to redeploy the Tenant Manager or accessing the database directly. We
keep the tenant registration data in a small scale, so that even with
a lot of tenants, all data could be cached in memory in the Tenant
Manager to increase performance. In addition, the microservices could
also store the same customization information in a hot cache or cold
cache depending on performance requirements.

4.3.2. Event bus
There are two scenarios regarding the Event Bus, depending on

whether or not the main product already has an Event Bus. If the main
product already has an Event Bus, such an Event Bus can be extended
to enable event-based customization. If the main product does not have
an Event Bus, a new one can be introduced as presented in [7]. It
is important to note that a software product can be re-engineered to
enable event-based logic orchestration at the back-end via an Event
Bus. Different migration approaches from monolithic to microservices
architecture already showed some patterns and practices to migrate
from synchronous calls into event-based communication between mi-
croservices [3,36]. Moreover, software vendors can also create user
or system events within their software product to allow authorized

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.
Fig. 3. Target architecture.
event-based integration with external systems (of their customers). This
event-based integration is similar to the traditional way of offering
a rich REST API for synchronous integration, e.g., using traditional
GET-PUT-POST statements. Therefore, the prerequisite for enabling
event-based customization is that the main product already has (part of)
its logic flow orchestrated via events. We assume this prerequisite can
be fulfilled for enabling event-based customization, which is detailed
as follows.

4.4. Event-based customization flow

A customization microservice can subscribe to an event that is
published to the Event Bus when something notable happens, such as
another microservice (of the main product or another tenant-specific
customization) updates a business entity. When a microservice receives
an event, it updates its own business entities, which might lead to
more events being published. We design the event bus as a multi-
tenant interface with the tenant-specific APIs needed to subscribe and
unsubscribe to events and to publish events.

Therefore, the flow of publishing events in the original Event Bus
implementation must be changed for customization purposes. Instead
of merely publishing to all the consumers of the event, it instead checks
with the Tenant Manager, whether the event maps to a handling logic
that is customized for the specific tenant (see Fig. 4). If the event is
not customized, then the event is processed in the standard fashion
by calling the EventHandler for the different consumers of the event.
In the case that the event is customized, the event is sent to the
endpoint that is part of the response from the Tenant Manager. At
this point, the tenant’s microservice is responsible for storing the event
until the required customization has been achieved. Then, the tenant’s
microservice can republish the event to the Event Bus, along with a flag
that instructs the EventBus to not check for customization again, so as
to avoid an infinite loop.

Note that in some cases when customization microservices would
require some execution context from the main product that does not
exist in the events that they receive, they still can make authorized
synchronous calls to the APIs of the main product to obtain such context
6

as presented in [7]. In fact, events often contain enough execution
context for customization microservices to execute customization sce-
narios. This means that only a few special customization scenarios
would require such synchronous calls from customization microservices
to the APIs of the main product. On the other hand, there is a trade-off
decision of tenant-specific customization about whether to give its end
users an experience in the UI customization which is as synchronous
as possible. We will provide such an example in Section 6.1. Not only
for synchronous experience in the UI customization, synchronous calls
between the main product and customization microservices are still
important for enabling deep customization as we discussed in [7]. By
combining the synchronous and asynchronous ways of customization,
the MiSC-Cloud framework can offer a more complete non-intrusive
customization approach for multi-tenant SaaS. However, we recom-
mend the use of event-based customization for as many customization
scenarios as possible to reduce the traffic of API calls to the main
product, which often leads to performance bottleneck when there are
many customized tenants with unpredictable loads.

4.5. Tenant-isolation and tenant-specific event-handlers

Tenant-isolation is a key challenge for multi-tenant customization.
For event-based microservice applications, the isolation of events is an
important part of tenant isolation. There are three different sources that
can create a new event. The first type is whenever there is an HTTP
request from one of the clients (WebMVC, WebSPA, Mobile app, as
shown in Fig. 1). The second type is when the source of one event being
created is the event handler for another event. Finally, there are events
that are created in background tasks, which are primarily scheduled
tasks that run at a set interval.

The Event Bus implementation and architecture in the main prod-
uct must ensure that tenant isolation is still preserved. Instead of
having one connection to a single event bus, there must be multi-
ple connections, one per tenant. One example of such an event bus
implementation is based on RabbitMQ that can make use of virtual
hosts.2 This way allows us to have a logical separation per tenant, and

2 https://www.rabbitmq.com/vhosts.html

https://www.rabbitmq.com/vhosts.html

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.
Fig. 4. Event-based customization flow.
the permission can easily be set so that each tenant is only allowed
to interact with their virtual host. The tenant’s own microservices,
however, only need one single connection to their own event bus.

Because there are now multiple connections to different event buses
in the main product, all the events must have the tenant information
set, so that the main product knows which event bus the event should
be published to. The current approach is a relatively simple one, in
which the tenant information is simply passed along the flow in the pro-
gram until a new event is created and published to the event bus. For
the events where the source is an HTTP Request, the tenant information
is extracted from HttpContext, wherein the tenant information has been
set by the IAM service API. For the second case, where the source
of the event is another event handler, then the tenant information is
simply passed along the low of the program. Finally, for the events that
are created by a background task, the user name is retrieved from the
database that the background task makes use of, after which the IAM
service API is queried so that the tenant information can be set correctly
before the event is published.

One possible improvement is to add the tenant information as a
scoped object that is set per request, event handler and background
task. This could easily be done for HTTP Request by using the Http-
Context, and for event handlers, the same tenant information could be
set in the header of the AMQPContext. For the background task/batch
jobs, it is possible to start one per tenant. These jobs could be run in
parallel if necessary, wherein then having access to the necessary tenant
information to be able to publish to the correct event bus without
having to query the IAM service. To reduce the complexity of the
main product, this could be taken further by making use of aspect-
oriented-programming that could set the tenant information whenever
the constructor of an event is called.

Tenant-isolation is especially important at the application layer
using the IAM service. In a system-to-system communication based on
Http, for instance a call from any of the in-house services to a third
party customization service, it is natural to use token based authenti-
cation like OAuth2. This means that the client and the customization
service need to access the same token authority (the IAM service). The
client calls the IAM service to request a token by identifying itself as a
client. The IAM service verifies and sends back a token. Client uses this
token in its calls to the customization service. The customization service
calls the IAM service to verify the validity of the token. The token
contains information about who the client is and scopes that define
the usage access. For a customization, the tenant manager can have
7

information about the customized service api, and also information
about the idserver/token authority.

5. Use case 1: Migrating and customizing SportStore-aaS

We applied our migration approach to the SportStore applica-
tion [26], whose monolithic architecture is simplified in Fig. 5. We
first present in Section 5.1 how the SportStore application is mi-
grated to multi-tenancy microservices-based SaaS. Then, we show how
the SportStore application empowered with event-based customization
capability can support real-world customization scenarios.

5.1. Migration

The SportStore application following the MVC pattern [26] is a web-
based store for sports equipment. We identify the different groupings in
the application during the first phase of the migration. The SportStore
application consists of three different groups, i.e., products, carts and
orders. Each of these groupings has their own models, views and
controllers. The functionality in these groups are closely related to each
other. After the initial analysis we introduce the additional infrastruc-
ture needed to support the new architecture. In this case, we add an
API gateway that connects the user interface to the services through
a single entry point, and a message-broker that the services use to
communicate. We then implement the groupings we identified during
the first phase as separate micro-services with isolated storage. Once we
have extracted the services from the old application we connect them
to multi-tenant specific infrastructure.

SportStore is implemented in .NET Core with Views, Models, and
Controllers for ordering, product catalogs, and a session-based shopping
cart. We use these ‘‘groupings’’ as our bounded contexts during the
analysis and extract functionality during the decomposition part of
the migration. After this, we start implementing services to cover the
functionality of the existing application and set up the infrastructure
to support it (Fig. 6). The infrastructure includes typical components
like the API-gateway and a form of back-end communication for the
services. Fig. 3 shows the target architecture of the SportStore applica-
tion that we have used for our migration experiments. We present the
details of our migration process in the following subsections.

The MVC pattern offers a natural separation between the different
layers. During the analysis and implementation we extract or replicate
from the controllers in their own microservices. The application still

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.
Fig. 5. The monolithic application.

has controllers; however, these only serve as a way to make calls to the
services. In a way, they hide the fact that the back-end of the system
is spread out into microservices. The goal is to first analyze and break
down the modules in the SportStore application into separate bounded
contexts following domain-driven design [29] and implementing these
contexts as microservices.

5.1.1. Analysis and decomposition:
Once the structure and architecture of the existing application are

analyzed and mapped out, we start decomposing the application into
separate domains based on domain driven design method [29]. More-
over, it is also possible (not addressed in our paper) to use coupling
measures to drive the decomposition process [37] . During the analysis,
we found three different domains within the application—the product
domain, the cart domain, and the order domain. The product domain
contains a template for the products. The product template consists of a
productID, product name, a short description of the product, the price,
and the category of the product. The application stores the model in an
MSSQL database, which is stored in an Entity Framework repository,
with supporting methods for retrieving, updating, adding, and deleting
products in the repository. The shared resource between the product
domain and the cart is the product (Fig. 6). Each of these domains
needs to have a shared understanding of what a product is. The cart
domain contains the cart for the current session, and it consists of a list
of cartlines, as well as methods for adding and removing items to the
cart. Additionally, there are methods for computing the total cost of all
the items in the cart and clearing the cart. The cartline class represents
an item that has been added to the cart. It is made up of a productId,
quantity, and the id for that specific cartline. The cartline resource is
shared with the third domain, the orders-domain (Fig. 3).

5.1.2. Additional infrastructure
The migration to microservices requires some additional support-

ing infrastructure. The introduction of an API gateway and back-end
communication is an integral part of the second phase of the migration.

API Gateway serves as a connecting layer for clients and other
consumers of the services, rerouting requests to the right microservice,
serving as a proxy for the different services.

Message Broker/Event Bus: In the prototype, the back-end com-
munication moved through different stages. Each of these stages aimed
8

to further decouple the microservices from each other. The first itera-
tion of the back-end communication implemented direct synchronous
calls from service to service. The calls are made to endpoints that the
services expose to each other. The second iteration involves adding a
message broker to the application to decouple the services further and
adding an asynchronous way for them to orchestrate events affecting
multiple services. The message broker is implemented using RabbitMQ.
Messages are tagged with a specific topic, for instance, orderCreate,
when the cart of a session is checked out in the SportStore. The new
message is then routed to all the queues matching the orderCreate tag,
and the productOrder service then consumes the messages and creates
the order in a FIFO order. The topic message broker was also chosen
to facilitate customization for the different services further down the
line, where messages of a specific tenant would be published to a queue
being consumed by that tenant’s customized microservice.

Identity Server:We describe how the different features provided by
Identity Server and OpenId connect help with authentication and au-
thorization for the different tenants. Clients represent the applications
that can request tokens from the identity server. In our case, only the
web store of the SportStore application uses the tokens on behalf of the
user. The grant types we define, specify how the clients can interact
with the Identity Server. The tokens issued allow both services and
users to interact directly with the identity server, because of the grant
types we use. If we were to define individual grants for the service and
users, we would use the Client Credentials type for the service, and
OpenID grant type for the users to interact with the server. The identity
resources define the functionality enabled by the identity server. The
OpenID identity resource allows users to log in via the OpenIDConnect
login screen, while the profile resource type allows the services to
retrieve the claims of the users to check for customizations later on.
The API resource allows the client to access the gateway by defining
and associating access to a specific scope. In our case, we only need
one resource since all the services are hidden behind the API gateway,
and access to all of them on the user’s behalf is necessary to provide
the full functionality of the system.

Tenant Manager is an essential component of the multi-tenant
aspect of the application. We use it to configure the persistency layer
for the tenants and as a lookup for customized endpoints. Using the
‘‘/userInfo’’ endpoint of the identity server, the tenant manager can
retrieve all the claims belonging to the logged-in user. The claims
contain information about where the user belongs and what right he
or she has for the services. With the ‘‘tenantID’’, we can look up the
customization for the called functionality on the main service. The
tenant manager uses the token from the initial request and sends a
request to the ‘‘/userinfo’’ endpoint of the identity server, which returns
all the claims associated with the token.

5.1.3. Implementation
In the following, we go through the process following our migration

approach and applying it to the migration of the SportsStore appli-
cation, first to the microservice architecture, and then implementing
multi-tenancy for the application. We split the migration up into differ-
ent phases. Each phase includes the extraction of a single service from
the pre-existing system, as well as adding the necessary infrastructure
to support the new migrated functionality from the monolith. After
all the different services and infrastructure components have been
implemented or migrated, the final architecture of the application is
the same as the targeted architecture in Fig. 3.

We split the migration itself into different phases, related functional-
ity from the existing application during each of these phases and adding
the necessary infrastructure to the new application needed to support
the extracted components from the pre-existing application.

The initial phase of the migration consists of the analysis and
reverse engineering of the pre-existing application. During phase one,
the application is still in a single monolithic piece. At this stage, the
application consists of three different layers typically found in MVC

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.
Fig. 6. Migrating functions to microservices with API gateway and Message Broker: The Product component and the Card component have been migrated into the corresponding
microservices, while the Order component is not migrated yet.
applications. A user-interface that represents the view, controllers that
contain the application logic, and a persistent storage layer that handles
the storage of the models in different databases.

The second phase of the migration starts by picking a service
or some functionality for migration. Ideally, this functionality should
already be loosely coupled to the rest of the code in the monolithic
application to limit any dependency back to the monolith. For this
phase, we chose to focus on the product module of the SportsStore
application. The product module contains all the logic associated with
displaying products from the database, adding and updating products in
the database, and adding or removing products to a customer cart. We
add the additional infrastructure pieces associated with a microservice
architecture before we migrate the service. The API-Gateway forwards
and redirects calls originating from the web applications to the specific
services and act as a unifying endpoint for the View instead of having
the calls directed to the specific service it targets an endpoint at the
gateway.

In Phase 3 of the migration, we extract another service from the
monolith. With two services extracted, we need a way to orchestrate
how they cooperate. We introduce the message broker as an additional
piece of infrastructure to help with orchestration. The message broker
keeps a queue of messages published by all services. Services can then
subscribe to the message queue to consume the messages and perform
actions with the content of the message. The new service is added to the
API-gateway behind the downstream endpoint ‘‘/cart’’. Collaboration
and orchestration between the cart service and product service use the
message broker to add and remove products to the customer cart. The
primary use of the broker at this time is to get information about the
products in the cart. Using the session data, we publish a message to the
broker requesting a lookup in the products database for the items in the
cart. Once the product service retrieves the message from the queue, it
aggregates all the products from the cart into a list before returning it
to the cart service
9

After the fourth phase of the migration, the application is now
following the microservices architecture. The functionality from the
monolith has moved into individual services decoupled from each
other. All calls from the web client are passed through the gateway and
forwarded to the appropriate service. Orchestration and communica-
tion between the services happen through the use of a message broker.
The development and deployment of different services are isolated
from each of the other services. There is also a clear separation of
the different layers of the application allowing tenants to customize
different services.

The final phase of the migration introduces more infrastructure to
support multi-tenancy. We add an IdentityManager to support login,
authentication, and authorization of users and a TenantManager to
provide the services with endpoints for tenant-specific customizations.
To support the customization of the services, they need to use both
the identity manager and tenant manager. The tenant manager keeps a
record of all the customizations associated with a specific tenant, which
can be looked up by services after querying the identity server for the
user profile of the token attached to the request.

5.2. Customization

SportStore is a simple online shopping application, that allows the
customer to purchase various sporting goods. The main flow of the
program consists of the user adding items to the shopping cart, before
checking out and placing the order. The checkout process then uses
the items contained in the basket to create an order in the backend
system. Following the approach presented in Section 4, we continue the
migration of the SportStore by focusing on implementing event-based
communication among the microservices via a Message Broker/Event
Bus (RabbitMQ). To enable event-based customization in the SportStore
application at a multi-tenant level we have to add some additional
changes. To enable event-based customization we are reliant of the

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.

s
o
I
o
p
a
a
p
v
o
b
O
d
i
s
i

t
s
t
i
s
t
u
i
t
l
p
d

a
c
B
b
f

c
h
t
a
a
c
C
t
b
r
i
t
e
r
B
o
m
w

product itself having most of it is logic and non-idempotent operations
as events. As such we move all the business logic of handling the
creation of an order to events. These events are then published to
RabbitMQ fanout topics, which the various microservices of the main
product can subscribe to. Additionally, we also introduce a new service,
product-shipping-service, that is responsible for handling changes in the
shipping state of an order. We consider this new service as a natural
evolution of the SportStore application after the migration. We do
this to more accurately represent a real-world system, which would
be a lot more complex than the one in SportStore. Fig. 7 shows the
final architecture of the main product without any customizations. The
architecture is quite similar to the one in Fig. 3, with the mentioned
addition of the product-shipping-service, as well as more of the logic
being handled in an event-based manner.

To show a proof of concept of different customizations that can be
done for the SportStore using this approach, we used two different cus-
tomization requirements given by our industrial partners (two software
vendors in Norway):

1. Tenant X wants to customize the ordering process to include a
third-party service that calculates the arrival date for the order
to the customer. Such a third-party service is often an external
service provided by shipping companies, e.g., DHL. Only the
users of tenant X can have this feature.

2. Tenant Y wants to customize the ordering process with an addi-
tional step. No order should have the ‘‘shipped’’ status until all
the items in the order have had their RFID tags scanned. This
step is important for luxury goods that must be verified before
shipping. Only the users of tenant Y can have this feature.

The flow in the main product that leads to the creation of events
tarts whenever a customer performs the checkout action. This checks
ut the items in the basket and creates an order in the backend system.
n this implementation, we have the following events: CartCheck-
utEvent, OrderCreatedEvent and OrderShippedEvent and they are all
art of the order process. CartCheckoutEvent is initiated whenever
call is made to the checkout endpoint in the shopping-cart-service

nd the event is published to a RabbitMQ exchange to which the
roduct-ordering-service subscribes. Next, we have the OrderCreatedE-
ent which occurs when an order is successfully saved to the database
f the product-ordering-service, the creation of the order is triggered
y the previously mentioned CartCheckoutEvent. Finally, we have the
rderShippedEvent, the product-shipping-service subscribes to the Or-
erCreatedEvent and creates an OrderShippedEvent whenever an order
s shipped. This final event is also consumed by the product-ordering-
ervice, which then uses that event to update the order’s shipped status
n its database.

Fig. 8 shows the flow that happens whenever a checkout from
he GUI is initiated. First a REST call is made to the shopping-cart-
ervice, this first uses the Authorization token in the HTTP header
o make a REST call to the Identity Manager to retrieve the user
nformation and tenant. Then a CartCheckoutEvent is published to the
portstore.cart.checkout fanout exchange. This event is consumed by
he product-ordering-service which creates an order in its database
sing the cart information contained in the CartCheckoutEvent. Then
t publishes an OrderCreatedEvent. This event is subscribed to by
he product-shipping-service which then ships the order, and pub-
ishes an OrderShippedEvent. This final event is subscribed to by the
roduct-ordering-service which then stores the shipped status in its
atabase.

There are additional changes that have to be made to ensure ten-
nt isolation. Specifically, as we allow tenants to create their own
ustomization microservices and consume events from the Message
roker, it is important that they are only able to access events that
elong to their organization. To facilitate this we use the virtual host
10

unctionality of RabbitMQ to ensure a logical separation between the
tenants. Then in the codebase, we simply have to configure the main
product to connect to all the virtual hosts specified in the configuration.
Further, we set up a Spring Filter that is executed before each HTTP
Request to the services. This fetches the user information along with
which tenant the current user belongs to from the Identity Manager
and stores this in a scoped variable that is available to the code during
the context of the HTTP Request. This scoped variable is the used to
determine which virtual host that any events created during the HTTP
Request context should be published to.

As we now have a separate event bus connections per tenant, tenant
customizations can subscribe to the different events in the application
and implement additional logic and functionality. However, in some
cases this does not add enough customization options that a tenant
might require, therefore we also have to implement a way for tenants
to capture events. This allows them implement additional logic, checks
and functionality that can be executed before a certain condition is
met and the tenant can republish the original event to the Message
Broker to allow the flow of the main product to complete. The Tenant
Manager allows tenants to which events they would like to customize.
Then whenever the main product publishes any event to the message
broker it queries the Tenant Manager to check whether the event is
customized for the current tenant. This is done via a REST call to the
Tenant Manager and should be cached by the client to reduce network
traffic. In the case that the event is customized the event is sent to the
tenant rather than being published as normal. This send event to tenant
has been implemented both with REST and event-based communication
as a CustomisationEvent (swapped via configuration). In both cases the
entirety of the original event is sent to the tenant at which point the
tenant are responsible for republishing the event to the message broker.
The tenant can then process the event and perform their customizations
and at some point republish the event to the message broker to handle
the rest of the flow in the main product.

5.2.1. Tenant X’s customization with shipping information:
For tenant X, we have to add a new microservice for customiza-

tion purpose, tenant-x-shipping-information, which subscribes to the
OrderCreatedEvent published by the main product. Then this tenant
X’s customization microservice can calculate the shipping information
by calling a third party service (just a mock-up, not shown here). Fig. 9
shows the flow of the program with the customization microservice in a
sequence diagram. After the order has been created, the frontend then
fetches the shipping information from the customization service and
shows it in the GUI along with the rest of the order information as
shown in Fig. 10

Tenant Y’s customization with RFID tags scanned: Tenant Y’s
ustomization requires the use of the event capturing functionality that
as been added to the main product. Therefore, tenant Y registers that
hey want to customize the OrderShippedEvent in the Tenant Man-
ger. They also create two new microservices, tenant-y-event-service
nd tenant-y-rfid-service. Tenant-y-event-service is responsible for re-
eiving the event from the main product, either via REST or as a
ustomizationEvent that is published to the Message Broker. Then
enant-y-event-service publishes an OrderShippedSavedEvent to Rab-
itMQ after saving the necessary information in its database. Tenant-y-
fid-service consumes this event and saves some further information in
ts own database. The next step of the process is triggered whenever all
he RFID tags of the order have been scanned (triggered by a mock
ndpoint in tenant-y-rfid-service in this proof-of-concept). Tenant-y-
fid-service then publishes an RFIDTagScannedEvent to the Message
roker which is consumed by tenant-y-event-service and causes the
riginal event, OrderShippedEvent to be republished and the rest of the
ain product flow will execute. Fig. 11 shows the flow of the program
ith the customization microservice in a sequence diagram
The results in the GUI can be seen in Fig. 12.

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.
Fig. 7. Event-based SportStore architecture.
Fig. 8. Main product sequence diagram.
5.2.2. Performance:
We implemented two different ways of sending events to tenant

and event capturing functionality. The first way uses REST to send
the original event to an endpoint specified in the Tenant Manager.
The second implementation uses RabbitMQ to send the event to an
exchange that a customizing microservice can then subscribe to. We
measured the performance of these two different implementations, the
results of which can be seen in Table 1. We measured ten instances
of each version. All numbers are in milliseconds. Row one shows the
attempt number, row two shows the performance for the Event version
and row three shows the performance for the REST calls. The final
column shows the average of 44 ms for the Event-based way and 48 ms
for REST.
11
The reason for the first call being quite bit slower than all of the
others for both cases is the lazy initialization used by Spring Boot,
and could easily be resolved by adding a warm-up request as a part of
CI/CD. As we can see from the table, the performance of both REST and
Event based communication is similar in this scenario. Meaning that
there is no drawback in using an Event based way of communication
in this scenario as it allows looser coupling, along with other benefits
of asynchronous communication. Additionally, as it is an asynchronous
request it is non-blocking and will not slow down the main product
in any way, as compared a synchronous way of communicating which
would slow down the main product, especially if there is a large amount
of customizations.

As the Tenant Manager is a service that could experience a lot
of traffic with this approach, we also load tested the service with

Information and Software Technology 160 (2023) 107230

12

E.T. Nordli et al.

Fig. 9. Shipping information sequence diagram.

Fig. 10. Tenant X customization result.

Fig. 11. RFID sequence diagram.

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.
Fig. 12. Tenant Y customization result.
Table 1
Comparison of Event versus REST performance.

1 2 3 4 5 6 7 8 9 10 Avg

Event 117 42 34 40 38 29 28 38 35 36 44
REST 166 42 39 37 43 37 37 27 30 26 48

Autocannon as seen in Fig. 13. As the results show a single service
can handle 29k requests in 11 s. However, a real production environ-
ment could also use load balancing and auto-scaling to handle this.
Additionally, client-side caching would greatly reduce the number of
calls to the Tenant Manager. Another approach would be to change the
way the Tenant Manager works. Instead of services querying the Tenant
Manager, each microservice could store all customizations in memory,
and then the Tenant Manager could publish an event to, for example, a
Kafka Cluster. Then the microservices could simply read the entirety of
the Kafka log containing all the customization information on startup,
this also means that the Tenant Manager only has to be actively running
whenever a new customization is pushed to the Kafka log.

6. Use case 2: Event-based customization of eShopOnContainers

In this section, we show a proof of concept of our approach for
enabling deep customization of the eShopOnContainers by extending
the Event Bus in the application. The .NET microservices sample refer-
ence application eShopOnContainers3 has been chosen for a couple of
reasons. First, eShopOnContainers has a clear separation between the
user interface and the business logic of the application as a prerequisite
of the MiSC-Cloud framework. Secondly, the application follows the
microservices architecture, and as such, has loose coupling as compared
to a monolithic application. Finally, the collaboration between the
microservices that the application as a whole is made up of is done
using events and a publish/subscribe system.

There are different potential implementations of an event bus,
each using a different technology or infrastructure such as RabbitMQ,
Azure Service Bus, or any other third-party open-source or commercial
service bus. An Event Bus implementation must be associated with
the authentication and authorization mechanisms of the IAM service
for multi-tenant SaaS based on Open ID Connect or OAuth 2.0. As an
implementation of RabbitMQ already exists in the eShopOnContainers,
we have extended it to enable event-based customization.

3 https://github.com/dotnet-architecture/eShopOnContainers
13
Let us consider the original eShopOnContainers in the GitHub repos-
itory as the main product being customized. We show how our event-
based customization approach can enable different customization sce-
narios for two tenants as the representatives of multi-tenant context.
The first customization scenario in Section 6.1 adds new logic to the
main flow of the ordering process, without altering any of the existing
functionality. The second customization scenario in Section 6.2 requires
modification of the existing logic of the ordering process by halting the
flow of the order.

6.1. Tenant A’s customization of the ordering process

The original ordering process is straightforward. After having log-
ged in, a customer can add items in the shopping cart and then create
an order with card payment and shipping address. What happens at
the back-end is that the Basket service of the eShopOnContainers pub-
lishes a UserCheckoutAcceptedIntegrationEvent, which is consumed by
the Ordering service to create and process the order, e.g., generat-
ing OrderSubmittedIntegrationEvent. Tenant A wants to change the
original ordering process of eShopOnContainers to incorporate the ship-
ping information from external (third-party) systems, e.g., PortNord,4
Bring,5 DHL.6 This means that after the Basket service has published a
UserCheckoutAcceptedIntegrationEvent, the Ordering service validates
the order request before creating an order and an OrderSubmitted-
IntegrationEvent to trigger this customization. It is important to note
that Tenant A has been approved by the software vendor of the eSho-
pOnContainers to register its customization service(s) for subscribing
to the events generated by its users. Here, we demonstrate the cus-
tomization of Tenant A using both synchronous and asynchronous
ways. We have used the synchronous way of customization as presented
in [7] for implementing the customization of calculating the cost of
delivering an order (Fig. 14). Then, we have used the asynchronous
way of customization using events for implementing the customization
of providing an estimated time for delivery (Fig. 15).

The synchronous way of customization has been used for the cus-
tomization scenario in which the users of Tenant A can have a syn-
chronous experience of the UI customization. More specifically, after a
user of Tenant A has checked out the shopping cart, the UI for placing
the order must be customized to show not only the items’ prices and
quantities (as in the original UI) but also the items’ sizes, weights,
and the corresponding shipping costs (Fig. 14). In the implementation,

4 https://www.postnord.no/
5 https://www.bring.no/
6 https://www.dhl.no/no/express.html

https://github.com/dotnet-architecture/eShopOnContainers
https://www.postnord.no/
https://www.bring.no/
https://www.dhl.no/no/express.html

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.
Fig. 13. Tenant manager load test.
when the method Create of the OrderController is called, the WebMVC
Customizer module (see Fig. 1) checks with the Tenant Manager for
any (synchronous) customization registered for the users of Tenant
A for this method. Tenant A has already got its customization mi-
croservices registered including one customization registered for this
method Create of the OrderController. The synchronous call is made via
the API gateway to the corresponding endpoint of the customization
microservice (namely Shipping) to trigger the customization logic for
getting the items’ sizes, weights, and the corresponding shipping costs
from an external (third-party) system. The customization results as well
as the corresponding customized UI as shown in Fig. 14 are returned to
the WebMVC Customizer to render for the end users of Tenant A. Note
that this scenario does not use any event. After the user has placed
the order, the UserCheckoutAcceptedIntegrationEvent is created and
published to the Event Bus by the Basket service, which eventually
triggers the following customization.

The asynchronous way of customization has been used for the
customization scenario in which the user has checked out (User-
CheckoutAcceptedIntegrationEvent) and the corresponding order has
14
been made (OrderSubmittedIntegrationEvent). The customization mi-
croservice Shipping of Tenant A will intercept the OrderSubmitted-
IntegrationEvent, call an external system for providing an estimated
time for delivery (Fig. 15). As there is no need to alter or remove
any existing logic in the application, we can simply add a new Event
Handler that consumes the OrderSubmittedIntegrationEvent as seen
in Fig. 16. Whenever this event is published by the main product to
the event bus of Tenant A, the Event Handler consumes the event
and calls the customization Shipping service, which is responsible for
calculating the shipping information by integrating with an external
system. This information is then stored in the microservice’s database,
which can then be retrieved whenever the My Orders page is displayed.
The customization result can be seen on the My Orders page in Fig. 15.

6.2. Tenant B’s customization of the ordering process

Tenant B wants to customize the ordering process with some addi-
tional steps to mark all the items with RFID. Before the order status is
set to confirmed, all the order lines in the order should be scanned, and

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.
Fig. 14. Customization of Tenant A: Calculating the cost of delivering an order.
Fig. 15. Customization of Tenant A: An estimated time for delivery.
Fig. 16. Customization of Tenant A: OrderSubmittedIntegrationEvent.
the order status should only be set to confirmed when all the items in
the order have been scanned.

The second use case requires that the status of the order is not set
to confirmed until all the orderliness in the order has been scanned.
To ensure this, we need to halt the flow of the application by cap-
turing the OrderStatusChangedToAwaitingValidationIntegrationEvent.
This is done by registering this event for the specific tenant in the
Tenant Manager, as well as the endpoint that we want the event to
be sent to. Fig. 17 shows the customization flow triggered by the
OrderStatusChangedToAwaitingValidationIntegrationEvent. This event
is then stored in the database of the microservice for this customiza-
tion until the RFIDTagScannedIntegrationEvent is published by the
TenantARFIDService, as seen in Fig. 18. This also satisfies the require-
ment that tenants should be able to publish events that their own
customization microservices can consume.
15
The customization scenario depicted in Fig. 17 starts when the
Ordering service publishes the OrderStatusChangedToAwaitingValida
tionIntegrationEvent. Next, the Event Bus implementation checks for
any customization for this event by querying the Tenant Manager. As
Tenant B has customized this event, the Event Bus sends the event to the
endpoint specified in the response from the Tenant Manager rather than
publishing to the RabbitMQ instance. At this point, the tenant has con-
trol of the event and can save it to the local database of TenantB Event
Service before publishing OrderStatusChangedToAwaitingValidation-
EventSavedEvent to the Event Bus. The OrderStatusChangedToAwait-
ingValidationEventSavedEventHandler in TenantB RFID Service con-
sumes this event, and stores the necessary data in its database.

The next step of the use case is triggered whenever the endpoint in
TenantB RFID Service is used to indicate that all the order lines have

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.
Fig. 17. Customization of Tenant B: The customization flow around the OrderStatusChangedToAwaitingValidationIntegrationEvent.
Fig. 18. Customization of Tenant B: RFIDTagScannedIntegrationEvent is published by the TenantARFIDService.
been scanned. The use of this endpoint also triggers RFIDTagScanned-
IntegrationEvent which is then consumed by the RFIDTagScanned-
IntegrationEventHandler in TenantB Event Service. At this point, the
original OrderStatusChangedToAwaitingValidationIntegrationEvent is
re-published to the Event Bus, and the handlers in the main product
can perform their operations. Then, the event is republished to the
Event Bus, and it is processed normally by the main product. The
customization result, before all the RFID tags are scanned, in the UI,
can be seen in Fig. 19, and after the RFID tags have been scanned can
be seen in Fig. 20.

As the external services themselves are not the focus of this work,
they are just simple mock-up services. For the second customization
scenario, an endpoint has been added so that whenever it is called with
an order number, essentially sets that all order lines have been scanned
for that order. The source code of our proof-of-concept can be found in
GitHub.7

So far, we have shown that all the customization scenarios are based
on leveraging the events in the application. Indeed, we can introduce
tenant-specific events for event-based customization scenarios. All the
events are isolated so that each tenant is only able to interact with
their own events, which means that tenant isolation is still preserved.
Normally, such event-based (asynchronous) customization is triggered
by an existing event in the main product. On the other hand, the
API-based (synchronous) way of customization is mainly leveraging
on the APIs (methods) available in the back-end microservices of the
main software product. Because customization scenarios are unpre-
dictable, we cannot say how many APIs will be called or how many
events will be used for customization purposes. Therefore, it is fair
to assume all can be used for customization purposes. Table 2 shows
that for the eShopOnContainers application, on average, the number
of controller methods is quite similar to the number of events in the

7 https://github.com/Espent1004/eShopOnContainersCustomised
16
Table 2
methods vs. # events in the back-end microservices of eShopOnContainers.

Basket Catalog Ordering Payment Webhooks Avg

Controller Methods 5 13 7 0 5 6
Events 3 5 14 3 6 6.2

back-end microservices. Therefore, using the event-based customization
approach is highly recommended whenever possible, to reduce the
traffic of API calls to the back-end microservices of the main product.
The synchronous way of customization via API calls is still essential
for customizing the GUI as presented in [7]. Using API calls is also
useful in querying more ‘‘contexts’’ from the main software product
for customization purposes if needed. Even though, our experiments on
the two scenarios above showed that using the existing ‘‘contexts’’ in
the events themselves is already enough for those scenarios. It is also
possible to use the synchronous customization approach [7] to make
an API call to a tenant-specific customization service that will generate
tenant-specific events for triggering the event-based customization flow
as presented earlier.

7. Related work

7.1. Customization

7.1.1. Single-tenant to multi-tenant:
Migrating an application from single to multi-tenant is a large

undertaking. Furda et al. [35] describe an approach for migrating
legacy single-tenant applications to multi-tenant. From a legacy system
that supports only a single tenant, the approach focuses on chang-
ing the architecture of the application into one (e.g., Model-View-
Controller) that is better suited for multi-tenancy. Then, the follow-up
phase is to enable multi-tenancy, e.g., migrating to multi-tenant view.
In [38], the authors propose a lightweight reengineering approach

https://github.com/Espent1004/eShopOnContainersCustomised

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.
Fig. 19. Customization of Tenant B: Before all the RFID tags are scanned.
Fig. 20. Customization of Tenant B: After all the RFID tags have been scanned.
to migrate a single-tenant software system into a multi-tenant one.
The targeted multi-tenant software system can provide capabilities
for tenant-specific layout styles, configuration and data management.
Our migration approach enables tenant-specific customization, which
is beyond configuration capabilities.

7.1.2. Migrating to microservices:
A key challenge with multi-tenant applications is that the applica-

tion has to deliver a shared product to multiple tenants, resulting in
one-size-fits-all solutions even though the different user-groups might
have different needs from the same application [31] . A way to solve
this is by allowing the individual users to customize different aspects
of the application for their needs, which is conflicting with multi-
tenancy [32]: Multi-tenant applications allow different user groups
(tenants) to share resources, but ad-hoc handling of changes related
to one specific tenant can potentially affect all the tenants of the
application.
17
The customization-driven aspect makes our approach different from
other migration approaches like [2,3,36]. The approach in [2] uses
migration patterns for managing service decomposition and data iso-
lation and replication. While the approach in [3] is incremental re-
engineering of a mission critical banking system that led to reduced
complexity, lower coupling, higher cohesion, and a simplified integra-
tion. Each of the approaches has its specific contexts where they are
the most suitable. These approaches focus on migrating live systems
or systems that have been used extensively by organizations. For our
prototype, we found the blueprint approach most suitable due to the
‘‘stale’’ state of the application. By stale, we mean that the application
is no longer actively developed. All the approaches we found follow a
similar pattern, made up of three-phases: Reverse-engineering, trans-
formation, and implementation. What separates them is the focus they
put on transforming and moving the existing functionality into new
services.

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.
7.2. Customization

The notion of customizable SaaS applications with explicit support
for variability management has been proposed and explored exten-
sively [11]. Many techniques are used in practice to enable customiza-
tion of a SaaS application. The architectural complexity is the fact
that tenant-provided customization cannot be anticipated at design-
time, and the requirement of tenant isolation. There are many technical
approach to addressing these complexities, such as design patterns,
dependency injection (DI), software product lines (SPL), or API. To
the best of our knowledge, while these approaches help to pre-defined
customization at design time, they do not have sufficient support for
the complex and unanticipated behavioral coordination between the
custom code and the main product at runtime.

Software Product Line (SPL) [12] captures the variety of usages in
a global variability model, and actual products are generated based on
the configuration of the variability model. Traditional SPL approaches
targets all the potential user requirements by the software vendor,
and thus does not apply to our definition of customization. Dynamic
SPL [39] is closer to customization,using variability models for runtime
adaptation [40]. However, such model-based configuration is in a much
higher abstraction level than programming [41], and does not support
the introduction of new coordination behavior between custom service
and the main product.

The majority of SaaS customization approaches focus on a high-level
modification of the service composition. Mietzner and Leymann [13]
present a customization approach based on the automatic transforma-
tion from a variability model to BPEL process. Here customization is a
re-composition of services provided by vendors. Tsai and Sun [42] fol-
lows the same assumption, but propose multiple layers of compositions.
All the composite services (defined by processes) are customizable until
reaching atomic services, which are, again, assumed to be provided by
the vendors. Nguyen et al. [43] develop the same idea, and introduce
a service container to manage the life-cycle of composite services and
reduce the time to switch between tenants at runtime. These service
composition approaches all support customization in a coarse-grain
way, and rely on the vendors to provide the adequate ‘‘atomic services’’
as the building blocks for customized composite services.

As market leading SaaS for CRM and ERP, the Salesforce platform
and the Oracle NetSuite provide built-in scripting languages [15–17]
for fine-grained, code-level customization. Since these scripting lan-
guages are not exposed to the same execution context as the main ser-
vice, the customization capability is defined by the underlying APIs of
the main service. To maximize the customization capability, both ven-
dors provide very extensive and sophisticated APIs, which is costly and
not affordable by smaller vendors. In contrary, the microservices-based
approach requires lower investment from the vendors in advance.

Middleware techniques can also support the customization of SaaS.
Guo et al. [44] discuss, in a high abstraction level, a middleware-
based framework for the development and operation of customization,
and highlighted the key challenges. Walraven et al. [14] implemented
such a customization-enabling middleware. In particular, they allow
customers to develop custom code using the same language as the
main product, and use Dependency Injection to dynamically inject
these custom Java class into the main service, depending on the cur-
rent tenant. Later work from the same group [9] develop this idea
and focus on the challenges of performance isolation and latency
of custom code switching. The dependency injection way for cus-
tomization allows the custom code developers to introduce arbitrary
coordination behavior with the main product, and thus achieve a strong
expression power. However, it also brings tight coupling between the
custom code and the main product. Operating the custom code as an
external microservice eases performance isolation, a misbehavior of
the custom code only fails the underlying container, and the main
18

product only perceives a network error, which will not affect other
tenants. Besides, external microservices ease management: scaling in-
dependently resource-consuming customization and eventually billing
tenants accordingly.

To the best of our knowledge, there are no commercial off-the-
shelf (COTS) offerings that have support for event-based customization.
The novelty of our work is an event-based customization approach
for multi-tenant SaaS, which can be implemented with different COTS
offerings such as Azure Service bus or Amazon EventBridge. We have
demonstrated our approach using RabbitMQ, but it is also easy to
switch to Azure Service Bus as shown in the eShopOnContainers ar-
chitecture. The Azure Relay service can make the implementation of
our approach even easier because it allows tenants to securely expose
customization microservices that run in their corporate network to the
main product SaaS that is running on the public cloud. However, the
Azure Relay service itself does not offer any customization capability.
This means that using our approach can help software vendors to
implement the Azure Service Bus and Azure Relay service with event-
based customization capability for multi-tenant SaaS. It should also
be quite straightforward to use Amazon EventBridge8 because it has
support for connecting ‘‘applications together using data from your
own applications, integrated SaaS applications, and AWS services’’. Our
event-based customization approach must orchestrate not only events
of the main product (SaaS) for multiple tenants but more importantly
the events of tenant-specific microservices that are coordinated with
the original events of the main product for that specific tenant only,
for the customization purposes of that tenant only.

8. Conclusions

In this paper, we have presented a combined approach for migrating
monoliths to microservices-based customizable Cloud-native SaaS, em-
powered with event-based customization ability. Our approach splits
the migration into three stages, where we first analyze and break
down the application into bounded contexts separating the different
responsibilities and application areas. After the analysis, we start
transforming the infrastructure to fit the microservice architecture. This
includes migrating information from databases related to the contexts
discussed above, and setting up additional components necessary to
support the new services, like the API gateway and the message ex-
change. Finally, we implement the functionality from the contexts as
separate services and connect them to infrastructure. After that, we
add the infrastructure necessary for multi-tenancy and tenant-specific
customization.

Our event-based customization approach is part of the non-intrusive
customization framework for multi-tenant SaaS. This asynchronous way
of customization means that customization microservices can have
event-based communication with the main product BL components
for customization purposes. Using event-based communication between
customization microservices and the main product BL components is
important not only for the microservices architecture but also for non-
intrusive deep customization capability. Enabling customization both
synchronously and asynchronously provides a more flexible way of
coordinating the customization logic between the BL components (mi-
croservices) of the main product and the customization microservices of
tenants to obtain the desired customization effects in the multi-tenant
context. The primary concerns with multi-tenancy are avoiding noisy
neighbors and ensuring that the tenant data is sufficiently isolated.
Moving the customization outside the same execution context of the
main product solves this. Customization no longer compete for comput-
ing resources with the main application, and the data of other tenants
remain entirely isolated from the customization code. Our event-based
customization approach makes sure of tenant-isolation, which is crucial
in practice for SaaS vendors. This event-based deep customization
approach can also help reducing the number of API calls that may lead
to performance bottleneck when there are many customized tenants
with unpredictable loads.

8 https://aws.amazon.com/eventbridge/

https://aws.amazon.com/eventbridge/

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.

w

W

D

p
e
e
c
h
f
r
g

D

R

CRediT authorship contribution statement

Espen Tønnessen Nordli: Conceptualization, Methodology, Soft-
are, Writing – original draft, Visualization, Investigation. Sindre

Grønstøl Haugeland: Software, Writing – original draft, Visualiza-
tion. Phu H. Nguyen: Conceptualization, Supervision, Methodology,
Software, Writing – review & editing, Visualization, Investigation, Val-
idation. Hui Song: Conceptualization, Supervision, Validation, Writing
– review & editing. Franck Chauvel: Conceptualization, Supervision,

riting – review & editing.

eclaration of competing interest

One or more of the authors of this paper have disclosed potential or
ertinent conflicts of interest, which may include receipt of payment,
ither direct or indirect, institutional support, or association with an
ntity in the biomedical field which may be perceived to have potential
onflict of interest with this work. For full disclosure statements refer to
ttps://doi.org/10.1016/j.infsof.2023.107230. Phu H. Nguyen reports
inancial support was provided by Horizon 2020. Hui Song reports a
elationship with Research Council of Norway that includes: funding
rants.

ata availability

No data was used for the research described in the article.

eferences

[1] IDG, 2018 Cloud Computing Survey, Tech. rep., 2018, URL https://www.idg.
com/tools-for-marketers/2018-cloud-computing-survey/.

[2] A. Henry, Y. Ridene, Migrating to microservices, in: A. Bucchiarone, N. Dragoni,
S. Dustdar, P. Lago, M. Mazzara, V. Rivera, A. Sadovykh (Eds.), Microservices:
Science and Engineering, Springer International Publishing, Cham, 2020, pp.
45–72.

[3] M. Mazzara, N. Dragoni, A. Bucchiarone, A. Giaretta, S.T. Larsen, S. Dustdar,
Microservices: Migration of a mission critical system, IEEE Trans. Serv. Comput.
(2018) 1, http://dx.doi.org/10.1109/TSC.2018.2889087.

[4] S.S. De Toledo, A. Martini, P.H. Nguyen, D.I.K. Sjøberg, Accumulation and
prioritization of architectural debt in three companies migrating to microservices,
IEEE Access 10 (2022) 37422–37445, http://dx.doi.org/10.1109/ACCESS.2022.
3158648.

[5] D. Taibi, V. Lenarduzzi, C. Pahl, Processes, motivations, and issues for migrating
to microservices architectures: An empirical investigation, IEEE Cloud Comput.
4 (5) (2017) 22–32, http://dx.doi.org/10.1109/MCC.2017.4250931.

[6] A. Balalaie, A. Heydarnoori, P. Jamshidi, Microservices architecture enables
DevOps: Migration to a cloud-native architecture, IEEE Softw. 33 (3) (2016)
42–52, http://dx.doi.org/10.1109/MS.2016.64.

[7] P.H. Nguyen, H. Song, F. Chauvel, R. Muller, S. Boyar, E. Levin, Using microser-
vices for non-intrusive customization of multi-tenant saas, in: Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, in: ESEC/FSE 2019,
Association for Computing Machinery, New York, NY, USA, 2019, pp. 905–915,
http://dx.doi.org/10.1145/3338906.3340452.

[8] H. Song, P.H. Nguyen, F. Chauvel, J. Glattetre, T. Schjerpen, Customizing
multi-tenant SaaS by microservices: A reference architecture, in: 2019 IEEE
International Conference on Web Services, ICWS, 2019, pp. 446–448, http:
//dx.doi.org/10.1109/ICWS.2019.00081.

[9] S. Walraven, D.V. Landuyt, E. Truyen, K. Handekyn, W. Joosen, Efficient cus-
tomization of multi-tenant software-as-a-service applications with service lines, J.
Syst. Softw. 91 (2014) 48–62, http://dx.doi.org/10.1016/j.jss.2014.01.021, URL
http://www.sciencedirect.com/science/article/pii/S0164121214000326.

[10] S.G. Haugeland, P.H. Nguyen, H. Song, F. Chauvel, Migrating monoliths to
microservices-based customizable multi-tenant cloud-native apps, in: 2021 47th
Euromicro Conference on Software Engineering and Advanced Applications,
SEAA, 2021, pp. 170–177, http://dx.doi.org/10.1109/SEAA53835.2021.00030.

[11] J. Kabbedijk, C.-P. Bezemer, S. Jansen, A. Zaidman, Defining multi-tenancy: A
systematic mapping study on the academic and the industrial perspective, J. Syst.
Softw. 100 (2015) 139–148.

[12] K. Pohl, G. Böckle, F.J. van Der Linden, Software Product Line Engineering:
Foundations, Principles and Techniques, Springer Science & Business Media,
2005.

[13] R. Mietzner, F. Leymann, Generation of BPEL customization processes for SaaS
applications from variability descriptors, in: Services Computing, 2008. SCC’08.
IEEE International Conference on, Vol. 2, IEEE, 2008, pp. 359–366.
19
[14] S. Walraven, E. Truyen, W. Joosen, A middleware layer for flexible and cost-
efficient multi-tenant applications, in: Proceedings of the 12th International
Middleware Conference, International Federation for Information Processing,
2011, pp. 360–379.

[15] Salesforce, Apex developer guide, 2019, URL https://developer.salesforce.com/
docs/atlas.en-us.apexcode.meta/apexcode/ (Accessed: 14 April 2019).

[16] T. Kwok, A. Mohindra, Resource calculations with constraints, and placement of
tenants and instances for multi-tenant saas applications, in: A. Bouguettaya, I.
Krueger, T. Margaria (Eds.), Service-Oriented Computing – ICSOC 2008, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 633–648.

[17] Oracle, Application Development SuiteScript, 2019, URL http://www.netsuite.
com/portal/platform/developer/suitescript.shtml (Accessed: 14 April 2019).

[18] J. Thönes, Microservices, IEEE Softw. 32 (1) (2015) 116, http://dx.doi.org/10.
1109/MS.2015.11.

[19] S. Newman, Building Microservices: Designing Fine-Grained Systems, " O’Reilly
Media, Inc.", 2015.

[20] N. Dragoni, S. Giallorenzo, A.L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin,
L. Safina, Microservices: Yesterday, today, and tomorrow, in: M. Mazzara, B.
Meyer (Eds.), Present and Ulterior Software Engineering, Springer International
Publishing, Cham, 2017, pp. 195–216, http://dx.doi.org/10.1007/978-3-319-
67425-4_12.

[21] H. Song, F. Chauvel, A. Solberg, Deep customization of multi-tenant saas using
intrusive microservices, in: Proceedings of the 40th International Conference on
Software Engineering: New Ideas and Emerging Results, in: ICSE-NIER ’18, ACM,
New York, NY, USA, 2018, pp. 97–100, http://dx.doi.org/10.1145/3183399.
3183407, URL http://doi.acm.org/10.1145/3183399.3183407.

[22] H. Song, F. Chauvel, P.H. Nguyen, Using microservices to customize multi-
tenant software-as-a-service, in: Microservices: Science and Engineering, Springer
International Publishing, Cham, 2020, pp. 299–331, http://dx.doi.org/10.1007/
978-3-030-31646-4_12.

[23] H. Song, P.H. Nguyen, F. Chauvel, Using Microservices to Customize Multi-
Tenant SaaS: From Intrusive to Non-Intrusive, in: L. Cruz-Filipe, S. Giallorenzo, F.
Montesi, M. Peressotti, F. Rademacher, S. Sachweh (Eds.), Joint Post-Proceedings
of the First and Second International Conference on Microservices (Microservices
2017/2019), in: OpenAccess Series in Informatics (OASIcs), vol.78, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2020, pp. 1:1–
1:18, http://dx.doi.org/10.4230/OASIcs.Microservices.2017-2019.1, URL https:
//drops.dagstuhl.de/opus/volltexte/2020/11823.

[24] P.H. Nguyen, H. Song, F. Chauvel, E. Levin, Towards customizing multi-tenant
cloud applications using non-intrusive microservices, in: The 2nd International
Conference on Microservices, 2019.

[25] E.T. Nordli, P.H. Nguyen, F. Chauvel, H. Song, Event-based customization of
multi-tenant saas using microservices, in: S. Bliudze, L. Bocchi (Eds.), Coordina-
tion Models and Languages, Springer International Publishing, Cham, 2020, pp.
171–180.

[26] A. Freeman, Pro Asp. Net Core Mvc, A Press, 2016.
[27] R. Kazman, S.G. Woods, S.J. Carriere, Requirements for integrating software

architecture and reengineering models: CORUM II, in: Proceedings Fifth Working
Conference on Reverse Engineering (Cat. No.98TB100261), 1998, pp. 154–163.

[28] M. Fowler, Strangler Fig Application, 2004, URL https://martinfowler.com/bliki/
StranglerFigApplication.html.

[29] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software,
Addison-Wesley Professional, 2004.

[30] P. Di Francesco, P. Lago, I. Malavolta, Migrating towards microservice architec-
tures: An industrial survey, in: 2018 IEEE International Conference on Software
Architecture, ICSA, 2018, pp. 29–2909, http://dx.doi.org/10.1109/ICSA.2018.
00012.

[31] T. Kwok, T. Nguyen, L. Lam, A software as a service with multi-tenancy support
for an electronic contract management application, in: 2008 IEEE International
Conference on Services Computing, Vol. 2, 2008, pp. 179–186, http://dx.doi.
org/10.1109/SCC.2008.138.

[32] S. Walraven, D. Van Landuyt, E. Truyen, K. Handekyn, W. Joosen, Efficient cus-
tomization of multi-tenant Software-as-a-Service applications with service lines,
J. Syst. Softw. 91 (2014) 48–62, http://dx.doi.org/10.1016/j.jss.2014.01.021,
URL http://www.sciencedirect.com/science/article/pii/S0164121214000326.

[33] E. Wolff, Migrating monoliths to microservices: A survey of approaches, in:
International Conference on Microservices 2019, 2019.

[34] A. Christoforou, L. Odysseos, A.S. Andreou, Migration of software components
to microservices: Matching and synthesis, in: 14th International Conference on
Evaluation of Novel Approaches to Software Engineering, 2019.

[35] A. Furda, C. Fidge, A. Barros, O. Zimmermann, Chapter 13 - reengineering
data-centric information systems for the cloud – a method and architectural
patterns promoting multitenancy, in: I. Mistrik, R. Bahsoon, N. Ali, M. Heisel,
B. Maxim (Eds.), Software Architecture for Big Data and the Cloud, Mor-
gan Kaufmann, Boston, 2017, pp. 227–251, http://dx.doi.org/10.1016/B978-0-
12-805467-3.00013-2, URL https://www.sciencedirect.com/science/article/pii/
B9780128054673000132.

[36] D. Taibi, F. Auer, V. Lenarduzzi, M. Felderer, From monolithic systems to
microservices: An assessment framework, 2019, arXiv preprint arXiv:1909.08933.

https://doi.org/10.1016/j.infsof.2023.107230
https://www.idg.com/tools-for-marketers/2018-cloud-computing-survey/
https://www.idg.com/tools-for-marketers/2018-cloud-computing-survey/
https://www.idg.com/tools-for-marketers/2018-cloud-computing-survey/
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb2
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb2
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb2
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb2
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb2
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb2
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb2
http://dx.doi.org/10.1109/TSC.2018.2889087
http://dx.doi.org/10.1109/ACCESS.2022.3158648
http://dx.doi.org/10.1109/ACCESS.2022.3158648
http://dx.doi.org/10.1109/ACCESS.2022.3158648
http://dx.doi.org/10.1109/MCC.2017.4250931
http://dx.doi.org/10.1109/MS.2016.64
http://dx.doi.org/10.1145/3338906.3340452
http://dx.doi.org/10.1109/ICWS.2019.00081
http://dx.doi.org/10.1109/ICWS.2019.00081
http://dx.doi.org/10.1109/ICWS.2019.00081
http://dx.doi.org/10.1016/j.jss.2014.01.021
http://www.sciencedirect.com/science/article/pii/S0164121214000326
http://dx.doi.org/10.1109/SEAA53835.2021.00030
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb11
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb11
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb11
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb11
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb11
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb12
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb12
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb12
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb12
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb12
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb13
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb13
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb13
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb13
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb13
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb14
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb14
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb14
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb14
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb14
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb14
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb14
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb16
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb16
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb16
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb16
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb16
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb16
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb16
http://www.netsuite.com/portal/platform/developer/suitescript.shtml
http://www.netsuite.com/portal/platform/developer/suitescript.shtml
http://www.netsuite.com/portal/platform/developer/suitescript.shtml
http://dx.doi.org/10.1109/MS.2015.11
http://dx.doi.org/10.1109/MS.2015.11
http://dx.doi.org/10.1109/MS.2015.11
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb19
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb19
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb19
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1145/3183399.3183407
http://dx.doi.org/10.1145/3183399.3183407
http://dx.doi.org/10.1145/3183399.3183407
http://doi.acm.org/10.1145/3183399.3183407
http://dx.doi.org/10.1007/978-3-030-31646-4_12
http://dx.doi.org/10.1007/978-3-030-31646-4_12
http://dx.doi.org/10.1007/978-3-030-31646-4_12
http://dx.doi.org/10.4230/OASIcs.Microservices.2017-2019.1
https://drops.dagstuhl.de/opus/volltexte/2020/11823
https://drops.dagstuhl.de/opus/volltexte/2020/11823
https://drops.dagstuhl.de/opus/volltexte/2020/11823
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb24
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb24
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb24
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb24
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb24
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb25
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb25
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb25
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb25
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb25
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb25
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb25
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb26
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb27
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb27
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb27
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb27
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb27
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb29
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb29
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb29
http://dx.doi.org/10.1109/ICSA.2018.00012
http://dx.doi.org/10.1109/ICSA.2018.00012
http://dx.doi.org/10.1109/ICSA.2018.00012
http://dx.doi.org/10.1109/SCC.2008.138
http://dx.doi.org/10.1109/SCC.2008.138
http://dx.doi.org/10.1109/SCC.2008.138
http://dx.doi.org/10.1016/j.jss.2014.01.021
http://www.sciencedirect.com/science/article/pii/S0164121214000326
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb33
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb33
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb33
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb34
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb34
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb34
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb34
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb34
http://dx.doi.org/10.1016/B978-0-12-805467-3.00013-2
http://dx.doi.org/10.1016/B978-0-12-805467-3.00013-2
http://dx.doi.org/10.1016/B978-0-12-805467-3.00013-2
https://www.sciencedirect.com/science/article/pii/B9780128054673000132
https://www.sciencedirect.com/science/article/pii/B9780128054673000132
https://www.sciencedirect.com/science/article/pii/B9780128054673000132
http://arxiv.org/abs/1909.08933

Information and Software Technology 160 (2023) 107230E.T. Nordli et al.
[37] S. Panichella, M.I. Rahman, D. Taibi, Structural coupling for microservices, 2021,
arXiv preprint arXiv:2103.04674.

[38] C. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, A. Hart, Enabling multi-
tenancy: An industrial experience report, in: 2010 IEEE International Conference
on Software Maintenance, 2010, pp. 1–8.

[39] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, Dynamic software product lines,
Computer 41 (4) (2008).

[40] J. Lee, G. Kotonya, Combining service-orientation with product line engineering,
IEEE Softw. 27 (3) (2010) 35–41.

[41] M.A. Rothenberger, M. Srite, An investigation of customization in ERP system
implementations, IEEE Trans. Eng. Manage. 56 (4) (2009) 663–676.
20
[42] W. Tsai, X. Sun, Saas multi-tenant application customization, in: 2013 IEEE
Seventh International Symposium on Service-Oriented System Engineering, 2013,
pp. 1–12, http://dx.doi.org/10.1109/SOSE.2013.44.

[43] T. Nguyen, A. Colman, J. Han, Enabling the delivery of customizable web
services, in: 2012 IEEE 19th International Conference on Web Services, 2012,
pp. 138–145, http://dx.doi.org/10.1109/ICWS.2012.23.

[44] C.J. Guo, W. Sun, Y. Huang, Z.H. Wang, B. Gao, A framework for native
multi-tenancy application development and management, in: E-Commerce Tech-
nology and the 4th IEEE International Conference on Enterprise Computing,
E-Commerce, and E-Services, 2007. CEC/EEE 2007. the 9th IEEE International
Conference on, IEEE, 2007, pp. 551–558.

http://arxiv.org/abs/2103.04674
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb38
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb38
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb38
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb38
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb38
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb39
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb39
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb39
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb40
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb40
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb40
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb41
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb41
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb41
http://dx.doi.org/10.1109/SOSE.2013.44
http://dx.doi.org/10.1109/ICWS.2012.23
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb44
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb44
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb44
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb44
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb44
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb44
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb44
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb44
http://refhub.elsevier.com/S0950-5849(23)00084-8/sb44

	Migrating monoliths to cloud-native microservices for customizable SaaS
	Introduction
	Background
	Monolithic Applications
	Microservice Applications
	Migration
	Strangler
	Blueprint

	Multi-Tenancy
	Deep Customization
	TheMiSC-Cloud Framework

	A Motivational Example
	Our Approach for Migrating to Customizable SaaS
	Overview of Our Migration Approach
	Migrating to Multi-tenancy and Deep Customization
	Enabling Customization ofMulti-Tenant SaaS
	Tenant Manager
	Event Bus

	Event-based Customization Flow
	Tenant-isolation and Tenant-specific Event-Handlers

	Use Case 1: Migrating and Customizing SportStore-aaS
	Migration
	Analysis and decomposition:
	Additional Infrastructure
	Implementation

	Customization
	Tenant X's customization with shipping information:
	Performance:

	Use Case 2: Event-based Customization of eShopOnContainers
	Tenant A's Customization of the Ordering Process
	Tenant B's Customization of the Ordering Process

	Related Work
	Customization
	Single-tenant to Multi-tenant:
	Migrating to microservices:

	Customization

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

