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Abstract. Previous approaches to solve the trajectory outlier detec-
tion problem exclusively examine single outliers. However, anomalies
in trajectory data may often occur in groups. This paper introduces
a new problem, group trajectory outlier detection (GTOD) and proposes
a novel algorithm, named, CDkNN-GTOD (Closed DBSCAN kNearest
Neighbors for Group Trajectory Outlier Detection). The process starts
by determining micro clusters using the DBSCAN algorithm. Next, a
pruning strategy using kNN is performed for each micro cluster. Finally,
an efficient pattern mining algorithm is applied to the resulting subsets of
group of trajectory candidates to determine the group of trajectory out-
liers. We performed a comparative study using real trajectory databases
to evaluate the proposed approach. The results have shown the efficiency
and effectiveness of CDkNN-GTOD.

Keywords: Group Trajectory Outlier Detection · Pattern Mining · Clus-
tering.

1 Introduction

The proliferation of GPS devices has resulted in countless of sequence points
representing trajectories being generated, stored, and analyzed in the context
of urban data [4]. Without loss of generality, in the context of intelligent trans-
portation, the data analyst is faced with a myriad of trajectories derived from
the mobility of people, cars, buses, taxis, among others. Previous approaches to
solve the trajectory outlier detection have solely considered individual outliers. In
real-world applications, however, trajectory outliers often appear in groups, e.g.,
a group of bikes that deviates to the usual trajectory due to the maintenance of
streets. This paper presents a new problem of trajectory outlier detection called
Group Trajectory Outlier Detection (GTOD), which the goal is to identify group
of anomalous behaviours from trajectory data.

Motivation and idea. Consider the example of taxi trajectories, each trajec-
tory is mapped to the road map network. Traditional trajectory outlier detection
algorithms, e.g., [1], may detect individual outliers. However, these algorithms
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cannot identify outliers, where a group of taxis deviate from the usual trajec-
tory. Detecting such trajectory outliers, could help (taxi) planners to study the
different correlations between these trajectories to deduce useful information.
For example, a group of taxi trajectory outliers could indicate that the taxis are
partners in a taxi fraud. However, by observing only individual deviations, such
a possible fraud would be hard to reveal. Motivated by the limitation of solely
identifying individual outliers, we focus on studying, and determining group of
trajectory outliers. To do so, we first define a new problem called Group Tra-
jectory Outlier Detection, and then propose a novel approach for finding these
kind of anomalies. The process starts by determining the micro clusters, using
DBSCAN, each micro cluster is considered as a candidate group of trajectory
outliers. Each group contains several individual trajectory outliers that are close
to each other. Note that the groups may contain normal trajectories as well. Such
trajectories can generally be considered as noises. To remove such noises, the set
of group of trajectory outliers are pruned using the kNN algorithm. Finally, we
run a pattern mining algorithm to explore the correlation among the pruned
groups of trajectory outliers. The discovered frequent patterns are thereafter
considered as the final groups of trajectory outliers.

Contribution. This paper presents a new problem called Group Trajectory
Outlier Detection (GTOD for short), which allows to identify groups of tra-
jectory outliers. The main contributions of the presented work can be summa-
rized as follows. i) We introduce and formulate a new problem called GTOD:
Group Trajectory Outlier Detection to enable to identify group of trajectory out-
liers. ii) We propose a new technique, named CDkNN-GTOD (Closed DBSCAN
kNearest Neighbors for Group Trajectory Outlier Detection), which explores
the DBSCAN algorithm for determining candidate outliers represented as micro
clusters, kNN algorithm for pruning the micro clusters, and a pattern mining
process for discovering the group of trajectory outliers. iii) We demonstrate the
performance of the proposed algorithm using different real trajectory databases.
The results of experiments reveal that CDkNN-GTOD outperforms the baseline
algorithms for group outlier detection.

2 Related Work

Chalapathy et al. [2] proposed the deep generative model to find out the group
outliers on various image applications. The outlierness for each group in the
input data was then estimated by group reference function using the backprop-
agation algorithm. Liang et al. [12] developed a flexible genre model to find
specific group outliers. Their main idea was to characterize data groups at both
point and group level to detect various types of anomalous groups. Das et al.
[3] explored the different correlations between data outliers to detect anomalous
patterns using Bayesian network anomaly detection and conditional anomaly de-
tection. Xiong et al. [11] proposed a group outlier detection approach by defin-
ing a mixture of Gaussian mixture model. It adopted the likelihood of each
group, the marginal likelihood of each observation within a group, and the max-
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imum likelihood estimation to learn the hyperparameters of the mixture model.
Soleimani et al. [9] developed a supervised learning approach that groups anoma-
lous patterns when memberships are previously unknown. The salient features
were extracted from an appropriate training set with discrete data inputs. Li et
al. [7] assigned feature weights on each group outlier, and computed chain rule
entropy to determine correlation between different feature groups. Toth et al.
[10] reviewed both static, and dynamic group anomaly detection solutions. The
static group anomaly detection is the process of identifying groups that are not
consistent with regular group patterns, while dynamic group change detection
assesses significant differences in the state of a group over a period of time. In
contrast to this, in this study, we are interested in dealing with static group
anomaly detection on the trajectory data. From this brief review, we can con-
clude that approaches to group outlier detection algorithms are mainly based on
some known distributions to find group outliers. In real scenarios, it is hard to fit
the data to such distributions. In this paper, we introduce a new problem called
group of trajectory outlier detection and propose a new data mining approach,
which do not need to know the distribution of the input data to determine the
group of trajectory outliers.

3 Problem Statement

Definition 1 (Trajectory Database). We define a trajectory database T =
{T1, T2...Tm}, where each raw trajectory Ti is a sequence of spatial location points
(pi1, pi2...pin), obtained by localization techniques such as GPS. Each point is
represented by the latitude, and the longitude values, respectively.

Definition 2 (Mapped Trajectory Database). We define a mapped trajec-
tory database Λ = {Λ1, Λ2...Λm}, where each mapped trajectory Λi is a sequence
of spatial location regions (Ri1, Ri2...Rin), obtained by mapping each point in Ti
to the closest region Ri. We note R = {R1, R2...R|R|}, by the set of all regions.

Definition 3 (Trajectory Dissimilarity). We define the distance between
two trajectories d(Λi, Λj) by the number of all regions minus the number of shared
regions between the two trajectories Λi, and Λj, as

d(Λi, Λj) = n− |{(Ril, Rjl)|Ril = Rjl,∀l ∈ [1..n]}| (1)

Definition 4 (Group Trajectory Candidate). We define a group of trajec-
tory candidate G by the set of individual trajectory outliers retrieved from the set
of individual trajectory outliers ITO, i.e.,

G = {Λi|Λi ∈ ITO} (2)

Definition 5 (Density Group). We define the density of the candidate group
trajectory outliers G as

Density(G) =
|G|

|{Rj |Λi ∈ G, Rj ∈ Λi}|
(3)
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To normalize the density function, we divide the result by the density of the group
having maximum density value, this ensures to obtain values ranged from 0 to
1. We call this function NormalizedDensity.

Definition 6 (Group Trajectory Outlier). A set of trajectories G is called
a Group Trajectory Outlier if and only if,{

G ⊆ ITO
NormalizedDensity(G) ≥ γ (4)

Note that γ is the density threshold varied from [0 . . . 1].

Definition 7 (Non-Redundant Group Trajectory Outlier). A group of
trajectory outliers G is called a Non-Redundant Group Trajectory Outlier if it
has no superset of G, that is a group of trajectory outlier.

Definition 8 (Group Trajectory Outlier Detection Problem). Group
Trajectory Outlier Detection Problem aims to discover from the set of all mapped
trajectories, the set of all non-redundant groups of trajectory outliers, denoted
by G∗.

4 CDkNN-GTOD Algorithm

This section presents our algorithm CDkNN-GTOD, (Closed DBSCAN k Near-
est Neighbors for Group Trajectory Outlier Detection). Our main goal is to
efficiently explore the enumeration tree of the trajectory candidates to deter-
mine the group of trajectory outliers. In this work, we inspire by the cluster-
ing, the neighborhood computation, and the pattern mining algorithms to ac-
curately prune the search space and find the group of trajectory outliers. The
process starts by finding the micro clusters using DBSCAN algorithm, the prun-
ing strategy is performed for each micro cluster using the kNN principle. An
efficient pattern mining algorithm is then explored on the resulted subset of
group of trajectory candidates to determine the groups of trajectory outliers.
In the remaining of this section, we show how to use all these concepts in the
CDkNN-GTOD framework.

4.1 Clustering

Before presenting the clustering step, we need formally define some basic con-
cepts.

Definition 9 (Trajectory Neighborhoods). We define the neighborhoods of
a trajectory Λi, NΛi , for a given threshold ε by

NΛi
= {Λj |d(ΛiΛj) ≤ ε ∨ j 6= i} (5)

Definition 10 (Core Trajectory). A trajectory Λi is called core trajectory if
there is at least a minimum number of trajectories MinPts such that |NΛi

| ≥
MinPts
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Definition 11 (Micro Cluster). A cluster of trajectories Ci is called a micro
cluster if and only if 0 < |Ci| ≤ µ, where µ is a user threshold.

This section presents how to use DBSCAN algorithm to identify micro clusters,
each micro cluster is considered as group of trajectory outlier candidates. The
ε-neighborhood of each trajectory is computed using Def. 9. The core trajec-
tories are determined using Def. 10. DBSCAN then iteratively collects density-
reachable trajectories from these core trajectories directly, which may involve
merging a few density-reachable clusters. The process terminates when no new
trajectories can be added to any cluster. Initially, the set of trajectories are
grouped using DBSCAN. This generates several clusters with different sizes.
Each micro cluster (See Def. 11) is considered as group candidates. As a result,
sets of groups trajectory candidates called {G+i } are generated.

4.2 Pruning Strategy

The clustering step returns micro clusters, where each micro cluster forms the
groups of trajectory candidates. These groups contain individual trajectory out-
liers close to each other. However, they may contain normal trajectories. To well
prune the groups trajectory candidates, we develop an efficient pruning strategy
based on kNN principle. Before presenting the pruning step, we need formally
define some basic concepts.

Definition 12 (kNN of a trajectory). We define kNN of a trajectory Λi,
denoted by kNN(Λi) as

kNN(Λi) = {Λj ∈ Λ \ {Λi}|d(Λi, Λj) ≤ kdist(Λi)} (6)

kdist(Λi) = d(Λi, Λl) is the k-distance of the trajectory Λi defined such as it exists
k trajectories Λ′ ∈ Λ, it holds that d(Λi, Λl) ≥ d(Λi, Λ

′)

Definition 13 (Outlierness degree of a Trajectory). We define the out-
lierness degree of a given trajectory Λi, denoted by δ(Λi) as

δ(Λi) = |{Λj |j 6= i ∨ Λj ∈ (kNN(Λi) ∩ G+)}| (7)

In the following, we present an adapted kNN algorithm for pruning the candidate
trajectory outliers. The algorithm considers as input the sets of all trajectory
candidate G+. The process aims to reduce the number of candidate trajectory
outliers on each micro cluster. For each micro cluster, it first adds the trajectory
outlier with highest outlierness degree, Λ+

1 , to the set of candidate trajectory
outliers labeled by Λ+

1 , and denoted by G+1 . It then generates all potential can-
didates from Λ+

1 . A trajectory t is a potential candidate from Λ+
1 , if and only if,

t ∈ G+1 ∨ t ∈ kNN(Λ+
1 ). The same process is recursively applied for all potential

candidates added to G+1 , and the overall process is repeated for all micro clusters.
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4.3 Pattern Mining

Consider GTOD problem < R,G+,G∗, NormalizedDensity(•), γ >, it could be
fit to the pattern mining problem [6] represented by the set of all transactions D,
the set of items I, the support function Support, the minimum support minsup,
and the set of all returned patterns P , as follows,

D = R, I = G+, Support(•) = NormalizedDensity(•),minsup = γ,G∗ = P

Each region is viewed as a transaction, and each trajectory candidate is viewed
as an item. A pattern is a subset from G+ already pruned. The support of the
pattern p is equal to the density of the group of trajectories of p. The min-
imum threshold will be γ threshold. A pattern mining process is applied on
the set of transactions D, and the set of items I, with the support function
NormalizedDensity(•), and with the minimum support set to γ. Each frequent
pattern discovered is considered as a set of group of trajectory outliers. By def-
inition, GTOD problem aims to identify non-redundant group of trajectory
outliers. If we apply classical pattern mining algorithm [5], redundant patterns
may be extracted. To deal with this issue, we aim to discover closed patterns,
this ensures non-redundant group of trajectory outliers are derived. In our im-
plementation, we used Closet algorithm [8] to find out the closed patterns. It
proceeds in two steps. Initially, all closed frequent patterns of size 1 are mined.
Then, new patterns are generated by directly working on the closed frequent
patterns of size 1, without mining additional frequent patterns. It used sparse
two efficient data structures id-lists and vertical id-lists for fast counting the
support of closed frequent patterns patterns and one-step technique to prune
the search space and check the closure property.

5 Performance Evaluation

Extensive experiments have been carried out to compare the CDkNN-GTOD
algorithm with the state-of-the art group outlier detection algorithms. The eval-
uation is performed using ROCAUC, which is common measure for the evalua-
tion of outlier detection methods. We perform the experiments using well-known
trajectory databases, retrieved from different repositories, consisting of the fol-
lowing: Geolife4, Manhattan5, ECML PKDD 2015 competition6, and big taxi
trajectories: taxi 13-1, taxi 13-2, and taxi 15 [13].

5.1 Parameter Settings

The first part of this experiment focuses on tuning the parameters of different
stages of CDkNN-GTOD algorithm. It is performed on two parts, the first one

4 https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-
dataset-user-guide/

5 https://lab-work.github.io/data/
6 http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
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Fig. 1. The parameter setting of the CDkNN-GTOD

is to tune the parameters of the clustering step represented by the DBSCAN
parameters (ε, and MinPts), µ for determining the micro clusters, the second one
is to tune the parameters of kNN represented by the number of neighborhood,
k, and the density threshold γ, and the parameter of the pattern mining step
represented by the minimum support threshold, minsup. Figure 1 shows the first
part of the parameters setting, by considering the micro clusters retrieved in the
clustering step as group of trajectory outliers, and ignoring the pruning and
the pattern mining processes. Several tests have been performed using different
trajectory databases by varying the DBSCAN parameters, ε from 0.2 to 1.0,
and MinPts from 2 to 10, the µ parameter for determining the micro clusters
from 2 to 10. Whatever the trajectory database used as input, the accuracy
determined by the ROCAUC value exceeds 0.72, however does not go up 0.75.
These results are explained by the fact that the idea of the micro clusters is able
to identify the group of trajectory outliers but not in an optimal way. Therefore,
in the next experimentation, we tune the parameters of the pruning and the
pattern mining processes, by fixing the best parameters of the clustering step
for each trajectory database found in this part. The results of the second part is
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highlighted in Figure 1, we varied the number of neighborhood from 2 to 10, the
density threshold values from 0.2 to 1.0, and the minimum support values from
10% to 99%. The results reveal that the pruning and the pattern mining steps
improve the accuracy of the proposed algorithm. This is explained by the fact
that kNN strategy allows to prune the search and keep only the most neighbors
of trajectory outliers in the micro clusters. Moreover, the pattern mining process
further reduces the search space by exploring the frequent patterns among the
group of trajectory outliers in the micro clusters. Table 1 summarizes the best
parameters values of the CDkNN-GTOD algorithm, which will be used in the
remaining of the experiments.

Table 1. Best parameters of CDkNN-GTOD.

Database ε MinPts µ k γ minsup
Geolife 0.2 5 10 10 0.2 50

Manhattan 0.5 10 8 5 0.2 50
ECML PKDD 2015 Competition 1.0 10 8 10 0.5 99

Taxi13-1 0.5 10 3 10 0.5 75
Taxi13-2 0.5 5 3 10 0.5 99
Taxi15 0.5 10 10 10 1.0 75

0 100 200 300 400 500 600 700 800 900 1000

# Injected Trajectory Outliers

0.75

0.8

0.85

0.9

0.95

A
v
e
ra

g
e
 R

O
C

A
U

C

Geolife

CDkNN-GTOD DGM WATCH

0 100 200 300 400 500 600 700 800 900 1000

# Injected Trajectory Outliers

0.86

0.88

0.9

0.92

0.94

0.96

0.98

A
v
e
ra

g
e
 R

O
C

A
U

C

Manhattan
CDkNN-GTOD DGM WATCH

0 100 200 300 400 500 600 700 800 900 1000

# Injected Trajectory Outliers

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

A
v
e
ra

g
e
 R

O
C

A
U

C

ECML PKDD 2015 Competition
CDkNN-GTOD DGM WATCH

0 100 200 300 400 500 600 700 800 900 1000

# Injected Trajectory Outliers

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

A
v
e
ra

g
e
 R

O
C

A
U

C

Taxi13-1
CDkNN-GTOD DGM WATCH

0 100 200 300 400 500 600 700 800 900 1000

# Injected Trajectory Outliers

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

A
v
e
ra

g
e
 R

O
C

A
U

C

Taxi13-2

CDkNN-GTOD DGM WATCH

0 100 200 300 400 500 600 700 800 900 1000

# Injected Trajectory Outliers

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

A
v
e
ra

g
e
 R

O
C

A
U

C

Taxi15
CDkNN-GTOD DGM WATCH

Fig. 2. CDkNN-GTOD vs. state-of-the-art group outlier detection algorithms: accu-
racy

5.2 CDkNN-GTOD Vs State-of-the-art Group Detection
Algorithms

The aim of this experiment is to compare CDkNN-GTOD with the baseline algo-
rithms in terms of accuracy and processing time. To the best of our knowledge,



Fast and Accurate Group Outlier Detection for Trajectory Data 9

G
eo

lif
e

M
an

ha
tta

n

EC
M

L.
 

Tax
i1
3-

1

Tax
i1
3-

2

Tax
i1
5

Trajectory Databases

0

500

1000

1500

2000

R
u

n
ti
m

e
(s

e
c
)

CDkNN-GTOD DGM WATCH

Fig. 3. CDkNN-GTOD vs. state-of-the-art group outlier detection algorithms: runtime

this is the first work which investigates the group outlier detection in trajec-
tory data. Therefore, we adopt two baseline group outlier detection algorithms
(DGM [2], and WATCH [7]) to trajectory data for comparison with CDkNN-
GTOD. Figure 2 presents the average ROCAUC value of the proposed algorithm
CDkNN-GTOD, and the baseline group outlier detection algorithms (DGM and
WATCH), using several trajectory databases, and with different number of in-
jected outliers. By varying the number of injected trajectories from 10 to 1000,
the CDkNN-GTOD outperforms the other algorithms for almost of cases. Among
36 cases shown, CDkNN-GTOD is the best for 22 cases, DGM for 8 cases, and
WATCH for 6 cases. Moreover, when increasing the number of injected trajec-
tory outliers, the accuracy of the CDkNN-GTOD stabilizes and do not go under
0.87, whereas, the accuracy of the baseline algorithm goes under 0.80. This comes
from the fact that our approach uses more advanced and recent strategies, based
on clustering, neighborhoods, and pattern mining, while the baseline approaches
use less advanced concepts of outlier detection based on data distribution. Re-
garding processing speed, as shown in Figure 3, our approach is very competitive
compared to the baseline approaches. This is explained the way we combined
the efficient data mining techniques – clustering, kNN, and pattern mining, for
finding the groups of trajectory candidates.

6 Conclusion

In this paper, we introduced a new problem that aims at discovering group of
trajectory outliers. To solve this problem we proposed to combine clustering,
pruning, and pattern mining. More specifically, our approach consisted of three
main steps: (1) determination of micro clusters using the DBSCAN algorithm, (2)
identification of potential group of trajectory candidates from the micro clusters
with kNN, and (3) pruning of the candidates using density computation/pattern
mining. Each of these steps are executed in an iterative manner, allowing to ex-
tract the group of trajectory outliers in an effective and efficient manner. To
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evaluate our approach, we performed our comparative experiments on different
real trajectory databases. The experiments showed that our approach achieved
good results in terms of both accuracy and processing speed. Overall, the pro-
posed approach is indeed capable of effectively and efficiently solving the GTOD
problem, and that it outperforms traditional methods which are based on data
distribution.Nevertheless, the combination of the advanced techniques requires
high expertise not only in trajectory analysis or outlier detection, but in other
sophisticated data mining techniques. In our future work, we will investigate and
target new applications of GTOD, such as climate change analysis, e.g., finding
a group of hurricane trajectories that deviates from the normal hurricane ones.
This would allow to early identify other cities that could be affected.

References

1. Belhadi, A., Djenouri, Y., Lin, J.C.W.: Comparative study on trajectory outlier
detection algorithms. In: 2019 International Conference on Data Mining Workshops
(ICDMW). pp. 415–423. IEEE (2019)

2. Chalapathy, R., Toth, E., Chawla, S.: Group anomaly detection using deep gener-
ative models. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. pp. 173–189. Springer (2018)

3. Das, K., Schneider, J., Neill, D.B.: Anomaly pattern detection in categorical
datasets. In: Proceedings of the 14th ACM SIGKDD. pp. 169–176 (2008)

4. Djenouri, Y., Belhadi, A., Lin, J.C.W., Djenouri, D., Cano, A.: A survey on urban
traffic anomalies detection algorithms. IEEE Access 7, 12192–12205 (2019)

5. Djenouri, Y., Djenouri, D., Lin, J.C.W., Belhadi, A.: Frequent itemset mining in
big data with effective single scan algorithms. Ieee Access 6, 68013–68026 (2018)

6. Djenouri, Y., Lin, J.C.W., Nørv̊ag, K., Ramampiaro, H.: Highly efficient pattern
mining based on transaction decomposition. In: 2019 IEEE 35th International Con-
ference on Data Engineering (ICDE). pp. 1646–1649. IEEE (2019)

7. Li, J., Zhang, J., Pang, N., Qin, X.: Weighted outlier detection of high-dimensional
categorical data using feature grouping. IEEE Transactions on Systems, Man, and
Cybernetics: Systems (99), 1–14 (2018)

8. Pei, J., Han, J., Mao, R., et al.: Closet: An efficient algorithm for mining frequent
closed itemsets. In: ACM SIGMOD workshop on research issues in data mining
and knowledge discovery. vol. 4, pp. 21–30 (2000)

9. Soleimani, H., Miller, D.J.: ATD: anomalous topic discovery in high dimensional
discrete data. IEEE Transactions on Knowledge and Data Engineering 28(9), 2267–
2280 (2016)

10. Toth, E., Chawla, S.: Group deviation detection methods: A survey. ACM Com-
puting Surveys (CSUR) 51(4), 77 (2018)
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