
Abstract—Transformer white-box models are used by the 
manufacturers to calculate internal winding voltages during the 
lightning impulse test. The model can also be applied in general 
network studies, but the model accuracy should then be improved, 
considering the many different voltage waveforms and frequencies 
that can exist in the system. Accuracy improvements are 
achievable by including the frequency-dependency of the branch 
impedance matrix via rational function approximation, but the 
large size of the matrix makes such modeling very difficult. Two 
suitable methods for passive rational modeling are presented, 
based on vector fitting and residue perturbation in either phase 
domain or modal domain. Application to a power transformer 
shows that the two methods are capable of fitting a 213×213 
branch impedance matrix with a 6th order passive pole-residue 
model in a few seconds. The resulting model is included in a 
complete white-box state-space model of the transformer that is 
compatible with a previously implemented model interface for 
EMTP. An efficient procedure is presented for validating the 
simulation result by the Numerical Laplace Transform. 
Comparison with a measurement shows that the inclusion of the 
frequency dependency gives a better reproduction of the measured 
waveshape than a previously proposed damping-factor model.   

Index Terms—Transformer, white-box model, branch 
impedance, rational approximation, NLT, EMTP, simulation. 

I.  INTRODUCTION 
RANSFORMER white-box models permit to calculate the 
internal voltages along the windings that result from 

transient voltages and currents on the external terminals [1], [2], 
[3], [4]. Such models are used by the transformer manufacturers 
to ensure that the windings will withstand the dielectric stresses 
that occur during the routine lightning impulse test in factory 
[4]. This type of model can also be used in general overvoltage 
studies with the transformer being part of a network, thereby 
enabling to calculate the internal voltages that can occur for a 
transformer in service, as well as the transfer of overvoltages 
between windings. The applied models are normally lumped-
circuit representations that are calculated  by considering a 
spatial discretization of the windings, defined by matrices of 
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branch resistance BR  and inductance BL , and shunt 
capacitance C and conductance G [5]. Such models can be 
formulated on state-space diagonal form and be directly 
interfaced with EMT programs as shown in [6] and [7], or via a 
black-box modeling approach [8]. An alternative approach is to 
interface the model via a large, equivalent electrical circuit 
representation [9]. 

The maximum winding stresses during the lightning impulse 
test can often be calculated with sufficient accuracy without 
taking into account frequency-dependent damping effects in 

BR  and BL . These daily-use models have the advantage that 
the model parameters can be calculated very efficiently using 
analytical formulae [5]. The losses can, as a first approximation, 
be included by calculating the branch impedance resistance 
matrix BR  at a fixed frequency, giving a k-factor model [6]. It 
has been found [5], [10] that the daily-use models often have 
accuracy shortcomings when applied in general transient 
studies, in particular if one wishes to simulate the internal 
voltages that can occur in resonant situations, e.g. when the 
transformer is connected to a feeding cable that is subjected to 
energization. A more realistic loss representation can be 
achieved using the damping factor method (d-factor) [11], [12] 
which employs an empirical, frequency-dependent damping 
factor for modifying the eigenvalues of the state matrix of the 
white-box state-space model. That model, which is highly 
efficient in time domain simulations, can also properly 
represent the transformer behavior at the operating frequency 
[12], which is essential when initial 50/60 Hz initial conditions 
must be included in the simulation. A disadvantage is that the 
assumed damping curve is only an approximation to the actual 
damping of the transformer's natural frequencies.  

For more accurate modeling, Finite Element Method (FEM) 
calculations can be used for obtaining branch impedance and 
shunt capacitance, at the cost of lengthy computations [5], [13]. 
The FEM calculations result in a frequency-dependent branch 
impedance matrix, ( ) ( ) ( )B B Bs s s s= +Z R L , s jω= . Such 
impedance matrix can be subjected to state-space modeling via 
a passive rational function approximation, and be introduced in 
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the k-factor model, leading to a complete frequency-dependent 
state-space model of the transformer [14]. The procedure in 
[14] achieves this by fitting a pole-residue model 
approximation to ( )B sZ  by vector fitting (VF) [15]. Passivity 
is ensured by a modification to the model by enforcing positive 
definiteness for a set of matrices obtained from the rational 
model of ( )B sZ , using particle swarm optimization. 

The present work introduces two alternative approaches to 
the one in [14] which are conceptually simpler and more 
efficient. The first one fits a pole-residue model to BZ  in the 
phase domain, using poles that are obtained by fitting 
approximate eigenvalues using a common pole set. Passivity of 
the model is enforced in the phase domain by calculating a 
minimal perturbation with use of the RP-NNLS method [16], 
[17] which is capable of handling the large size of BZ . The 
second approach is based on approximate diagonalization of 

BZ  using a real, orthogonal transformation matrix. The rational 
fitting and passivity enforcement is performed for each 
diagonal element independently, leading to a highly efficient 
procedure that can utilize commonly available methods for the 
passivity enforcement, e.g. residue perturbation [18].     

The rational model of BZ  by any of the two approaches 
gives, together with G  and C , a complete state-space model 
of the transformer that is cast on diagonal form for high 
computational performance in the time domain. The model is 
included in EMTP via the model interface for the d-factor 
model described in [7]. An efficient procedure is presented for 
validating the final model by comparing simulated responses 
against an alternative result by the inverse Numerical Laplace 
Transform (NLT) [19]. A comparison with the d-factor model 
and measurements is also provided, demonstrating the accuracy 
advantages of the proposed modeling.  

All calculations are performed on a 64-bit Windows 10 
laptop with 16 GB RAM and an Intel i7-76000U @2.8 GHz 
CPU. Matlab is used in the frequency domain calculations.  

II. TRANSFORMER MODELING AND SCOPE OF WORK

A.  Overview 
White-box transformer modeling for use in EMT simulation 

programs is a very comprehensive and arduous task. Fig. 1 
gives an overview of the main steps in such procedure, with 
steps 3 and 5 being the technical contributions in this work.  
1. Detailed design data. In this work, the transformer design

data (geometry and material properties) are for a 1-ph 3-
winding transformer (Section IV), provided by WEG
Transformers, via CIGRE JWG A2/C4.52.

2. FEM calculations. Based on the design data, circuit
parameters are calculated for the winding parts using
suitable solvers for the governing field equations. The
parameters are matrices of shunt conductance G , shunt
capacitance C , and branch impedance ( )B sZ  as function
of discrete frequency. Details regarding the parameters used
in this work are provided in Section IV.

3. Rational approximation of  ( )B sZ . The branch impedance 

matrix ( )B sZ is fitted with a stable and passive pole-residue 
model. Two alternative methods are proposed as described 
in Sections V and VI.  

4. State-space modeling of complete transformer. The rational
model BZ  is combined with G  and C  to obtain a complete
state space model of the transformer (Section III.C). 

5. Validation. The accuracy of steps 3 and 4 is validated in the
frequency domain and time domain via nodal analysis and
NLT, using data sets calculated from G , C  and ( )B sZ
(Section VII).

6. Model parameter data file. The model parameters are
written to ASCII file in a format proposed by CIGRE JWG
A2/C4.52 [20].

7. Model interface. The state space model is included in a
circuit simulator (EMTP) using the interface in [7].

Fig. 1. Transformer white-box modeling and inclusion in EMT program. 

B.  Problem Statement 
Consider a lumped parameter transformer representation, 

obtained by step 1 in Fig. 1. The data has  N  nodes and M  
mutually coupled impedance branches. The number of nodes 
and branches are high, typically several hundred. The 
parameters are the matrices of shunt conductance N N×G , shunt 
capacitance N N×C , and branch impedance ( )M M

B s×Z  given at K
discrete frequency samples k ks jω=  (1). The parameters can 
come from analytical calculations and/or FEM calculations. 
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( ) ( ) ( ) , 1, 2,B k B k B ks s s s k K= + =Z R L  (1) 

The objective is to include the frequency dependency in BZ
in a complete state-space model of the transformer (step 4 in 
Fig. 1), by calculating a low-order, passive rational function 
approximation (model) to the data (step 3). The rational fitting 
procedure is required to be computationally efficient, due to the 
large size ( )M M×  of BZ . The complete state-space model of 
the transformer is to be cast on diagonal form with real-valued 
and complex-conjugate parameters for efficient time domain 
simulations (step 6). A procedure for model validation is to be 
provided (step 5).   

C.  Symbols 
Matrix: bold, capital letter. 
Vector: bold, non-capital letter. 
Scalar: non-bold, non-capital letter. 

III. STATE-SPACE MODELING FOR INCLUSION IN EMT 
PROGRAMS 

A.  Circuit Equations 
The following explains the establishing of the governing 

circuit equations, which form the basis for the transformer 
model to be developed.  

Let 1N×v , . 1M
B

×i ., and 1M
B

×e  denote node voltages, inductive 
branch currents, and inductive branch voltages. These variables 
define the governing circuit equations by (2), (3), and (4).   

( ) ( )C s s s=i Cv  (2) 

( ) ( )G s s=i Gv (3) 

( ) ( ) ( )B B Bs s s=e Z i (4) 

Kirchoff's current equation defines 

C L G S+ + =i i i i (5) 

where 1N
S

×i  are current injections from ground to the nodes, and 

Li  are currents associated with the branch impedances. The 
relation between node variables and inductive branch variables 
is given by the incidence matrix M N×T  in (6) and (7). 

B =e Tv (6) 

T
L B=i T i (7) 

The internal connections and groundings are handled by a 
modification to the matrices of G , C , and T  as described in 
Appendix B of [6]. 

B.  Illustrative Example 
To see how the equations (2)-(7) relates to an equivalent 

circuit, consider as an example a two-winding transformer 
where each winding is divided into two branches. Fig. 2 shows 
the subdivision of the windings, giving a representation with 
N=6 nodes and M=4 inductive branches.  

Fig. 3 shows the equivalent electric circuit. In addition, there 

exists mutual inductive couplings between all inductors (not 
shown). The 6×6 C-matrix is established from the partial 
capacitances, while in this case =G 0 .  The branch impedance 
matrix BZ  is a 4×4 matrix whose diagonal elements are the 
elements ii iiR j Lω+ , in addition to the off-diagonal elements 
that represent the mutual coupling between the four R-L 
branches. The T-matrix, which relates node voltages to 
(inductive) branch voltages, is 

1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 1 1

− 
 − =
 −
 

− 

T (8) 

Fig. 2. Two-winding transformer with N=6 nodes and M=4 inductive branches 
[6]. 

Fig. 3. Equivalent circuit of transformer in Fig. 2 [6]. 

C.  State-Space Modeling 
Inserting (2), (3) and (7) in (5) gives 

T
B Ss+ + =Gv Cv T i i (9) 

which can be rewritten as 
1 1 1T

B Ss − − −= − − +v C Gv C T i C i (10) 

The branch current Bi  is expressed as the output of an 
applied nodal voltage v , 

1 1
B B B B

− −= =i Z e Z Tv (11) 
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Consider that a state-space model has been fitted to the 
branch admittance . 1

B B
−=Y Z . in (11), 

Y Y Y Y Bs = +x A x B e (12a) 

B Y Y Y B= +i C x D e (12b) 

Introducing (12b) in (10) gives 
1 1 1( )T

Y Y Y Ss − − −= − − + +v C Gv C T C x D Tv C i (13) 

Eq. (13) and (11a) are combined into a single state-space 
equation (14a) [14]. The output is given by (14b) where (12b) 
has been used for the lower partitioning. 

1 1 1( )T T
SY Y

Y YY Y

s
− − −   − + −     

= ⋅ + ⋅        
                

v v iC G T D T C T C C 0
x x 0B T A 0 0

(14a) 

B Y Y Y

     
=     

          

v I 0 v
i D T C x (14b) 

The actual calculation of YA , YB , YC , and YD  is shown in 
Section V (phase domain fitting) and Section VI (modal domain 
fitting).  

It is assumed that a node reordering has been made so that 
the external nodes come first. Such reordering is conveniently 
achieved using a node-reordering matrix [6]. The current 
injections now take place at the first (few) external nodes, 

ext[ ]TT T
S =i i 0 . In the time domain one can now write for (14), 

[ ] [ ]
ext ext ext

int 1 2 3 int 1 2 3

Y Y

     
     = ⋅ + ⋅     
          

v v i
v A A A v B B B 0
x x 0







(15a) 

extext ext

intint int

Y YB Y

    
    = ⋅    
        

Iv v0
Iv v

D T Ci x
 (15b) 

One is usually not interested in the branch currents Bi , 
implying that  the lower partition of the output part in (15b) can 
be omitted from the model.  

This work will further take advantage of the implemented 
EMTP model interface [7] for the d-factor model, which 
assumes voltage on external terminals as input. With that 
approach, small resistors are introduced in series with the 
external terminals, permitting to write (15) with voltage on 
external terminals as input [12]. Subjecting the resulting state 
matrix to diagonalization gives the final result (16), where A is 
diagonal. The output matrices 1C  and 2C  are full. The steps for 
going from (15) to (16) are shown in detail in Section III.C in 
[12].  

ext= +x Ax Bv (16a) 

ext 1 1 ext= +i C x D v (16b) 

int 2=v C x  (16c) 

D.  Calculation Routines 
All calculations are performed using Matlab R2018b, with 

rational fitting based on vector fitting (VF) implementations 
downloadable from a web site [21]. For passivity enforcement 
of BZ  in the phase domain (Section V), a separate Matlab 
implementation is used which realizes the RP-NLLS method 
described in [16] (not available on web site). For passivity 
enforcement of BZ  in the modal domain  (Section VI), the web 
site routine RPdriver.m is used. 

IV. EXAMPLE: SINGLE-PHASE TRANSFORMER

The methods presented in this work are applied to a 1-ph 3-
winding transformer, see Fig. 4. It is a 50 MVA unit with rated 
voltage 230 / 3 , 69 / 3 , 13.8 kV at 60 Hz. This transformer 
has been extensively studied and modeled in CIGRE JWG 
A2/C4.52. Detailed design information is given in [10].  

Fig. 4.  Single phase transformer with external terminals (H1-181/182, X1- 
149, Y1-84, Y2-1) and internal nodes. 

Lumped model parameters have been calculated for this 
transformer, for a discretization with N=219 nodes and M=213 
coupled impedance branches. The parameter set was provided 
by Prof. Enrique Mombello, Universidad Nacional de San Juan, 
Argentina. It consists of the capacitance matrix 219 219×C  and the 
branch impedance 213 213 ( )B ω×Z  at K=18 logarithmically spaced 
frequencies in the range 50 Hz-1 MHz. The data set, which was 
calculated by FEM, was shown in [14] to give a high accuracy 
for representing the transformer in transient calculations.  

V.  PHASE DOMAIN BRANCH IMPEDANCE MODELING 

A.  Rational Fitting 
The discrete data set for BZ  in (1) is in the following denoted 

as data
BZ , to distinguish it from the frequency response of its 

rational model approximation that is to be calculated. 
The large size of  data

BZ  ( 100M > ) can make its direct fitting 
by a common pole set time consuming, even with the use of the 
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fast implementation [22] of VF. Fortunately, the smooth 
behavior permits the use of a low-order rational approximation. 
The computational efficiency is greatly improved by obtaining 
the common pole set by fitting approximate eigenvalues of 

data
BZ , rather than the full matrix. 

 The given matrix data
BZ  is subjected to diagonalization by 

eigenvector decomposition at one of the given frequencies, 0s , 
in the data set. 

data 1
0( )B Z Z Zs −=Z T Γ T (17) 

The obtained transformation matrix ZT  is replaced by a real 

transformation matrix ZT . This is achieved by rotating the 
eigenvectors , ,( , | | 1)Z i i Z i iξ ξ→ =t t  to minimize their 
imaginary part in the least squares sense, followed by removal 
of their imaginary part [23]. The approach is described in 
Appendix C.15.1 in [24]. The resulting transformation matrix 

ZT  is assumed to apply at all frequencies, and it is used for 
calculating approximate eigenvalues by (18). 

1 data( ) ( ) ( ( ) )Z Z Z B Zs s diag s−′≈ =λ λ T Z T (18) 

 The (approximate) eigenvalues (18) are stacked in a single 
vector and fitted by a common pole set (19) using VF with 
enforcement of stable, real-valued poles. Any complex 
conjugate pair is replaced with two close, real poles [25].  

0
1

( )
Z ZP

Z i
Z Z

i is p
ω

=

′ ≈ +
−∑ r

λ r (19) 

Finally, the original matrix data
BZ  is fitted in the phase domain 

with known poles . , 1,Z
i Zp i P=  ., giving the unknown residue 

matrices , 1,Z
i Zi P=R   (20). The resulting model is reciprocal 

with real-valued poles and residue matrices. 

data
0

1
( ) ( )

Z ZP
Z i

B B Z
i i

s s
s p=

≈ = +
−∑ R

Z Z R (20) 

Fig. 5 shows the first column of a 6th order rational 
approximation of data

BZ , using a ZT  calculated at 10 kHz. Five 
VF iterations were used. The model reproduces the data with 
good accuracy. The final poles are listed in Table I.  

Fig. 5.  Elements in first column of ( )B ωZ . Original data and 6th order 
rational approximation. M=213 elements in plot. 

TABLE I   
POLES USED IN THE FITTING OF ( )B sZ .  

-5.6647E+03 -4.3769E+04 -4.1081E+05 
-1.6365E+06 -7.3183E+06 -1.5856E+08 

B.  Passivity Enforcement 
Passivity of the model (20) must be enforced to ensure stable 

time domain simulations. The enforcement is achieved by 
perturbing the model's residue matrices such that the fitted 
matrix BZ  satisfies the positive eigenvalues condition (21) for 

all frequencies [24]. Superscript H  denotes Hermite (transpose 
and conjugate).  

( ) ( ) 0H
B Bs s s+ > ∀Z Z (21) 

The large size M  of BZ  makes it impossible to directly 
apply commonly used methods, such as residue perturbation 
[18] or residue matrix eigenvalue perturbation [26]. Those 
methods require to iteratively solve a large, constrained least 
squares problem. The size difficulty is overcome by usage of 
the (iterative) RP-NNLS method [16], [17] which by QR-
decomposition gives a compacted, non-negative least squares 
problem to be solved.  

Passivity is enforced by RP-NNLS with sweeping over 200 
frequency samples for the passivity assessment. Fig. 6 shows 
the  result of the passivity on the (real-valued) eigenvalues of 

( ) ( )H
B Bs s+Z Z . It is observed that the passivity enforcement 

results in that all eigenvalues become positive. A single 
iteration by RP-NNLS was needed. 
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Fig. 6. Impact of passivity enforcement on eigenvalues of ( ) ( )H
B Bs s+Z Z . 

Fig. 7 shows the magnitude of the (exact) eigenvalues of 
data
BZ  in the fitting range. Also is shown the (exact) eigenvalues 

of the passive model BZ  and of the non-passive model. It is 
observed that the passive model gives a very accurate 
representation of the original data and that the passivity 
enforcement does not lead to any observable change in the 
eigenvalues. This result implies that also all elements of BZ  are 
accurately represented, which can be observed for the first 
column of BZ  in Fig. 8. A zoomed view of the plot revealed 
negligible deviations. 

Table II summarizes the CPU time for the rational fitting and 
passivity enforcement. The entire modeling required 12.8 sec. 

Fig. 7.  Eigenvalues of ( )B sZ . 

Fig. 8.  First column of ( )B sZ . Phase domain model. 

TABLE II   
COMPUTATION TIME FOR EXTRACTING PHASE DOMAIN MODEL OF ( )B sZ .  

RATIONAL 
APPROXIMATION 

PASSIVITY  
CHECKING 

PASSIVITY  
ENFORCEMENT 

TOTAL 

8.6 SEC 2.0 SEC 2.2 SEC 12.8 SEC 

C.  Least Squares Weighting 
The passivity violations that can occur are strongly 

dependent on the least squares (LS) weighting scheme adopted 
in the rational fitting and passivity enforcement steps. The 
following frequency-dependent weighting scheme (22a), (22b), 
(22c) was successfully adopted in this work. 1) Calculate poles 
by (19) using inverse vector norm weighting 1w ; 2) calculate 
residue matrices by (20) using inverse element magnitude 
weighting 2w ; 3) enforce passivity using inverse matrix norm 
weighting 3w . The proposed weighting scheme gave small 
passivity violations for all relevant model orders, from 4 to 10. 

1
1( )

|| ( ) ||Z

w s
s

=
′λ

(22a) 

2, ,
, ,

1( ) , 1 , 1
|| ( ) ||i j

B i j

w s i M j M
Y s

= = =  (22b) 

3
1( )

|| ( ) ||B

w s
s

=
Y

(22c) 

D.  Conversion to Branch Admittance Model 
The passive pole-residue model (20) is converted into a 

state-space model (23) [27], 
1( )B Z Z Z Zs −= − +Z C I A B D (23) 

A state-space model for the branch admittance matrix BY  is 
obtained by exchanging the model's input and output, [24]. The 
conversion (24) with parameters (25) required 0.03 sec. The 
matrix sizes are given in Table III. 

1( )b Y Y Y Ys −= − +Y C I A B D (24) 

1 1

1 1
Y Y Z Z Z Z Z Z

Y Y Z Z Z

− −

− −

 − − 
=   

      

A B A B D C B D
C D D C D

(25) 

  TABLE III    
MATRIX SIZES OF BRANCH ADMITTANCE MODEL. 

YA YB YC YD

Z ZP M P M× ZP M M× ZM P M× M M×

VI. MODAL DOMAIN BRANCH IMPEDANCE MODELING

The following describes an alternative modeling variant 
which is based on diagonalization. The rational modeling and 
passivity enforcement is now applied to scalar functions rather 
than (large) matrix functions, thereby avoiding the need for 
RP-NNLS and the potentially long calculation times and 
robustness issues associated with passivity violations.   

A.  Diagonalization Using Orthogonal Matrix 

The branch admittance matrix 1
B B

−=Y Z  is calculated at a 
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user-defined frequency 0s  that is considered representative for 
the transient analysis. Eigenvector decomposition is applied to 

0( )B sY , 

1
0( )B Y Y Ys −=Y T Γ T (26) 

where YΓ  is a diagonal matrix holding the eigenvalues of 

0( )B sY . The eigenvector matrix YT  is in general complex. It is 
replaced with an approximate eigenvector matrix ReY ≈T T  by 
rotating each eigenvector to minimize its imaginary part [23], 
[24] and retaining only the real part. The use of this approximate 
(real) matrix ReT  does not give a symmetrical matrix (unlike 
the original T ), i.e. for any diagonal matrix Γ , 

1 1
Re Re Re Re( )T− −≠T Γ T T Γ T (27) 

To achieve symmetry for (27), ReT  is replaced with a (real) 
orthogonal approximation matrix OT . A suitable orthogonal 

OT  is calculated via the singular value decomposition 

Re Re Re Re
H=T U Σ V  which by (28) gives the closest possible 

orthogonal matrix in the least squares sense  [28]. 

O Re Re
H=T U V (28) 

The orthogonality property implies 1
O O

T− =T T  so that the 
symmetry (29) holds with any diagonal matrix Γ . 

1 1
O O O O( )T− −=T Γ T T Γ T (29) 

The orthogonal OT  is applied as a similarity transformation 

to data
BY , and the off-diagonal elements are discarded to give a 

diagonal matrix whose non-zero elements are stacked into a 
vector B′y , 

data
O( ) { ( ) }T

B Bs diag s′ = Oy T Y T  (30) 

B.  Rational Fitting 
The elements ,B my′  of B′y  are fitted independently by a pole-

residue model (31) using VF with enforcement of stable, real 
poles, and subjected to passivity enforcement, 

,
,

, 0,
1 ,

( ) , 1
Y mP

i m
B m m

i i m

r
y s r m M

s p=

′ ≈ + =
−∑  (31) 

Fig. 9 shows 6th order rational approximations of the 
diagonal elements , ( )B my s′  with OT  calculated at the mid-band 
frequency (11 kHz). The fitting by VF used five iterations with 
inverse magnitude weighting. Passivity was assessed using a 
half-size test matrix [29]. No passivity enforcement was needed 
in this case. It is observed that all diagonal elements have been 
accurately fitted.   

Fig. 9.  Fitted diagonal elements , ( )B my s′ . 

The scalar models (31) are expanded into state-space models 
(32) where mA is a diagonal matrix that holds the poles ,{ }i mp

, T
mc  holds the residue elements ,{ }i mr , mb  is a column of ones, 

0,m md r= , and mI  is the (diagonal) identity matrix. 

,
, 1

0,
1 ,

( )
Y mP

i m T
m m m m m m

i i m

r
r s d

s p
−

=

+ → − +
−∑ c I A b (32) 

The contribution ,B mY  to the complete state-space model is 

obtained by combining the rational approximation of , ( )B my ω′

with the corresponding  column O,kt  of OT , 

1
, O, O,( ( ) )T T

B m m m m m m m mj dω −′ ≈ − +Y t c I A b t (33) 

The complete state-space model (24) is written by inspection, 
giving parameter matrices (34a) and (34b).  

1

2
O, T

Y Y

M

   
   
   = =
   
   

  

A 0 0 1 0 0
0 A 0 0 1 0

A B T
0 0

0 0 A 0 0 1

 

    



(34a) 

11

12
O O O

0 0
0 0

,

0 0

T T T

T T T
T

Y Y

T T T
MM

d
d

d

   
   
   = =
   
   
    

c 0 0
0 c 0

C T D T T

0 0 c




  
  




(34b) 

The accuracy of the final model is assessed by comparing 
calculated samples 1

B B
−=Z Y  from the model against the 

original data samples data
BZ . The accuracy is found to be lower 

than for the phase domain model. This result is to be expected 
because the modal domain model assumes the transformation 
matrix OT  (28) to be valid at all frequencies, which is an 
approximation. The deviations are more easily observed in 
Fig. 10 which displays every 30th element of the first column of 
the inductance part BL  of the impedance matrix 

B B Bs= +Z R L . The plot also includes the ditto result by the 
phase domain model, showing a higher accuracy. 
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Fig. 10.  Eight elements from first column of ( )B sL .  

Table IV shows the CPU time for the various steps in the 
modeling procedure. The total CPU time is about 3.7 sec, 
including the diagonalization, rational modeling, and the 
expansion to a complete state-space model by (34a) and (34b).   

TABLE IV   
COMPUTATION TIME FOR EXTRACTING MODAL DOMAIN MODEL OF ( )B sY . 

VECTOR FITTING AND 
PASSIVITY ENFORCEMENT 

OTHER TOTAL 

2.0 SEC 1.7 SEC 3.7 SEC 

If one fits all of the M diagonal elements using YP  poles, the 
size of the matrices become as shown in Table V. The matrix 
sizes are now the same as for the phase domain state-space 
model (20) if one uses the same model order, Y ZP P= . 

  TABLE V   
MATRIX SIZES. 

YA YB YC YD

Y YP M P M× YP M M× YM P M× M M×

VII. MODEL VALIDATION

The complete, diagonalized white-box model (16a), (16b) 
and (16c) can potentially have errors due to inaccuracies in the 
rational fitting of BZ , the subsequent passivity enforcement, 
and the diagonalization. In what follows is presented an 
efficient model validation procedure for use in both frequency 
domain and time domain. The steps can be summarized as 
follows.    
1. Fit the elements of  BZ  using a sufficiently high order, such 

that all elements are fitted with high relative accuracy. 
Passivity is not enforced. Denote this model BZ . 

2. Using the "accurate" rational model BZ , calculate 
frequency samples in the Laplace domain ( )s jσ ω= +  for 
the N N× nodal admittance matrix ( )sY . With the aid of 

( )sY , calculate voltage transfer functions between external 
terminals, and from external nodes to selected internal 
nodes [8].  

3. Calculate the ditto voltage transfer quantities in the time

domain using inverse Laplace Transform (NLT)  [19]. 

The three steps are described in the following subsections. 

A.  Calculate Alternative Rational Model  BZ

The branch impedance data
BZ  is fitted in the phase domain 

using a higher order model to achieve improved accuracy. 
Passivity is not enforced. This rational model is used for 
calculating frequency samples in the left half plane 
( )s jσ ω= +  on a linear base { }kjω  with  a suitable shift σ , 

giving ( )B sZ . 

B.  Calculate Transfer Functions in Laplace Domain 
Inserting the inverse of (4) into (9) and introducing B =e Tv

from (4) gives 
( )T

B Ss s+ + =Gv Cv T Y Tv i (35) 

The full N N×  admittance matrix ( )S=Yv i can now be 
calculated from (35) as  

( ) ( )T
Bs s s= + +Y G C T Y T  (36) 

Inverting the admittance matrix (36) gives 
1( ) ( )s s−=Z Y (37) 

Deleting all rows and columns of Z except for those 
corresponding to the external terminals gives a reduced-size 
matrix Zext. Finally, the terminal admittance matrix is obtained 
by inverting Zext ,  

1
ext ext( ) ( )s s−=Y Z (38) 

The voltage extv  at external terminals can be assumed known 
or be calculated using nodal analysis. With extv  known, the 
voltage at internal nodes is calculated via the full Z. With the 
partitioning in (39), it follows from the condition int =i 0  that 
the internal voltages can be calculated by (40) [8]. 

ext ext

int int

A B

C D

     
=     

     

v Z Z i
v Z Z i

 (39) 

int ext ext( ) ( ) ( ) ( )Cs s s s=v Z Y v  (40) 

Fig. 11 shows the calculated voltage transfer function from 
external terminal H1 to open terminal X1, when Y1 and Y2 are 
also open. It is observed that the frequency response is much 
smoother when evaluated along s jσ ω= +  compared to the 
imaginary axis s jω= . The shift σ  was chosen as [30] 

2ln( )K
T

σ = (41) 

where T  is the upper time limit in the corresponding time 
domain response that is to be calculated (next subsection), and 
K  is the number of frequency samples. This case used a value 

48.54 10σ = ⋅ , corresponding to 110 µsT =  and 110K = , 
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defining a time resolution of 1 µs. The K sample values to be 
used for NLT are shown by the dots.  

Fig. 11.  Voltage transfer function from H1 to X1, evaluated at alternative 
frequency domain paths. 

C.  Calculate Validating Time Domain Responses by NLT 
The K  sample values are transformed to the time domain by 

the Fast Fourier Transform (FFT) where they are used for 
validating EMTP simulation results by the white-box model. 
This work uses an NLT implementation described in detail in 
[19]. The ten last samples are discarded due to lower accuracy.  

Fig. 12 shows a validation example where a standard 
1.2/50 µs lightning impulse voltage (42) is applied to terminal 
H1, with k=1.0383, a=0.015·106, b=2.47·106.  

( ) ( )at btU t k e e− −= − (42) 

The voltage response is calculated for (open) terminals X1, 
Y1, Y2 and two nodes (228, 219) in the regulating winding. In 
EMTP, the two alternative models (phase domain fitting, modal 
domain fitting) are employed with 5001 time steps (

0.02 µst∆ = ). In the NLT validation, the corresponding 
lightning impulse responses are obtained by scaling each 
(impulse) response ( )F s from Section VII.B by a factor ( )g s , 

( ) k kg s
s a s b

= −
+ +

(43) 

An excellent agreement is observed between the  NLT result 
(110 samples) and the simulation result by the two alternative 
EMTP models (5001 samples).   

The CPU time for the NLT calculations is 12 sec with a 10th 
order rational model for BZ  and five VF iterations, see 
Table VI. The CPU time is identical for the two EMTP models 
(phase domain fitting or modal domain fitting of BZ ) because 
the same model order ( 6)Z YP P= =  was used. Therefore, the 
matrix sizes of the final model are the same. The CPU time for 
the EMTP simulation is given in Table VII for two situations: 
using the model as a four-node terminal equivalent, and when 
additionally simulating all (229-4=215) internal node voltages. 
The CPU time is 0.43 sec and 2.1 sec for the two cases.  

Fig. 12.  Comparison between NLT result (110 sample values) and EMTP 
simulation (5001 sample values). Lightning impulse voltage transfer from HV 
terminal (H1) to open LV terminal (X1), tertiary terminals (Y1, Y2), and two 

nodes in regulating winding (228, 219). 

TABLE VI   
NLT COMPUTATION TIME (120 SAMPLES). 

CALCULATING 110 SAMPLES FOR Y VIA RATIONAL 
FITTING OF BZ . 

12 SEC 

TRANSFORMING 110 SAMPLES TO TIME DOMAIN  0.003 SEC 

TABLE VII   
EMTP COMPUTATION TIME. 5000 TIME STEPS. 

EXTERNAL VOLTAGES ONLY 0.43 SEC 
EXTERNAL AND INTERNAL VOLTAGES  2.1 SEC 

VIII. SENSITIVITY TO DIAGONALIZATION FREQUENCY

The calculations by the EMTP model with modal domain 
fitting of BZ  used a transformation matrix calculated at 10 kHz. 
As the transformation matrix is in reality frequency-dependent, 
one can expect that the simulated result will depend on the 
selected frequency for diagonalization. 

Fig. 13 shows the same results as in Fig. 12, when using 
modal domain fitting with three alternative frequencies for 
diagonalization: 50 Hz, 10 kHz, and 1 MHz. It is observed that 
the responses are only weakly dependent on the chosen 
frequency for diagonalization.  

Fig. 13.  Simulations with modal domain fitting of BZ , with alternative 
frequencies for diagonalization. Voltage response in X1, Y1, Y2, 218, 219. 
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IX. COMPARISON WITH DAMPING FACTOR MODEL

One alternative to the proposed model is the d-factor model 
which makes use on an empirical, frequency-dependent 
damping factor. The input parameters for that model are the 
lossless branch inductance matrix lossless

BL , in addition to the 
capacitance matrix C . The state-space model (16a), (16b), 
(16c) is formulated in a similar manner as the one in this work. 
Finally, the real part of the (diagonal) state matrix elements are 
replaced according to the damping function, which defines the 
real part α  as function of the imaginary part β .  

A d-factor model was constructed from the data by taking as 
BL  the imaginary part of BZ  at the highest frequency sample 

(1 MHz). The model parameters were exported to file and 
included in EMTP using the same model interface as in the 
previous calculations. Fig. 14 compares the simulation result by 
the d-factor model with the model proposed in this work when 
using phase domain fitting of BZ . As damping factor was 
chosen the one proposed by Fergestad (44a), (44b) in his PhD 
thesis work [31], based on measurements on 25 transformers.  

6 6 20 0.5 10 (0.022 0.058 10 )β α β β−< < ⋅ → = − + ⋅  (44a) 

60.5 10 0.05β α β> ⋅ → = −  (44b) 

It is observed that the d-factor model gives a stronger 
attenuation of the fast oscillation than the proposed model. The 
same plot also includes the associated measurement result 
provided by CIGRE JWG A2/C4.52 [10], by the following 
procedure [32]. 1) Voltage transfer function measurement in the 
frequency domain, 2) rational function approximation, and 3) 
time domain response calculation using convolution. The use of 
a full frequency-dependent BZ  gives a better agreement with 
the measurement. With the d-factor model, simulating external 
overvoltages (5000 time steps) required 0.21 sec (compared to 
0.43 sec for proposed model), and including all internal 
overvoltages required 0.53 sec (compared to 2.1 sec for 
proposed model). The faster calculations are mainly a 
consequence of fewer columns in the state output matrix C .  

Fig. 14.  Simulation result using d-factor model. Comparison with proposed 
model (using phase domain fitting of BZ ) and measurement. 

X.  INTERNAL VOLTAGE STRESSES 
The following demonstrates by a simple example the ability 

of the model to predict the internal voltage stresses that can 
occur in a transformer when in service.  

Fig. 15 shows an example where the tertiary windings of 
three 1-ph units are connected in delta using 1 mΩ resistors, 
giving a 3-ph bank. Each 1-ph unit  is in the schematic 
represented by a white box, with labels 1, 2, 3, and 4 
representing H1, X1, Y1 and Y2, respectively. The 230 kV 
primary side is fed via three 1000 mm2 XLPE SC cables of 
484 m length, which are modeled as three uncoupled, 
frequency-dependent traveling wave models. The cable 
characteristic impedance and propagation velocity are 
approximately 31 Ω and 179 m/µs, respectively. The cables are 
connected to a power system that is represented by a three-
phase Thevenin equivalent with a 50 mH short-circuit 
inductance. The LV terminals are connected to 3 nF capacitors 
that represent short cables. An ideal ground fault occurs in one 
phase at the cable feeding end, near voltage maximum 
(t=10 µs). The ground fault is represented by an ideal switch.   

Fig. 16 shows the node-ground voltages in the HV winding 
connected to the faulted cable (nodes 182-213 in Fig. 4). Before 
the fault occurs, the voltage is linearly distributed along the 
winding. The onset of the ground fault at t=10 µs causes a 
voltage wave to propagate into the cable, which is reflected 
back-and-forth between the transformer terminal and the fault 
location. The resulting voltage on the transformer terminal 
becomes a square-like oscillating voltage. The simulated result 
is practically the same whether using a rational model for BZ  
obtained by the phase domain or modal domain approach. 

Fig. 17 shows every second node-ground voltage in the LV 
winding (nodes 85-149 in Fig. 4), in the time range 0-100 µs. A 
Resonance between the cable and the transformer causes the 
voltage in the LV-winding to increase substantially, compared 
to the 60 Hz voltage distribution. Such voltage increase can 
pose a risk to both the transformer and the equipment connected 
to its LV terminals. Again, the two models (phase domain and 
modal domain fitting of BZ ) give nearly the same result.  
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Fig. 15.  EMTP simulation model with ground fault applied at t=10 µs at cable 
feeding end. Labels 1, 2, 3 and 4 represent H1, X1, Y1 and Y2. 

Fig. 16.  Ground fault initiation. Voltage in HV winding (nodes 182-213).  

Fig. 17.  Ground fault initiation. Voltage in LV winding (nodes 85-149).  

XI. DISCUSSION

A.  Phase Domain vs. Modal Domain Fitting 
For the studied transformer, the two fitting approaches for 
BZ  give a very similar result for the transient voltage 

waveforms produced by the final model, independent of the 
frequency chosen for diagonalization. Although this result 
suggests that the frequency dependency of the modal 
transformation matrix is of little importance, a different 
conclusion  could be reached for other transformers.   

The phase domain fitting of BZ  gives in principle the most 
accurate model because no simplifications are made, except for 
the rational fitting itself. With the applied LS weighting 
schemes, only small passivity violations appeared that were 
easily removed by RP-NNLS. This may not necessarily be the 
case for a different transformer. If large passivity violations 
occur, it may then become a time-consuming task to remove all 
violations. In that sense, the use of the modal domain fitting 
method is advantageous because it requires to fit and enforce 
passivity for a set of independent, scalar problems. This leads 
to much faster fitting and the passivity enforcement is now 
much faster and more robust as well. 

B.  Symmetry Enforcement for Branch Impedance Matrix 
It is advantageous to make use of the time domain 

implementation for the d-factor model [7] for EMTP, which 
yields highly efficient time domain simulations. That 
implementation requires the diagonalized state-space model 
(16a), (16b), (16c) to have parameters that are real-valued or 
complex conjugate. To achieve this property, it is with the 
phase domain modeling of BZ  necessary to enforce that the 
poles and residue matrices are real-valued, and that the residue 
matrices are symmetrical. This restriction, which was used in 
this work, leads to a real-valued, unsymmetrical state-matrix in 
(14a), which has real-valued and complex-conjugate 
eigenvalues. Similarly, enforcement of real poles is also 
necessary for modal domain fitting of BY . Failing to enforce the 
real-valued property will cause the final, diagonal model to 
have parameters that are general complex.  

C.  Model Validation by NLT 
An efficient NLT procedure for validating the EMTP model 

was presented, based on calculating an alternative, more 
accurate model for BZ  (without passivity enforcement), from 
which new sample values are calculated in the (complex) 
Laplace domain via nodal analysis. The corresponding time 
domain samples are calculated by FFT. Such validating samples 
can in general capture errors in the modeling procedure itself 
and in the model interfacing with an EMT program.  

D.  Direct Fitting of Inverse Branch Impedance Matrix 
It was also attempted (not shown) to perform phase domain 

modeling of 1
B B

−=Y Z , thereby avoiding the need for 
interchanging input and output to recover a model for BY
(Section V.D). But that approach was found to give large 
passivity violations at low frequencies. 

E.  D-factor Method 
The usage of a frequency-dependent BZ  was in Section IX 

shown to give a substantially better agreement with a 
measurement than usage of a frequency-dependent damping 
factor. The comparison  used a damping factor from Fergestad, 
obtained by measurements on 25 transformers, [11], [31]. It is 
remarked that a different damping factor was used in the 
comparison in [12] for the same transformer, which gave a 
better agreement with the measurement. However, that 

484 m
+

50mH

+
50mH

+
50mH

+

+
10us|100ms|0

?vi>vi

+
0.001

R1

+
0.001

R2

+
0.001

R3

VM+
H1

?v

VM+
H2

?v

VM+
H3

?v

VM+
X1

?v

VM+
X2

?v

VM+
X3

?v

VM+
Y2

?v

VM+
Y3

?v

VM+
Y1

?v

1 3
4

2
DF1

1 3
4

2
DF2

1 3
4

2
DF3

+

3n
F

+

3n
F

+

3n
F

+

?i

+
FDQ model

+
c

b

a

 

Author Accepted Manuscript version of the paper by Bjørn Gustavsen,  
in IEEE Transactions on Power Delivery (2023), DOI: http://dx.doi.org/10.1109/TPWRD.2023.3266861. 

 Distributed under the terms of the Creative Commons Attribution License (CC BY 4.0)



damping factor was obtained from the measurement of the 
transformer, and such measurements are usually not available. 

F.  Computational Efficiency of Final Model in Time Domain 
The time domain simulation is based on a discretization of 

the state-space model (16a)-(16c) where A is diagonal [7]. 
Consider the simulation of all internal node voltages. The CPU 
time is approximately proportional to the number of elements 
in 1 2[ ]T T TC C , i.e., 2 2( ) (1 )N N PM N P N P+ ≈ + ≈ . It follows 
that the CPU time is approximately proportional to the square 
of the number of nodes N  and to the order P  of the branch 
impedance model. Given the small CPU time of the model with 

219N =  and 6P =  in Table VII, it follows that the model will 
remain efficient also for models with more nodes N , given that 
the smoothness of BZ  will allow for use of a low-order P .  

For comparison, the number of elements in C is with the d-
factor model 2( ) 2N N M N+ ≈ . With the given example one 
could expect about 3.5 times faster calculation with the d-factor 
model, which compares well with the observed ratio of 4.0 
(0.53 sec vs. 2.1 sec).  

G.  Black-Box Variant 
If a manufacturer wishes to share a model with a customer, it 

is possible that he will not allow the calculation of internal 
voltages. Such restriction is easily achieved when using the 
proposed model interfacing as one can then simply exclude the 
matrix 2C  in (16c) from the model, giving a black-box model.  

XII. CONCLUSION

A robust and efficient procedure for white-box transformer 
modeling and validation has been presented that includes 
frequency-dependency in the branch impedance matrix BZ  via 
rational function approximation. 

 Two alternative methods are proposed for the rational 
modeling of BZ , 1) phase domain modeling of BZ , and 2) 

modal domain modeling of 1
B B

−=Y Z . Both methods can extract 
a model of the branch impedance matrix that is guaranteed 
passive. The phase domain model is slightly more accurate 
while the modal domain model is faster to calculate and requires 
a less sophisticated method for the passivity enforcement. An 
efficient procedure for accuracy validation of the final 
(complete) white-box model in the time domain is proposed, 
based on the Numerical Laplace Transform (NLT). 

The final model is compatible with a previously developed 
model interface for EMTP. Time domain simulation of 5000 
time steps for a transformer represented with N=219 nodes and 
a 6th order model of a 213×213 BZ  required only 0.43 sec for 
obtaining the four external voltages. The CPU time increased to 
2.1 sec if all 219 node voltages were to be simulated.  

The combination of high accuracy and EMTP compatibility 
by an efficient time domain implementation makes the model 
eminently suited for general network studies, allowing both 
external and internal overvoltages to be calculated with 
improved accuracy in a short time. The high computational 

efficiency is in particular important if the model is to be applied 
in statistical switching studies, or in Monte Carlo simulation of 
lightning stroke overvoltages. 

The proposed modeling approach requires the availability of 
frequency domain samples for BZ , which normally would 
come from CPU intensive FEM calculations. The method is 
therefore complementary to the less accurate d-factor modeling 
approach, which requires as input only the capacitance matrix 
and the high-frequency branch inductance matrix.    
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