
Abstract—The prediction of voltage stresses in transformer and 
machine windings requires the ability to calculate pulse 
propagation effects on the feeding cable with sufficient accuracy. 
The use of commonly available cable models in electromagnetic 
transient (EMT) programs can lead to voltage wave fronts with too 
weak damping at very high frequencies. This work shows a 
method for improving the accuracy of such models by usage of 
measured coaxial mode propagation characteristics. The 
information is introduced into a wide-band multi-conductor cable 
model at high frequencies by a merging procedure, with only a 
minor impact on the non-coaxial modes of propagation. The 
application of the developed model is demonstrated for cases 
where the metallic sheaths are grounded at one end only, or are 
cross-bonded.  

Index Terms—Cable, very fast transients, pulse propagation, 
modeling, simulation. 

I.  INTRODUCTION 
OMMONLY applied electromagnetic transient (EMT) 
programs have the capability of simulating wave 

propagation effects on cable systems by use of multi-conductor, 
frequency-dependent traveling wave models [1], [2]. The input 
parameters are the per-unit-length (p.u.l.) series impedance 

( )ωZ  and shunt admittance ( )ωY . These parameters can be 
calculated for systems of coaxially arranged, tubular conductors 
with inclusion of skin effect in conductors and earth [3], [4], 
while proximity effects are normally ignored. The insulation 
layers are assumed to be lossless. Using Z and Y as input 
parameters, the matrices of propagation H and characteristic 
admittance YC are calculated as a function of frequency [5] and 
fitted with low-order, delayed rational functions [1], [2]. The 
resulting model is usually considered adequate for general 
transient simulation studies, but it can sometimes be 
unsatisfactory for steep-fronted voltage pulses, e.g. as shown in 
[6]. The inaccuracies can be a result of additional losses in 
conductors and sheaths by e.g. stranding effects, or be a result 
of high-frequency losses in insulating layers and 
semiconductive screens. 
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The accuracy limitation can be overcome by a measurement-
based approach where the cable multi-port behavior is 
characterized using S-parameter frequency sweep 
measurements, leading to a lumped-parameter terminal 
equivalent for the cable [7].  The approach requires access to 
both cable ends, usually implying on-drum measurements. In 
the case of cables with certain geometry symmetries, the 
parameters for a traveling wave model can be calculated [8].  

High-voltage cables are normally designed with a separate 
metallic sheath for each phase (core) that is grounded at both 
cable ends. High-frequency transients will in such case 
propagate mainly as uncoupled, coaxial waves through the 
cable system. An alternative measurement approach was 
introduced in [6] where one-sided voltage transfer 
measurements were performed on a single core cable, leading 
to a single-conductor representation of coaxial wave 
propagation. Following a similar approach as in [7], the p.u.l. 
parameters of series impedance coaxz  and shunt admittance 

coaxy  were extracted, enabling the calculation of parameters of 
a traveling wave model defined by propagation function coaxh
and characteristic admittance C coaxy . The resulting model is 
suitable for EMT simulation of fast-front wave propagation on 
cables. The accuracy will, however, deteriorate towards lower 
frequencies because the magnetic field penetrates the sheaths, 
thereby violating the assumption of uncoupled coaxial 
propagation. The proposed model in [6] is therefore not suitable 
when slow frequency phenomena must be accurately 
represented in the simulation, in addition to high-frequency 
phenomena. It is also not suitable if other modes of propagation 
exist, e.g. when the cable sheaths are cross-bonded or grounded 
at one end only. 

This paper proposes a method for alleviating the limitations 
of the measurement-based single-conductor model [6] by 
combining it with a multi-conductor traveling wave model of 
the complete cable system. The parameters of the multi-
conductor model are in this work calculated by the classical 
procedure [3], [4] which includes skin effect. Section III gives 
an  introduction to transmission line modeling, defining phase 
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domain traveling wave parameters by matrices H
(propagation) and CY (characteristic admittance), and the 
decomposition of waves into modes of propagation. Section IV 
shows a procedure for introducing the measured  coaxh  and 

C coaxy in H  and CY , respectively. An optional filtering 
method is used such that the modification takes place at high 
frequencies only. The modified matrices H  and CY  are fitted 
with rational functions by a standard method to give parameters 
for the Universal Line Model (ULM) [2]. Section VII 
demonstrates the ability of the model to produce accurate 
results at both low and high frequencies, with the classical 
model as reference for low-frequency behavior and the 
measured coaxial behavior as reference for high-frequency 
behavior. Sections VIII and IX show simulation examples in 
EMTP where the cable model is applied in fast front transient 
studies with alternative grounding schemes for the sheaths; 
open or grounded far end, and use of cross-bonding. Section X 
discusses various aspects of the modeling, including choice of 
filter parameter, modal behavior, and accuracy.    

II. PROBLEM STATEMENT

Consider a system of parallel cables where each cable core 
has its own metallic sheath. This will typically be a set of single-
core cables, or the cores within a three-core cable. The 
following information is assumed to be available. 
1. The parameters for coaxial wave propagation between

conductor and sheath, coax ( )h ω  and  C coax ( )y ω , obtained
by measurements on a cable core.

2. The calculated matrices of series impedance ( )n n ω×Z  and

shunt admittance ( )n n ω×Y  of the complete cable system
with n  conductors, obtained by calculations from
geometry information.

The two data sets are to be combined into a single set from 
which a multi-conductor frequency-dependent traveling wave 
model can be extracted, for use in general EMT simulation 
programs. The combination is to be done in such way that the 
final model inherits the high-frequency accuracy of coax ( )h ω  
and C coax ( )y ω , without corrupting the overall model accuracy 

defined by ( )n n ω×Z  and ( )n n ω×Y .   

III. TRAVELING WAVES

The following gives an introduction to transmission line 
modeling. For detailed information, see e.g. [3], [4] and [5]. 

A.  Telegrapher's Equation 
Consider an n-conductor homogenous system of parallel 

conductors buried in a lossy earth. The change to voltage and 
current along an infinitesimal short length dx  is given by (1a) 
and (1b) where v  and i  are voltage and current vectors of 
length n  . Z  and Y  are the per-unit-length series impedance 
and shunt admittance, which are n n×  complex-valued, 
symmetrical matrices. 

( ) ( ) ( )d
dx

ω ω ω− =
v Z i  (1a) 

( ) ( ) ( )d
dx
ω ω ω− =

i Y v  (1b) 

From (1a) and (1b) are derived the Telegrapher's wave 
equations for voltage and current, 

2

2

d
dx

=
v ZYv (2a) 

2

2

d
dx

=
i YZi (2b) 

The solving of (2a)-(2b) is achieved by application of 
suitable boundary conditions. At line ends 1 and 2, the terminal 
behavior is defined by (3a) and (3b) where the right side is two 
times the incident current wave [9].  

1 1 2 2( )C C− = − +i Y v H i Y v  (3a) 

2 2 1 1( )C C− = − +i Y v H i Y v  (3b) 

H  and CY  are the n n×  matrices of propagation and 
characteristic admittance. For a cable with length l , these 
parameters are related to Z  and  Y  by  (4a) and (4b). 

le−= YZH (4a) 

1 1( )C
− −= =Y Z ZY YZ Y (4b) 

B.  Modal Decomposition  
The matrix product YZ can be diagonalized by a frequency-
dependent eigenvector matrix IT  [5], 

2 1 2 2 2 1
1 2([ ])I I I n Idiag γ γ γ− −= =YZ T Γ T T T (5) 

where 2 2 2
1 2, nγ γ γ  are the matrix eigenvalues. From these 

eigenvalues, H  can be expressed as 

1 2 1([ ])n ll l
I Idiag e e e γγ γ −− − −=H T T

 (6) 

It is assumed that the system consists of cable cores where 
each core has one conductor and one sheath. In such cases, the 
modal decomposition (5) will at high frequencies have as many 
coaxial modes as there are cables, with identical eigenvalues if 
the cores are identical. The coaxial modes involve currents in 
conductors that return in the associated sheaths. These (coaxial) 
modes are observable in the eigen-decompositions of YZ  and 
of H  (5) by corresponding eigenvectors and eigenvalues.  

Eigenvector decomposition  { , }
C CY YT Λ of CY  does not result 

in pure coaxial modes at high frequencies, unlike H. The 
coaxial wave information can, however, be directly related to a 
sub-set of elements of CY , as shown in the Section below. 
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IV. INTRODUCING MEASURED COAXIAL BEHAVIOR IN SYSTEM
PROPAGATION FUNCTION AND CHARACTERISTIC ADMITTANCE 

The performed measurements giving coaxz  and coaxy  are for 
one single core cable where the conductor current at high 
frequencies returns in the associated sheath. The product 

coax coaxy z  is therefore equal to the coaxial mode eigenvalues of 
YZ at high frequencies. This implies that the coaxial 
eigenvalues of the system propagation function H  can at high 
frequencies be replaced with 

coax coax
coax

y z lh e−= (7) 

In the case of CY , the sub-matrix associated with a conductor 
and associated sheath will at high frequencies approximately 
have the structure (8) 

c s c s

c s c s s ext

y y
y y y

− −

− − −

− 
 − + 

(8) 

where element (1,1) represents the conductor and element (2,2) 
the associated sheath. The contribution c sy −  can be viewed as 
the characteristic admittance of a coaxial wave propagating 
between the conductor with return in sheath, while s exty −  is that 
of a wave propagating between the sheath and conductors/earth 
externally to the cable. It follows that the measurement can be 
introduced in (8) by replacing the four elements by (9a) where 

C coaxy  is given by (9b). Such replacement must be done for all 

conductor-sheath submatrices of CY . 

C coax C coax

C coax C coax( )( )
c s c s

s extc s c s s ext

y yy y
y y yy y y

− −

−− − −

−−   
≈    − +− +   

 (9a) 

coax
C coax

coax

y
y

z
= (9b) 

V.  FREQUENCY-DEPENDENT MERGING 
The following shows a procedure for introducing the 

measured propagation characteristics at high frequencies only. 

A.  Converting Measurement Data to New Frequency Base 
The measurements in [6] were performed at frequency 

samples that were mostly linearly spaced. Traveling wave 
models usually require logarithmically spaced samples. The 
data representing coaxh  and C coaxy  are therefore fitted by low-
order rational function approximations (10a) and (10b) [10], 
[11] from which logarithmically spaced samples are calculated. 

coax
1

h hN
ji

i i

r
h e

j a
ωτ

ω
−

=

≈
−∑ (10a) 

C coax 0
1

Y CC
C

N Y
Y i

i i

r
y r

j aω=

≈ +
−∑ (10b) 

B.  Merging by Low-Pass And High-Pass Filters 
The correction to H  and CY  by the coaxial data (10a) and 

(10b) is achieved by a merging procedure using first-order low-
pass and high-pass filters (11a) and (11b). The filter frequency 

0ω  is selected at an intermediate frequency so that the low- 
frequency behaviors of the original data H  and CY  are 
preserved while at the same time the high-frequency behaviors 
of coaxh  and C coaxy  are included in the final model. More about 
this in Section X.B. 

0

0

( )LP
j

ω
ω

ω ω
=

+
(11a) 

0

( ) 1 ( ) jHP LP
j

ωω ω
ω ω

= − =
+

(11b) 

The merging is performed for the coaxial modes of H  by 
(12). The elements of vector coaxh  are equal to coax ( )h ω  from 
the measurements, while h  contains the non-coaxial 
eigenvalues of H. ( )I ωT  and ( )ωh  are calculated as smooth 
functions of frequency, which requires to remove any 
"artificial" switchovers among the eigenvectors when moving 
from one frequency sample to the next. The removal of 
switchovers is achieved by a procedure described in Section 6 
in [12].   

1
coax([ ])T T

I ILP HP diag −= ⋅ + ⋅H H T h h T (12) 

For each phase conductor with associated sheath, a 
modification is made to the four associated elements in CY  by 
(13). The elements of coaxh  and the sub-blocks (13) are identical 
if the cable cores are identical. 

C coax C coax,11 ,12,11 ,12

C coax C coax,21 ,22,21 ,22 ( )
C CC C

s extC CC C

y yY YY Y
LP HP

y y yY YY Y −

−    
= ⋅ + ⋅     − +      

 

 

(13) 

C.  Traveling Wave Modeling by Universal Line Model 
The above merging using rational functions allows the 

resulting frequency responses H  and CY  to be fitted with 
rational functions. The approximations (14a) and (14b) are 
calculated for use with ULM [2]. 

,

1 1 ,

g
g

NG
jg i

g i g i

e
j a

ωτ

ω
−

= =

 
≈   − 

∑ ∑
R

H (14a) 

0
1

YCN
i

C
i ij aω=

≈ +
−∑ R

Y R (14b) 

VI. EXAMPLE: MODELING THREE PARALLEL SC CABLES

A.  Cable System 
Measurement-based p.u.l. parameters coax ( )z ω  and coax ( )y ω

have been extracted for a 6 kV 150 mm2 SC cable of 252 m 
length [6] from which the propagation characteristics coaxh  and 

C coaxy  have been calculated.  The following considers that three 
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cables are buried underground as shown in Fig. 1. The two 
sheaths are bundled into an equivalent conductor, reducing the 
9×9 matrices of ( )ωZ  and ( )ωY  to 6×6 matrices, before 
calculating H  and CY  by (4a) and (4b). The cable parameters 
used in the calculation are defined in Fig. 1 and Table I. The 
insulation thickness includes that of the inner- and outer 
semiconductive layer, and the permittivity is chosen such that 
the (coaxial) time delay agrees well with that observed in the 
measurement in [6].   

Fig. 1.  System of three underground coaxial cables. (Not to scale). 

TABLE  I  
SINGLE-CORE  CABLE  DATA IN CLASSICAL MODEL 

Item Property 
Conductor d=14.7 mm, σ=58⋅106 S/m 
Insulation t=5.2 mm, εr=4.78 
Inner wire sheath t=0.6 mm, σ=9.6⋅106 S/m 
Insulation t=5.0 mm, εr=2.3 
Outer wire sheath t=0.6 mm, σ=6.7⋅106 S/m 
Insulating jacket t=2.5 mm, εr=2.3 

B.  Data Samples 
The p.u.l. parameters of the 6×6 Z  and Y  are calculated 

using a combination of 201 logarithmically spaced and 201 
linearly spaced frequency samples, between 1 Hz and 
100 MHz. From these 402 samples are calculated the 6×6  
matrices H  and CY , along with the eigen-decomposition (5) 
with a frequency-dependent IT . Sample values for coaxh  and 

C coaxy  are calculated at the same frequencies, using the rational 
function approximations (10a) and (10b). 

C.  Propagation Function 
Fig. 2 shows the six eigenvalues of H along with coaxh . It is 

observed that coaxh  is much more damped than the three coaxial 
eigenvalues of H. 

The three coaxial mode eigenvalues are merged with coaxh
using (12) with filter pole 4

0 2 3 10ω π= ⋅ ⋅ , giving a modified 

propagation function H . Fig. 3 shows the impact of the 
merging on the elements of H . It is observed that several 
elements of the modified matrix H  are more damped at high 
frequencies than the ditto elements of H .     

Fig. 2.  Eigenvalues h and hcoax.  

Fig. 3.  Elements of H, before and after merging.  

D.  Characteristic Admittance 
Fig. 4 shows the elements of the 2×2 submatrix of CY that is 

associated with the conductor and sheath of the left SC cable in 
Fig. 1. The plot also shows the element C coaxy  obtained via 

measurements, and the effect of merging C coaxy  with the sub-
block using (13). It is observed that the high-frequency 
behavior of the submatrix becomes modified. 

Fig. 5 shows the effect of substituting the three 2×2 
submatrices of the 6×6 CY . The resulting CY  gets 3·4=12 of 
its elements modified at high frequencies. 

Fig. 4.  Elements of 2×2 sub-block of YC , and yC coax.  
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Fig. 5.  Elements of YC, before and after merging.  

E.  Traveling Wave Modeling by ULM 

From the matrices of merged propagation H  and 
characteristic admittance CY , parameters for ULM are 
calculated by rational function approximations (14a) and (14b). 
The model parameters are exported to file for use with EMTP. 

Figs. 6 and 7 show the rational approximations of  H  and 

CY  along with the data used for the fitting process. The 
accuracy is considered satisfactory. The fitting used 8-10 poles 
for the modes of  H  and 20 poles for the fitting of CY . 

Fig. 6.  Rational approximation of H .  

Fig. 7.  Rational approximation of CY .  

VII. MODEL VALIDATION

A.  High Frequencies 
Validating measurements were presented in [6] where a 

steep-fronted voltage measU  was applied between conductor and 
sheath for the 252-m cable on drum (Table I). The far end 
voltage response was measured and used for validation of the 
coaxial mode modeling. The same applied voltage measU  is now 
used for the six-conductor system as shown in Fig. 8. The 
voltage excitation produces a wave which at very high 
frequencies propagates between the conductor and the 
associated sheath. 

Fig. 9 compares the measured voltage response 1V  on the 
(single) cable with the simulation result by the two alternative 
6×6 models: with and without the merging approach. It is 
observed that the merged model is capable of representing the 
high-frequency coaxial-mode behavior of the measurement 
with high accuracy, including the wave front damping. The 
classical (unmerged) model gives much too weak damping of 
the wavefront.    

Fig. 8.  Applying measured voltage to cable near end.  

Fig. 9.  Voltage wave front arrival at far end.  

B.  Low Frequencies 
It is important that the merged model behaves correctly also 

with operation at 50/60 Hz and at harmonic frequencies. At 
these frequencies, it will be assumed that the classical model is 
accurate. The positive and zero sequence behavior derived from 
the measurement-based model alone is here incorrect because 
there exists a coupling between phases which is not taken into 
account. 

Fig. 10 shows the positive and zero sequence components of 
the short-circuit impedance, from 50 Hz to 10 kHz. "Data" 
denotes the result by three single-conductor (1×1) ULM models 
in parallel, represented by the rational functions of coaxh  and 

C coaxy  via (10a) and (10b). "Classical" and "Merged" denote 
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the result calculated from the two alternative 6×6 ULM models, 
with all cable sheaths grounded at both ends. It can be observed 
that the merged model closely reproduces the behavior of the 
classical model in the entire frequency range. The result by the 
"Data" model deviates significantly from that by the "Classical" 
and "Merged" models.   

Fig. 11 shows the same comparison for the open circuit 
impedance. The merging is seen to give a substantial 
improvement in accuracy, also in this case.  

Fig. 10.  Short-circuit impedance. 

Fig. 11.  Open-circuit impedance.  

VIII. EXAMPLE: CABLE WITH GROUNDED OR OPEN SHEATHS

Sometimes, the cable sheaths are grounded at only one end 
to block the flow of induced sheath currents. Fig. 12 shows an 
example where the cable system is  connected to a transformer 
at the far (right) end. The transformer is represented by a wide-
band, measurement-based model of a 300 kVA distribution 
transformer, developed in [14]. A unit step voltage is applied at 
the sending (left) end. The voltage response at the far end is 
calculated when the sheaths are either grounded or open at that 
end.   

Fig. 12.  Cable connected to a transformer. 

Fig. 13 shows the initial response on the energized cable. It 
is observed that the initial wave front on the transformer 
terminal (C1) is reduced from about 1.3 Volt to 1 Volt when the 
sheath groundings are removed. Therefore, the sheaths must in 
such case be included as an additional conductor to obtain the 
correct voltage on the transformer terminals. It is also seen that 
the merged model gives a stronger attenuation of the wavefront 
than the classical model, consistent with the coaxial mode result 
in Fig. 9. Fig. 14 shows the result for an expanded (10 µs) time 
span.  

Fig. 13.  Far end voltage response on energized cable. Sheaths open or 
grounded at far end.  

Fig. 14.  Extended view of Fig. 13. 

IX. EXAMPLE: CROSS-BONDED CABLE SHEATHS

Another way of reducing sheath currents is by cross-bonding 
the cable sheaths. A coaxial wave which meets a cross-bonding 
point will generate new waves that propagate externally to the 
sheaths (inter-sheath waves, ground wave), in addition to the 
coaxial wave. It follows that a simulation of such case requires 
the use of a model with explicit representation of the cable 
sheaths.  

Fig. 15 shows a calculation example of one major section, 
with cross-bonding of the sheaths. Each minor section is 
represented by the 6×6 cable model used in the preceding 
sections. One of the phase conductors is energized with a square 
voltage pulse of 1 µs duration. 

 Fig. 16 shows the voltage along the energized conductor at 
points A, B, C and D. It is observed that the cross-bonding 
causes a strong reduction in the peak value at D, compared to 
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the expected 2 Volt response for a cable without cross-bonding. 
It is further seen that the merged model gives a substantial 
reduction in the front steepness at D, compared to the classical 
model. This is more clearly seen in the zoomed view in Fig. 17. 
It follows that simulation of fast front pulse propagation on such 
cable system requires correct representation of the coaxial 
mode high-frequency behavior, in addition to explicit 
representation of the sheath conductors.    

Fig. 15.  Cross-bonded cable system. 

Fig. 16.  Voltage pulse response along energized conductor.  

Fig. 17.  Far end voltage on energized conductor. 

X.  DISCUSSION 

A.  Modal Behavior at Low Frequencies 
Each eigenvector It  of IT  defines the current distribution of 

modes on individual conductors. At lower frequencies, the 
eigenvector decomposition degenerates into mixed modes. To 
see this, consider the eigenvector It  that is associated with the 
first coaxial mode. Table II lists the eigenvector elements at 
50 Hz and 100 kHz, with labels C and S denoting phase 
conductor and sheath, respectively. Clearly, the current in a 
given phase conductor does not completely return in the 

associated sheath at lower frequencies (50 Hz). Therefore, the 
measured coaxial modes are not compliant with the coaxial 
modes of the full 6×6 system, and the use of a merging 
procedure is justified. Fig. 18 shows sums of element pairs in 

,1It  , with each pair associated with one cable, tot c sI I I= + . 
Clearly, the three sums approach zero as the frequency is 
increased. A similar result is found for the other two coaxial 
eigenvectors.  

TABLE  II  
ELEMENTS IN COAXIAL MODE EIGENVECTOR, ,1It . 

Cable Item 50 Hz 100 kHz 
1 C 0.406 - 0.121i 0.402 - 0.001i 

1 S -0.361 - 0.135i -0.402 + 0.001i 

2 C 0.417 - 0.123i 0.420 + 0.002i 

2 S -0.369 - 0.140i -0.420 - 0.002i 

3 C 0.406 - 0.121i 0.402 - 0.001i 

3 S -0.361 - 0.135i -0.402 + 0.001i 

Fig. 18.  Sum of current pairs in coaxial mode eigenvector. 

B.  Choice of Filter Parameter 
The proposed method includes filtering to retain the accuracy 

of the classical model at lower frequencies. The filtering is 
performed by a first order low-pass filter and a high-pass filter, 
which are defined by a common filter frequency value 0ω  in 
(11a) and (11b). The magnitude contribution from the HP filter 
is 9.95% at 00.1ω ω=  while the magnitude contribution from 
the LP filter is 9.95% at 010ω ω= . Therefore, the coaxial mode 
behavior of the resulting model will (in the range 

0 0[0.1 10 ]ω ω ω∈ ) be a mix of both data sets ({ ( )n n ω×Z ,

( )n n ω×Y } and { coax ( )z ω , coax ( )y ω }). The filter value 

0 02 fω π=  was in the example chosen with 4
0 3 10 Hzf = ⋅ , 

implying that the coaxial behavior of the merged model obeys 
that of the initial data set at frequencies well below 3 kHz, and 
that of the measured data set at frequencies well above 300 kHz. 
At intermediate frequencies, the response will be a mix of two 
contributions and the resulting accuracy can suffer if transient 
waveform involves frequency components in this range.  

Fig. 19 demonstrates the significance of choosing an 
appropriate 0f . A unit step voltage is applied between the 
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conductor and sheath on the sending end with the far cable end 
open (Fig. 8). The figure shows the far end voltage response 
with five alternative filter frequencies. Usage of a low value for 

0f  (10 Hz, 1 kHz, 10 kHz) gives a voltage response which is 
similar to the measured one, while usage of a very high value 
for 0f   (1000 MHz) gives a voltage response close to that by 
the classical model. Usage of 10 MHz results in a mixed 
frequency response for the coaxial propagation (see Fig. 2), 
giving a distorted wave front with an overshoot. 

Fig. 20 shows the same response in a 50 µs time window. 
The dominating oscillation component has a frequency of about 
136 kHz. The use of 100 kHz filtering now gives a mixed 
response that has too small damping. Clearly, it is a requirement 
that the frequency components of interest are sufficiently far 
away from the filter frequency 0f . Otherwise, incorrect 
transient responses may result. 

The potential errors caused by the filtering in Figs. 19 and 20 
suggests that the filtering procedure should be used only when 
necessary, i.e. when high accuracy is required also at low 
frequencies. Otherwise, the merging should be applied at all 
frequencies with ( ) 0LP ω = , ( ) 1HP ω = . 

Fig. 19.  Far end step voltage response. Parameter: filter frequency 0f .  

Fig. 20.  Extended view of Fig. 20. 

C.  Scope of Application 
The combination of measured coaxial mode behavior with a 

classical model permits the model to be applied in cases where 
the sheaths cannot be assumed to be ideally grounded. The case 
studies in Section VIII (cable with far end sheaths open) and 

Section IX (cross-bonded cables) showed that the fast front 
voltage response is strongly affected by the sheath grounding 
condition. These examples demonstrate the usefulness of the 
modeling extension proposed in this work. Further calculations 
(not shown) have demonstrated that the combined model retains 
with only small deviations the behavior of the classical model 
for the non-coaxial modes, i.e. ground mode and inter-sheath 
modes.   

D.  Accuracy of Classical Modeling 
It is in this work assumed that the "Classical" method can 

represent the non-coaxial modes of propagation with sufficient 
accuracy, also at very high frequencies. This is not always the 
case, and improvements are necessary. The classical method is 
the one that has traditionally been used in EMT programs since 
early 1980s. Z and Y are calculated based on Schelkunoff's 
surface and transfer impedances for tubular conductors with 
coaxially symmetrical fields, and Pollaczek's earth (or some 
simplification thereof) is used for ground representation. These 
methods are systematically combined as shown in [3] and [4] 
for establishing full matrices for Z and Y. The resulting 
approach is generally considered suitable for the modeling of 
transient waveforms of high-voltage cables up to at least 
100 kHz, in particular when proximity effects are included 
using FEM [15] or MoM-SO [16]. Recent works [17], [18], [19] 
have extended the earth-return impedance and admittance 
formulae to be valid up to much higher frequencies, and these 
results should be adopted in the modeling for analyses that 
involve high-frequency inter-sheath and ground mode 
propagation. Such modifications will be inconsequential for the 
method proposed in this work.  

E.  Accuracy Improvements in Computational Modeling 
If measurements on the full-length cable are not available, 

one may still be able to improve the accuracy of the model's 
high-frequency coaxial mode propagation characteristics. 
Using a sample of the considered cable with polished cross-
section surface, one can measure the thickness of the various 
layers in the cable quite accurately. Such cross-sectional 
information also permits to represent the conductor surface in 
more detail using a FEM model for impedance calculation, 
thereby more accurately representing the actual current 
distribution on the conductor and sheath surface at very high 
frequencies [20]. The effect of the semiconducting layers can 
also be included as shown in [21], provided that its electric 
parameters are known. The insulation material may also lead to 
attenuation and dispersion of the wave front due to relaxation 
phenomena [22]. Such effect can be included in the model by 
representing a measurement of the permittivity frequency 
dependency by a rational function [23].  

XI. CONCLUSION

A method is presented for replacing the high-frequency 
coaxial mode behavior of a classical wide-band cable model 
with a measured coaxial behavior. The replacement is shown to 
increase the accuracy of the high-frequency coaxial mode 
propagation, without affecting the non-coaxial modes of 
propagation. Assuming that the non-coaxial modes of 

1.5 2 2.5
Time [µs]

0

0.5

1

1.5

2

Vo
lta

ge
 [V

ol
t]

10 Hz, 1 kHz

100 kHz

10 MHz

1000 MHz

0 10 20 30 40 50
Time [µs]

0

0.5

1

1.5

2

Vo
lta

ge
 [V

ol
t]

100 kHz

 

Author Accepted Manuscript version of the article by Bjørn Gustavsen,  
in IEEE Transactions on Power Delivery (2023)  DOI: http://dx.doi.org/10.1109/TPWRD.2023.3269143 

Distributed under the terms of the Creative Commons Attribution License (CC BY 4.0)

 



propagation are represented with sufficient accuracy in the 
classical model, the proposed model can be applied in 
simulations with alternative grounding conditions for the 
sheaths, including open ends and cross-bondings. The model 
should be suitable for simulations involving repetitive fast 
pulses from power electronic converters, as well as switching 
transients emerging from vacuum circuit breakers and 
switching in gas-insulated substations (GIS). Such applications 
are topics for future work.  
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