
Path Planning for Perception-Driven Obstacle-Aided
Snake Robot Locomotion

Kristian G. Hanssen
Dept. Mathematics and Cybernetics

Sintef Digital
Trondheim, Norway

kristian.gaustad.hanssen@sintef.no

Aksel A. Transeth
Dept. Mathematics and Cybernetics

Sintef Digital
Trondheim, Norway

aksel.a.transeth@sintef.no

Filippo Sanfilippo
Dept. of Engineering Sciences

University of Agder (UiA)
Grimstad, Norway

filippo.sanfilippo@uia.no

Pål Liljebäck
Eelume AS

Trondheim, Norway
pal.liljeback@eelume.com

Øyvind Stavdahl
Dept. of Engineering Cybernetics

Norwegian University of Science and Technology (NTNU)
Trondheim, Norway

oyvind.stavdahl@ntnu.no

Abstract—Development of snake robots have been motivated
by the ability of snakes to move efficiently in unstructured
and cluttered environments. A snake robot has the potential
to utilise obstacles for generating locomotion, in contrast to
wheeled robots which are unable to move efficiently in rough
terrain. In this paper, we propose a local path planning algorithm
for snake robots based on obstacle-aided locomotion (OAL).
An essential feature in OAL is to determine suitable push-
points in the environment that the snake robot can use for
locomotion. The proposed method is based on a set of criteria
for evaluating a path, and is a novel contribution of this paper.
We focus on local path planning and formulate the problem
as finding the best next push point and the trajectory towards
it. The path is parameterised as a quadratic Bézier curve. The
algorithm is implemented and tested with a simulator, employing
decentralised joint controllers with references generated by a
constant translation speed of the snake along the path.

Careful design of the criteria allows us to use simple position
and velocity controllers for the joints, circumventing the need for
force control. However, the set of feasible paths will be restricted
by this approach.

The proposed criteria can also be used in a global path
planning algorithm; the local focus is due to one of the key use
cases of snake robots: operating in unstructured and unknown
environments.

Index Terms—Obstacle-aided locomotion, motion generation,
gait pattern, snake robot locomotion, path planning

I. INTRODUCTION

Path planning is necessary for navigation and for decision
making in terms of where, when and how the robot should
ideally move. This is especially relevant for snake robot
locomotion in an environment cluttered with obstacles [1].

A traditional approach when dealing with obstacles in
robotics is to try to avoid them. Collisions may make the robot
unable to progress and cause mechanical stress or damage
to equipment. Therefore, many studies on robot navigation

This work is supported by the Research Council of Norway through the
Young research talents funding scheme, project title “SNAKE — Control
Strategies for Snake Robot Locomotion in Challenging Outdoor Environ-
ments”, project number 240072.

have focused on obstacle avoidance. For instance, potential-
field based methods for path planning have traditionally been
adopted [2] to effectively model artificial force fields around
objects that are either repulsive or attractive on the robot.
Potential-field based methods for path planning have the
advantage of being fast, but they are also prone to getting stuck
in local minima when used with complex systems such as
redundant snake robots. To avoid the danger of local minima,
an alternative method of setting up a potential-field system
that replaces rigid links by stiff (virtual) springs was presented
in [3]. However, path planners for obstacle avoidance are not
practically applicable when the robot must traverse terrains
highly cluttered with obstacles.

A more relaxed approach to obstacle avoidance can be
considered by using sensory feedback actively and efficiently.
Rather than always avoiding collisions, a snake robot may
be allowed to collide with obstacles, but collisions must be
controlled so that no damage to the robot occurs. This method-
ology has a substantial advantage over traditional obstacle-
avoidance methods in environments in which totally avoiding
contact is impractical, such as many natural environments.
This new robotic paradigm was first introduced in [4]. In [5],
a general formulation of motion constraints due to contact
with obstacles was presented. Based on this formulation, a
new inverse kinematics model was developed that provides
joint motion for snake robots under contact constraints. Based
on this model, a motion planning algorithm for snake robot
motion in a cluttered environment was also proposed. How-
ever, this approach is mainly based on local perception. An
alternative solution to obtain better predictability and more
prompt reaction considers both global and local perceptions for
path generation and adaptation. Based on this assumption, a
distributed path planning algorithm for snake robot navigation
in an intelligent environment with distributed wireless visual
sensors was proposed in [6]. Via communication links between
sensors, segments of a path, as an elastic band from start
position to goal position, interact with each other to react to

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works.

This is the author accepted version of an article published in
2020 IEEE 16th International Workshop on Advanced Motion Control (AMC)

https://doi.org/10.1109/AMC44022.2020.9244366

repulsive forces from obstacles whilst maintain compliance.
The compliance has to be subject to the robot kinematic
constraints and the elastic band may change to rigid or even to
a broken state. However, this approach requires sensors to be
placed in the environment, and is not realistic for practical
applications. Moreover, accommodating obstacles does not
allow fully exploiting the environment for locomotion. In [7],
an interesting approach for linking low-level controllers to
high-level planners was proposed, and applied to a snake-like
robot in an environment with obstacles.

To fully exploit roughness in the terrain for locomotion, the
goal should not be to avoid or accommodate obstacles, but
rather to move relative to these irregularities in a way that
enables the snake robot to utilise push points for more effi-
cient propulsion. We use the term perception-driven obstacle-
aided locomotion (POAL) as locomotion where the snake
robot utilises a sensory perceptual system to perceive the
surrounding operational environment, for means of propulsion
with obstacle-aided locomotion [8]. As an attempt to achieve
this, a framework based on non-smooth dynamics for the
development, analysis, and testing of forthcoming motion
planning and control approaches to obstacle-aided locomotion
were presented in [9]. A control strategy employing measured
contact forces to maintain propulsion while simultaneously
preventing the snake robot from being jammed between ob-
stacles in its path was presented in [10]. Snake robots have a
high number of degrees of freedom and this adds complexity to
their control systems. To address this challenge, the possibility
of simplifying the snake robot model to deal with a lower-
dimensional system was considered in [11]. However, the
development of motion patterns based on the mathematical
model and observations of real snakes that enable the snake
robot to detect and exploit obstacles by itself for efficient
locomotion is still missing. Moreover, joint torque sensing and
control can be a valuable tool for snake robot locomotion,
but it has some challenges regarding, e.g., a need for torque
sensing, accurate sensor calibration, and possible sensor fail-
ure. To the best of our knowledge, an effective path planning
framework for POAL is still missing.

In this paper we present a new method for local path
planning for snake robot obstacle-aided locomotion (OAL)
which alleviates the need for force control of a snake robot’s
joints. We also propose a set of criteria for evaluating a path
which will ensure forward locomotion and avoid that a snake
robot gets stuck. We pose the local path planning problem as
finding the best next push point which a snake robot can use
for locomotion and the path the snake robot must follow in
order to reach the push point. The path is parameterised as
a quadratic Bézier curve, extending the framework proposed
in [12]. We evaluate and verify our presented algorithm
in a 2D snake robot simulator based on the framework of
convex analysis and non-smooth dynamics. The simulation
results show that suitable push points in front of the robot
is determined, and that it is able to reach these push points
successfully.

II. METHOD

This work is based on the framework proposed in [12], using
quadratic Bézier curves to describe the shape and trajectory of
the snake robot. For consistency, we follow the same notation
as in the referenced paper whenever possible. Some adaptation
of the framework was needed, and the relevant changes are
described in subsequent paragraphs.

The path is laid out sequentially, as it is intended for a snake
robot navigating in an unknown environment, discovering
obstacles to be used as push points as it moves forward. We
assume the entire snake will follow the path laid out, and
no adaptation or updating of the path is conducted once it
is constructed. However, since the snake robot consists of a
discrete number of links with a non-negligible length, the
assumption that the entire snake follows the entire path is
clearly a simplification. To reduce this effect, we enforce the
path to be straight for a fixed length around the contact point
of the obstacle. As the head of the snake approaches the end
of the current path, we extend the path by finding the best next
obstacle to use as a push point. This means finding a feasible
path to the obstacle, and the approach angle with respect to
this obstacle.

A. Bézier Curves

Bézier curves are widely used in computer graphics to
model smooth curves. Bézier curves are defined in terms of
a set of control points b0, b1, . . . , bn, where b0 and bn are
the first and last control points, respectively. The curve will
always pass through the end points, but in general not through
the intermediate control points. A first order Bézier curve,
also denoted linear Bézier curve, is simply a straight line
between the control points b0 and b1. A quadratic Bézier
curve is defined by the control points b0, b1, b2, and is a linear
interpolation between the straight lines from b0 to b1 and b1
to b2. This can be expressed as

B(s) = (1− s)2b0 + 2(1− s)sb1 + s2b2 (1)

where s ∈ [0, 1] is the curve parameter. Similar to the
generalisation from linear to quadratic Bézier curves, the
generalisation can be done to higher orders. In this work, we
will only use quadratic Bézier curves as in [12]. The notation
B(s; b0, b1, b2) is used when explicitly specifying the control
points of a quadratic Bézier curve.

In order to enforce particular properties of the curve, we
use the concept of curvature. The curvature at a point along
a curve is the reciprocal of the radius of the osculating circle
at that point. The curvature of a parametric curve in Cartesian
coordinates B(s) = [bx(s), by(s)] can be expressed as

κ =
|b′xb′′y − b′′xb′y|
(b′2x + b′2y)

3
2

(2)

where curve parameter s is left out for readability, and the
primes denotes derivatives with respect to s.

B. Control Framework

The control framework proposed in [12] is based on speci-
fying the desired shape of the snake as a continuous curve,
denoted the shape curve, by a set of shape control points
(SCP). In addition, each SCP is assigned a tangent angle.
These SCPs are then connected by quadratic Bézier curves,
which define the shape curve. SCP i is denoted Pi. In order
to find this quadratic Bézier curve, the intermediate point
Pi,i+1 between SCP Pi and Pi+1 must be found, which is
the crossing of the tangents from Pi and Pi+1. However,
if the tangents are parallel, such a point only exists if both
SCPs are on this line. Furthermore, and not noted in [12],
this crossing of the tangents might be in a direction causing
a 180 degree abrupt turn at the SCP. This is clearly not the
desired behavior and can be overcome by using higher order
Bézier curves. We choose to continue using quadratic Bézier
curves, adding additional SCPs when needed to avoid these
180 degree change of direction. In general, quadratic Bézier
Curves behave more predictable and are easier to work with.
We will also consider the intermediate points when searching
for a feasible path, as this simplifies the implementation.

Note the slight change in notation compared to the section
on Bézier curves, where also the intermediate point of a
quadratic Bézier curve was denoted as a control point. For
the control framework, the end points of the Bézier curves are
the SCPs.

We employ the framework to construct a path in an envi-
ronment with a set of obstacles. As a simplification, ground
friction is neglected, although friction is included in the
subsequent case study. The only forces acting on the snake
will be from the obstacles, and perpendicular to the tangent
of the snake at the obstacle. We denote these points as push
points. Neglecting friction simplifies the analysis considerably.
The path is constructed sequentially, so that when the head of
the snake approaches the end of the current shape curve, a
new push point along with a path to this push point is found,
and added to the shape curve.

The snake is assumed to be perfectly aligned with the shape
curve and in contact with a set of active push points A at
location La for push point a ∈ A. The unit tangent of the
snake at push point a is denoted Ta, and the unit normal
vector in the direction of the resulting reaction force exerted
by the obstacle on the snake, if the snake is pushing against
the obstacle, is denoted Na. In Fig. 1 an illustration of the
snake robot close to an obstacle is shown. The dashed blue
line is the path to be followed, the yellow dot is La for the
particular obstacle a, and the black line represent Na. In the
following, we define a set of criteria which must be met in
order for the snake to move forward.

The push points are chosen such that a rigid snake is not
able to rotate about any of the push points. This means that for
each push point, there must be at least two other push points,
one capable of producing a torque in a clockwise direction,
and one in a counter clockwise direction. We define the vector

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
X [m]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Y
 [m

]

Fig. 1. Illustration of snake robot on path close to obstacle

from the location of push point Lâ to La as

Dâa = La − Lâ (3)

So the torque about push point a due to a unit force vector at
push point â can be expressed as

τâa = Dâa ×Nâ (4)

Note that we are only considering 2D planar motion in this
paper, and there is a slight abuse of notation in eq. (4). Strictly
speaking the cross product is not defined in 2D, while in eq.
(4) we implicitly assume the vectors are augmented by a zero
in the third dimension. Furthermore, the result of the cross
product is a 3D vector itself, but only the third component
will be nonzero and of interest. It is only the third component
we are considering, and therefor treating it as a scalar.

In order to oppose a rotation about push point a, we require

∑
â∈A\a

max(τâa, 0) ≥ τ (5a)

∑
â∈A\a

−min(τâa, 0) ≥ τ (5b)

where τ is a strictly positive threshold parameter. Note that
the summation could also be conducted over the entire set A
as τaa will always be zero.

It is not enough to merely ensure that the snake can not
rotate about any of the push points, it must also be able to
produce a propulsive force in the direction of motion. The
direction of motion is a vector pointing from the tail towards
the head, as an infinitesimal small gliding motion along the
path will change the center of gravity in this direction. Under
the assumption of no friction, the resultant forces needed to
move the snake forward will be in the same direction. We
represent the direction of motion by a unit vector R, and the

propulsive component of all push points are projected onto
this vector, denoted fra , expressed by

fra = Na ·R (6)

while the total resulting force from unit vectors at each push
point is then expressed as

F r =
∑
a∈A

fra (7)

To summarise, for a set of active push points, we require
the push points to be located and oriented in such a way that
eq. (5) is satisfied for all active push points, and F r ≥ f

It could be argued that only components in the desired
direction should be included, not also negative terms. We
choose deliberately to penalise negative terms, as they seem
to greatly increase the possibility of jamming.

1) Finding a path to an obstacle: In the following, we
present an approach to parameterise a path to an obstacle,
respecting curvature requirements and avoiding collisions with
other obstacles.

We assume the head of the snake is at the end of the current
shape curve, and we would like to select an obstacle from a set
of potential obstacles B. For a particular obstacle b ∈ B and an
approach angle β, the location of the resulting contact point
between the snake and the obstacle is denoted Lcb,β , and the
unit normal force vector acting on the snake at Lcb,β is denoted
Nb,β . Note that strictly speaking Nb,β is only dependent on β,
and is uniquely defined by β. Tb,β is perpendicular to to Nb,β ,
but not uniquely defined, as a rotation of 180 degrees will
also meet this requirement. This corresponds to approaching
an obstacle on the left or right side. In this work, both sides
are considered.

For each potential obstacle and approach angle pair (b, β), a
feasible path from the current head position, assumed located
at the last SCP Pk with orientation ψk, to a point Lb,β such
that the snake will contact the obstacle at Lcb,β is attempted
constructed. For a snake width no width Lcb,β and Lb,β will
coincide, otherwise Lb,β is adjusted to Lcb,β to account for
the width of the snake. In this work, we simply search for a
path which will avoid collision with any obstacle and satisfy a
curvature requirement. As noted, we impose the requirement
that the shape curve should be straight in the vicinity of push
points, ensuring the particular approach angle is maintained
for a snake with a finite number of links. This is done by
selecting the first Bézier segment to simply be a projection of
Pk along ψk for a distance of lc

2 to P̂k+1. lc is the parameter
defining the straight line segment length at each obstacle. This
can be expressed as

P̂k+1 = Pk +
lc
2

[cosψk sinψk] (8)

The hat is used in order to denote a possible path, P̂ a potential
SCP. The intermediate point for the straight line segment can
then be chosen freely on this line, we use the midpoint

P̂k,k+1 =
Pk + P̂k+1

2
(9)

The first straight line Bézier segment is then given as

B(s;P1, P̂k,k+1, P̂k+1) (10)

Likewise, a backward projection along β is conducted from
Lb,β . However, the path can approach Lb,β from both sides.
We introduce the variable χ ∈ {−1, 1}, and the backward
projection can then be expressed as

P̂b,βk+3 = Lb,β + χ
lc
2

[cosβ sinβ] (11)

As indicated by the k + 3 subscript, we use two quadratic
Bézier segments to construct the curve between these two
projected potential SCPs. The intermediate point P̂b,βk+3,k+4

between P̂b,βk+3 and Lb,β is again chosen as the midpoint, and
the last potential SCP is

P̂b,βk+4 = Lb,β (12)

In the following we operate directly on the intermediate and
control points of the Bézier curves, not the interface provided
by the original control framework specifying control points
and tangents. The first potential intermediate control point is
then given by

P̂b,βk+1,k+2 = P̂k+1 + c1l
b,β
k [cosψk sinψk] (13)

where c1 is a positive variable to be decided and lb,βk is the
euclidean distance between P̂k+1 and P̂b,βk+3, that is

lb,βk =
∥∥∥P̂b,βk+3 − P̂k+1

∥∥∥ (14)

The second potential intermediate control point P̂b,βk+2,k+3 is
likewise constructed by

P̂b,βk+2,k+3 = P̂b,βk+3 + c3l
b,β
k χ [cosβ sinβ] (15)

where c3 is a positive variable. The last potential SCP is
constructed as a convex combination of the former potential
intermediate control points as

P̂b,βk+2 = (1− c2)P̂b,βk+1,k+2 + c2P̂
b,β
k+2,k+3 (16)

where c2 ∈ [0, 1] is a variable to be decided.
For a particular set (b, β) there is some degree of freedom

in finding the path to Lb,β , depending on the variables c =
(c1, c2, c3, χ). This allows searching for a path meeting certain
requirements. In Fig. 2 we see an example continuation of
a path for a set of c, with SCPs marked with circles and
intermediate control points with crosses. Blue color is used
for the fixed control points, and red color for control points
which are determined by c. In Fig. 3 three different paths
for various c are shown, for the same obstacle with identical
approach angle.

The path from the current head to a particular obstacle (b, β)
is denoted Ŝ(ŝ), and can be written

Ŝ(ŝ; b, β, c) = B(ŝ− bŝc; P̂b,βk+bŝc, P̂
b,β
k+bŝc,k+1+bŝc,

P̂b,βk+1+bŝc), ŝ ∈ [0, 4) (17)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
X [m]

-0.2

-0.1

0

0.1

0.2
Y

 [m
]

Fig. 2. Illustration of path parameterization

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
X [m]

-0.2

-0.1

0

0.1

0.2

0.3

Y
 [m

]

Fig. 3. Illustration of 3 various paths to an obstacle

where the dependence of the potential control points on c is
left out for readability.

Searching for a feasible path is done by sampling the path
at ŝi, i ∈ I, and constructing a feasibility measure, one for
curvature and one for obstacle obstructions. For curvature, let
κ
(
Ŝ(ŝi; b, β, c)

)
denote the curvature for ŝi, and κmax the

maximum allowed curvature. The curvature violation V curv
b,β,c is

then formulated as

V curv
b,β,c =

∑
i∈I

max
(
κmax −

∣∣∣κ(Ŝ(ŝi; b, β, c)
)∣∣∣ , 0) (18)

The curvature of a Bézier curve can easily be calculated
analytically by using eq. (2).

Similarly, for avoiding obstacle collisions, a function mea-
suring the obstacle violation at a point along the path denoted
Ω
(
Ŝ(ŝi; b, β, c)

)
, where Ω = 0 when there is no chance of

collision at a location. The obstacle collision measure for a
path can be expressed as

V coll
b,β,c =

∑
i∈I

Ω
(
Ŝ(ŝi; b, β, c)

)
(19)

In this work, we only deal with circular links and obstacles,
hence the collision measure is simply penalizing sample points
closer to an obstacle than the radii of the obstacle and the

circular links combined. This can be expressed mathematically
as

Ω
(
Ŝ(ŝi; b, β, c)

)
=∑

o∈O
max

(
rl + ro −

∥∥∥Ŝ(ŝi; b, β, c)− Lo

∥∥∥ , 0) (20)

where O is the set of obstacles, Lo and ro the center location
and radius of obstacle circle o, respectively. rl is the radius of
the links.

For finding a feasible path, we formulate an unconstrained
minimization problem including the curvature violation and
obstacle collision in the objective by

J = −L+ λcurvV
curv + λcollV

coll (21)

Where L is the length of path, and λ are positive weighting
parameters. For efficiently solving the optimization problems,
Ω
(
Ŝ(ŝi; b, β, c)

)
was precomputed into a 2D map, using

linear interpolation in this map in the solving. Furthermore,
the max term in V curv was replaced with a smoothed version

max(x, y) ≈ maxa
1

2

(
x+ y +

√
(x− y)2 + a

)
(22)

which significantly improves the convergence in solving the
problem. Note that no smoothing was conducted of obstacle
violation term, as this seemed unnecessary in the numerical
simulations conducted. However, this could be further studied.

Once a feasible path for all (b, β) have been sought, with
corresponding path length Lb,β from the current head to the
obstacle, we evaluate which obstacle and approach angle is
the best.

2) Evaluating and selecting best next obstacle: In the pre-
vious sections, we have formulated two criteria to ensure that
the snake is able to propel forward without rotating about any
of the push points. Furthermore, we have proposed a method
for finding a path respecting curvature conditions and avoiding
collisions with obstacles. In the following, these criteria and
paths are used in the evaluation of various obstacles, to select
which obstacle to use as push point, how the snake should
approach the obstacle and which contact angle to undertake.

For choosing the best next obstacle, we emphasise two
criteria. It should bring us in the desired direction of motion,
and it should be possible to continue motion forward when
the new obstacle is reached. For the first criteria, we simply
project the vector from the current head position to Lb,β onto
the unit reference vector R representing the desired direction.
This can be expressed as

Jdir
b,β = (Lb,β − Lh) ·R (23)

and we denote Jdir
b,β as the direction score. The direction score

will be between -1 and 1, 1 corresponding to a straight line
in the same direction as R, while -1 in the opposite direction.

For evaluating the push points in terms of continued forward
motion, we introduce the concept of remaining tail, denoted
J tailb,β . We use remaining tail to describe how much further
the snake can move forward after reaching the push points,

without reaching any new obstacles. The idea is that the more
remaining tail you have, the more freedom and possibilities
you have in finding another new push points once you reached
the relevant obstacle.

The overall objective function for selecting the best next
obstacle is then formulated as

J(b, β) = Jdir
b,β + µJ tailb,β (24)

where µ is a non-negative parameter defining the relative
importance of the two terms. The best next obstacle is then
found as

(b∗, β∗) = arg min
b∈B,β

J(b, β) (25)

The formulation presented could be posed as a Mixed
Integer Non-linear Programming (MINLP) problem, and there
are available solvers. However, the formulation will be non-
convex even for fixed integer variables, and global properties
of the solution is difficult to ensure. The solution approach
here can be considered more as a brute force strategy, but it
is the author’s belief that more general optimization solvers
can be used in the future, and the formulation is done with
this in mind. In this work, we first find what we consider the
best path for each obstacle and orientation, subsequently this
path is used for choosing between the different obstacles and
orientations. Combining this into one optimization problem
would be natural.

III. CASE STUDY

1) Snake robot simulator: In this section, we provide a
short introduction to a mathematical modeling approach used
as a basis for a snake robot simulator. The simulator is
employed for evaluating the planning approach presented in
this paper.

We have in previous works [9], [13] developed a snake robot
simulator based on the framework of convex analysis and non-
smooth dynamics. The simulator has previously been success-
fully verified with live experiments on snake robot obstacle-
aided locomotion [9]. With this simulation tool, we simulate
a 11 link planar snake robot with isotropic friction between
each snake robot link and a horizontal ground plane. Moreover,
the simulator includes friction-less contact dynamics between
the snake robot and circular obstacles. The model also allows
for adding Coulomb friction between the snake robot and the
obstacles, but this has not been a focus for this paper and is
a topic for future work. Each pair of adjacent links (i and
i − 1) are connected by a 1 degree of free rotational joint
i. We employ a proportional-derivative controller in order to
control each joint to a specific angle of rotation and rotational
velocity:

τi = −KP (φi,d − φi)−KD(φ̇i,d − ωi) (26)

where τi is the torque applied to joint i, KP ,KD are the
proportional and derivative gains, φi,d, φ̇i,d are the reference
joint angle and joint velocity, and φi, ωi are the actual joint
angle and joint velocity for joint i.

0 0.5 1 1.5 2 2.5
X [m]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Y
 [m

]

Fig. 4. Obstacles and initial configuration of the snake robot for case study

There are advantages to using non-smooth dynamics for
snake robot obstacle aided locomotion. The framework allows
for instantaneous changes in velocities. Such changes are usu-
ally associated with collisions. To this end, we can formulate
in a uniform manner both the smooth and non-smooth phases
of motion. This is important as obstacle aided locomotion has
numerous and rapidly-changing robot-obstacle contact points.

The snake robot system parameters are the same as in [9],
except the friction coefficient between the snake robot and
the ground floor µT = 0.3, numerical treatment parameters
rH = 0.01 and rT = 1.0, proportional KP = 150 Nm and
derivative KD = 2 Nm gains in the low-level controller for
each joint.

The minimization problem in (21) was solved using Ipopt
[14], with the maximum number of iterations set modestly to
20. Tuning of the parameters λ were only to provide adequate
convergence to a path respecting the constraints. Optimality in
terms of shortest length was not of importance in this work,
the focus was on generating a feasible path. The result from
the optimization was also tested with respect to feasibility, and
in case of violation the result was disregarded, setting Lb,β to
inf . If a feasible path was found approaching from both left
and right, the path with the shortest length was chosen of the
two.

2) Case description: We generate an environment with
obstacles regularly spaced on a Cartesian grid as depicted in
Fig. 4. The obstacles are black circles with a radius of 0.05
m.

The initial configuration of the snake is manually con-
structed by a shape curve alternating sides of the obstacles,
and an approach angle of 30 degrees. This is a configuration
known to be advantageous for obstacle aided locomotion [9].
The initial configuration is also shown in Fig. 4, with the blue
line representing the initial shape curve, red circles the snake
robot and black lines the direction of the reaction force Na

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
X [m]

0.4

0.6

0.8

1

1.2

Y
 [m

] 38

49

Fig. 5. Various paths considered at particular configuration

0 0.5 1 1.5 2 2.5
X [m]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Y
 [m

]

Fig. 6. Final path and configuration of snake robot

for the obstacle currently in contact with the snake robot.

When the snake robot reaches the end of the shape curve, the
shape curve is extended by evaluating the different obstacles
according to the previously defined objective function. The
weighting term µ is set to 2. Each obstacle is evaluated for
approach angles β = [0 10 . . . 350]. The desired direction is
set to be to the right, R = [1 0]T . In Fig. 5 three possible
continuations of the path is shown.

The algorithm is able to find a path which allows the snake
robot to traverse the obstacles in the desired direction. The
constructed shape curve and configuration of the snake robot
is shown in In Fig. 6. The motion towards the end of the
curve was somewhat jerky and the entire snake robot did not
follow the precise shape curve, however, the overall motion
did follow the shape curve, and the snake was able to traverse
the environment set up.

IV. CONCLUDING REMARKS AND FURTHER WORK

We have proposed a novel local path planning formulation
for snake robots employing obstacle-aided locomotion. Simu-
lations have shown the feasibility of the approach, but there is
also room for substantial improvements. A stringent constraint
imposed is that once the path is constructed, the entire snake
robot should follow the path and no adjustment of the shape
curve and contact angles are allowed. This assumption greatly
simplifies the planning problem and solution space, and is a
natural limitation to address in further work.

Another natural extension of the approach is to extend the
horizon. It could be extended to a full global path planner,
but for perception-driven planning it is more natural to extend
it to a distance similar to the horizon of the snake robot’s
situational awareness.

REFERENCES

[1] F. Sanfilippo, Ø. Stavdahl, and P. Liljebäck, “Snakesim: a ros-based
control and simulation framework for perception-driven obstacle-aided
locomotion of snake robots,” Artificial Life and Robotics, pp. 1–10, 2018.

[2] M. C. Lee and M. G. Park, “Artificial potential field based path
planning for mobile robots using a virtual obstacle concept,” in Proc.
of the IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, vol. 2. IEEE, 2003, pp. 735–740.

[3] A. McLean and S. Cameron, “The virtual springs method: Path planning
and collision avoidance for redundant manipulators,” The International
journal of robotics research, vol. 15, no. 4, pp. 300–319, 1996.

[4] Y. Shan, “Robot obstacle accommodation: Mechanics, control, and
applications.” Ph.D. dissertation, 1993.

[5] Y. Shan and Y. Koren, “Obstacle accommodation motion planning,”
IEEE Transactions on Robotics and Automation, vol. 11, no. 1, pp.
36–49, 1995.

[6] Y. Cheng, P. Jiang, and Y. F. Hu, “A distributed snake algorithm for
mobile robots path planning with curvature constraints,” in Proc. of the
IEEE International Conference on Systems, Man and Cybernetics, 2008,
pp. 2056–2062.

[7] M. J. Travers, J. Whitman, P. E. Schiebel, D. I. Goldman, and H. Choset,
“Shape-based compliance in locomotion.” in Robotics: Science and
Systems, 2016.

[8] F. Sanfilippo, J. Azpiazu, G. Marafioti, A. Transeth, Ø. Stavdahl, and
P. Liljebäck, “Perception-driven obstacle-aided locomotion for snake
robots: the state of the art, challenges and possibilities,” Applied Sci-
ences, vol. 7, no. 4, p. 336, 2017.

[9] A. A. Transeth, R. I. Leine, C. Glocker, K. Y. Pettersen, and P. Liljebäck,
“Snake robot obstacle-aided locomotion: Modeling, simulations, and
experiments,” IEEE Transactions on Robotics, vol. 24, no. 1, pp. 88–
104, 2008.

[10] P. Liljeback, K. Y. Pettersen, and O. Stavdahl, “Modelling and control
of obstacle-aided snake robot locomotion based on jam resolution,” in
Robotics and Automation, 2009. ICRA’09. IEEE International Confer-
ence on. IEEE, 2009, pp. 3807–3814.

[11] F. Sanfilippo, Ø. Stavdahl, G. Marafioti, A. A. Transeth, and P. Lil-
jebäck, “Virtual functional segmentation of snake robots for perception-
driven obstacle-aided locomotion?” in Proc. of the IEEE International
Conference on Robotics and Biomimetics (ROBIO). IEEE, 2016, pp.
1845–1851.

[12] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl, “A control
framework for snake robot locomotion based on shape control points
interconnected by bézier curves,” in Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012,
pp. 3111–3118.

[13] A. A. Transeth, S. A. Fjerdingen, and P. Liljebäck, “Snake robot
obstacle-aided locomotion on inclined and vertical planes: Modeling,
control strategies and simulation,” in Proc. IEEE Int. Conf. Mechatronics
(ICM 2013), 2013.

[14] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

