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Abstract. In this work, we examine the performance and energy efficiency when
using Python for developing HPC codes running on the GPU. We investigate the
portability of performance and energy efficiency between CUDA and OpenCL; be-
tween GPU generations; and between low-end, mid-range and high-end GPUs. Our
findings show that for some combinations of GPU and GPU code, there is a sig-
nificant speedup for CUDA over OpenCL, but that this does not hold in general.
Our experiments show that performance in general varies more between different
GPUs, than between using CUDA and OpenCL. Finally, we show that tuning for
performance is a good way of tuning for energy efficiency.
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1. Introduction

GPU computing was introduced in the early 2000s, and has since become a popular con-
cept. The first examples were acceleration of simple algorithms such as matrix-matrix
multiplication by rephrasing the algorithm as operations on graphical primitives (see
e.g., [1]). This was cumbersome and there existed no development tools for general-
purpose computing. However, many algorithms were implemented on the GPU as proof-
of-concepts, showing large speedups over the CPU [2]. Today, the development environ-
ment for GPU computing has evolved tremendously and is both mature and stable: Ad-
vanced debuggers and profilers are available, making debugging, profile-driven develop-
ment, and performance optimization easier than ever.

The GPU has traditionally been accessed using compiled languages such as C/C++
or Fortran for the CPU code, and a specialized programming language for the GPU.
The rationale is often that performance is paramount, and that compiled languages are
therefore required. However, for many GPU codes, most of the time is spent in the nu-
merical code running on the GPU. In these cases, we can possibly use a higher-level
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language such as Python for the program flow without significantly affecting the per-
formance.” The benefit is that using higher-level languages can significantly increase
productivity [3].

We study PyCUDA and PyOpenCL [4] in this work, which offer access to CUDA
and OpenCL from Python. They have become mature and popular packages since their
initial release nearly ten years ago. We compare the performance and energy efficiency
of PyCUDA and PyOpenCL for three different explicit numerical stencils for simulating
shallow-water flow. This represents a class of problems that are particularly well suited
for GPU computing [5,6]. We demonstrate how profile-driven development in Python is
essential for increasing performance (up to 5 times) for GPU code, and show that the
energy efficiency increases proportionally with performance tuning. Finally, we investi-
gate the portability of the improvements and power efficiency both between CUDA and
OpenCL and between different GPUs.

2. Related work

There are several high-level programming languages and libraries that offer access to the
GPU for certain sets of problems and algorithms. OpenACC [7] is one example which is
pragma-based and offers a set of directives to execute code in parallel on the GPU. How-
ever, such high-level abstractions are typically only efficient for certain classes of prob-
lems and are often unsuitable for non-trivial parallelization or data movement. CUDA [8]
and OpenCL [9] are two programming languages that offer full access to the GPU hard-
ware, including the whole memory subsystem. This is an especially important point,
since memory movement and data transfers are often key bottlenecks in today’s numeri-
cal algorithms [10] and therefore have significant impact on energy consumption.

The performance of GPUs has been reported extensively [11], and several authors
have previously shown that GPUs are efficient in terms of energy-to-solution. Huang et
al. [12] demonstrated early on that GPUs could not only speed up computational per-
formance, but also increase power efficiency dramatically using Nvidia CUDA. Qi et
al. [13] show how OpenCL on a mobile GPU can increase performance of the discrete
Fourier transform by 1.4 times and decrease the energy by 37%. Dong et al. [14] analyze
the energy efficiency of GPU BLAST which simulates compressible hydrodynamics us-
ing finite elements with CUDA and report a 2.5 times speedup and a 42% increase in en-
ergy efficiency. K16h [15] report that there is a wide spread in terms of energy efficiency
and performance when comparing 3D wave propagation and full waveform inversion on
two different architectures. They compare an Intel Xeon coupled with an ARM-based
Nvidia Jetson TX2 GPU module, and find that the Xeon platform performs best in terms
of computational speed, whilst the Jetson platform is most energy efficient. Memeti et
al. [16] compare the programming productivity, performance, and energy use of CUDA,
OpenACC, OpenCL and OpenMP for programming a system consisting of a CPU and
GPU or a CPU and an Intel Xeon Phi coprocessor. They report that CUDA, OpenCL and
OpenMP have similar performance and energy consumption in one benchmark, and that
OpenCL performs better than OpenACC for another benchmark. In terms of productiv-
ity, the actual person writing the code is important, but OpenACC and OpenMP require

2Kernel launch overhead is on the same order of magnitude as in C++ in our experiments.
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less effort than CUDA and OpenCL, and CUDA can require significantly less effort than
OpenCL.

Previous studies have also shown that CUDA and OpenCL can compete in terms
of performance as long as the comparison is fair [17,18,19,20] and there have also been
proposed automatic source to source compilers that report similar results [21,22].

3. GPU Computing in Python

In this work we focus on using Python to access the GPU through CUDA and OpenCL.
These two GPU programming models are conceptually very similar, and both offer the
same kind of parallelism primitives. The main idea is that the computational domain is
partitioned into equally sized subdomains that are executed independently and in parallel.
Even though the programming models are similar, their terminology differs slightly, and
in this paper we will use that of CUDA. A full review is outside the scope of this work,
but can be found in [23,24]. The following sections give an overview of important parts
of CUDA and OpenCL, and discuss their respective Python wrappers.

3.1. CUDA

CUDA [8] (Compute Unified Device Architecture) was first released in 2007, and is
available on all Nvidia GPUs as Nvidia’s proprietary GPU computing platform. It in-
cludes third-party libraries and integrations, the directive-based OpenACC [7] compiler,
and the CUDA C/C++ programming language. Today, five of the ten fastest supercom-
puters (including number one) use Nvidia GPUs, as well as nine out of the ten most
energy-efficient [25].

CUDA is implemented in the Nvidia device driver, but the compiler (nvcc) and
libraries are packaged in the CUDA toolkit and SDK.?> The toolkit and SDK contain
a plethora of examples and libraries. In addition, the toolkit contains Nvidia Nsight,
which is an extension for Microsoft Visual Studio (Windows) and Eclipse (Linux) for
interactive GPU debugging and profiling. Nsight offers code highlighting, unified CPU
and GPU trace of the application, and automatic identification of GPU bottlenecks. The
Nvidia Visual Profiler is a stand-alone cross-platform application for profiling of CUDA
programs, and CUDA versions for debugging (cuda-gdb) and memory checking (cuda-
memcheck) also exist.

3.2. OpenCL

OpenCL [9] (Open Compute Language) is a free and open heterogeneous computing
platform that was initiated by Apple in 2009, and today the OpenCL standard is main-
tained and developed by the Khronos group. Whilst CUDA is made specifically for
Nvidia GPUs, OpenCL can run on a number of heterogeneous computing architectures
including GPUs, CPUs, FPGAs, and DSPs. Contrary to CUDA, there is no official toolkit
for OpenCL, but there are several third-party libraries.

3 Available at https://developer.nvidia.com/cuda-zone.
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Profiling an OpenCL application can be challenging, and the available tools vary
depending on your operating system and hardware vendor.* It is possible to get tim-
ing information on kernel and memory transfer operations by adding counters and en-
abling event profiling information explicitly in your source code. This requires extra
work and makes the code more complex. Visual Studio can measure the amount of run
time spent on the GPU, and CodeXL [26] can be used to get more information on AMD
GPUs. CodeXL is a successor to gDebugger which offers features similar to those found
in Nsight in addition to power profiling, and is available both as a stand-alone cross-
platform application and as a Visual Studio extension. While it is possible to use Visual
Profiler for OpenCL, this requires the use of the command-line profiling functionality in
the Nvidia driver, which needs to be enabled through environment variables and a con-
figuration file. After running the program with the profiling functionality in effect, the
profiling data can be imported into Visual Profiler.

One disadvantage of OpenCL is that there are large differences between the OpenCL
implementations from different vendors, and good performance might rely on vendor-
specific extensions. One example is that OpenCL 2.2 is required for using C++ templates
in the GPU code, but vendors such as Nvidia only support OpenCL version 1.2. It should
also be mentioned that OpenCL has been deprecated in favour of Metal [27] by Apple in
their most recent versions of Mac OS X.

3.3. GPU computing from Python

Researchers spend a large portion of their time writing computer programs [28], and
compiled languages such as C/C++ and Fortran have been the de facto standard within
scientific computing for decades. These languages are well established, well docu-
mented, and give access to a plethora of native and third-party libraries. C++ is the stan-
dard way of accessing CUDA and OpenCL today, but developing code with these lan-
guages is time consuming and requires great care. Using higher-level languages such as
Python can significantly increase development productivity [3,29]. However, it should
be mentioned that the OpenCL and CUDA kernels themselves are not necessarily made
neither simpler nor shorter by using Python: The productivity gain comes instead from
Python’s less verbose code style for the CPU part of the code. This influences every part
of the host code, from boilerplate initialization code and data pre-processing, to CUD-
A/OpenCL API calls, post-processing, and visualization of results.

PyCUDA and PyOpenCL [4] are Python packages that offer access to CUDA and
OpenCL, respectively. Both libraries expose the API of the underlying programming
models, and try to minimize the performance impact. The GPU kernels, which are crucial
for the inner loop performance, are written in native low-level CUDA or OpenCL, and
memory transfers and kernel launches are made explicit through Python functions. The
result is an environment suitable for rapid prototyping of high-performing GPU code in
a Python environment.

4 An extensive list of OpenCL debugging and profiling tools can be found at https: //www.khronos . org/
opengl/wiki/Debugging_Tools.
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Table 1. A list of the GPUs used in this work. The profile-driven development was carried out on the 840M
and GTX780, and all three GPUs were used to benchmark computational performance and power efficiency.
Note that the performance in gigaFLOPS is for single precision.

Model Class Architecture Memory GigaFLOPS Bandwidth Power device
(year)

GeForce Laptop Maxwell 4 GiB 790 16 GB/s Watt meter

840M (2014)

GeForce Desktop  Kepler 3 GiB 3977 288 GB/s Watt meter

GTX780 (2013)

Tesla V100 Server Volta (2017) 16 GiB 14899 900 GB/s nvidia-smi

4. Benchmarking performance and power efficiency

Throughout this section, we consider simulation of the shallow-water equations using
three different numerical schemes:

e a linear finite difference scheme,
e a nonlinear finite difference scheme, and
e a high-resolution finite volume scheme.

We benchmark different versions for each of the three codes with respect to computa-
tional performance and power efficiency on three different GPUs. The schemes are used
for simulating real-world ocean currents, and two of them have been used operationally.
All three schemes are essentially stencil operations with an increasing level of complex-
ity, and their details are summarized in Holm et al. [30].

4.1. Profile-driven optimization and porting

Our starting point is OpenCL implementations of the three numerical schemes [30,31],
and even though the code is algorithmically well suited for the GPU, little effort has been
made to thoroughly optimize its performance on a specific GPU. It is well known in the
GPU computing community that performance is not portable between GPUs, neither for
CUDA nor OpenCL, and automatically generating good kernel configurations is an ac-
tive research area (see e.g., [32,33,34]). Using the available profiling tools for CUDA, we
perform profile-driven optimization. This is an iterative process that starts by profiling
the code to identify the main performance bottleneck. The next step is then to optimize
this bottleneck, before running tests that ensure that the optimization did not introduce
bugs to the code. Thereafter the code is analysed in the profiler again in search for a new
bottleneck [35]. The profiling and tuning is carried out mainly on a laptop with a dedi-
cated GeForce 840M GPU, representing the low-end part of the GPU performance scale,
and some final tuning was performed on a desktop with a GeForce GTX780 GPU, repre-
senting a typical mid-range GPU. We compare the performance of the original and opti-
mized implementations with PyCUDA and PyOpenCL using these two GPUs, as well as
on a recent high-end Tesla V100 GPU commonly found in servers and super computers.
Information on these three GPUs is listed in Table 1. Together they represent the differ-
ent types of GPUs a typical researcher might have access to in a research environment:
a laptop and/or a desktop with local access and an expensive powerful server GPU in a
remote location.
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Figure 1. Heat map of performance as a function of block width and block height for selected sizes for the
high-resolution scheme on three different GPUs. Notice that even though the performance patterns have sim-
ilarities, the performance on the V100 would be suboptimal if the optimal configuration from the GTX780 is
used. The performance increase is 2 — 5x for all three GPUs from the slowest to the fastest block size.

An important performance parameter for GPUs is the domain decomposition de-
termined by the block size. CUDA decomposes the work into a grid with equally sized
blocks, and all blocks are executed independently. At runtime, the GPU takes the set of
blocks and schedules them to the different cores within the GPU. Using a too small block
size will under-utilize the GPU, and using a too large block size will similarly exhaust
the GPU’s resources. Figure 1 shows how the block size has a major impact on perfor-
mance, and also illustrates that finding the best block size can be difficult. Because of
this, we experimentally obtain the optimal configuration for each scheme before starting
profiling, and again after the code has been optimized.

The porting process between PyOpenCL and PyCUDA requires changes in both the
kernel code that runs on the GPU, and the API calls in the CPU code. Most of the changes
in the kernels are straight-forward and consist of changing keywords due to different
terminologies [21,22]. The CPU APIs are however quite different between OpenCL and
CUDA, but their Python wrappers reduce the differences somewhat. It still requires cor-
rect handling of devices, contexts and streams, compiling and linking kernels, setting
kernel arguments, grid and block dimensions, and memory transfers. Furthermore, there
is also a large difference in availability of native and third-party libraries, built-in and
specialized functions, and data types that need to be handled.

In our case, the linear and nonlinear schemes were found to be very memory-bound.
Both schemes were originally implemented with three separate kernels (one for each
of the three variables in the shallow-water equations), with a large overlap in the data
dependency. The first tuning step consisted of fusing the three kernels into one, and thus
reduced the overall memory bandwidth requirement of both schemes.

Profiling the high-resolution scheme revealed that the occupancy was very low due
to excessive use of shared memory. The optimizations consisted of largely reducing the
amount of shared memory used, and instead relying more on re-computations. When
shared memory usage was no longer the performance bottleneck, we reduced the number
of registers used per thread. All three schemes were further optimized through the use of
compiler flags.
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Figure 2. Performance of original, ported, and optimized codes measured in megacells per second, normal-
ized with respect to performance of the original OpenCL implementation. Notice that there is relatively little
difference between CUDA and OpenCL, except for the nonlinear scheme on the 840M and V100, whilst there
is a significant difference in how effective the tuning is for the different architectures. Furthermore, there is a
significant loss of performance when porting from OpenCL to CUDA in our original approach for the high-res-
olution scheme. From our experience, this relates to how the two languages optimize mathematical expressions
with and without the fast-math compilation flags.

4.2. Comparing performance

The overall performance gain of our optimization is shown in Figure 2, where all results
are given in megacells per second normalized with respect to the original PyOpenCL
implementation. The original porting from PyOpenCL to PyCUDA gave a noticeable
reduction in performance for the high-resolution scheme on all GPUs. After careful ex-
amination, we attribute this to different default compilation flags in PyCUDA and Py-
OpenCL: In PyCUDA, the fast-math flag was shown to double the performance for the
high-resolution scheme, while we found that it gave less than 5% performance gain with
PyOpenCL. Note that this affects the linear and nonlinear schemes to less extent, as these
schemes contain fewer complex mathematical operations, and we instead observe a vary-
ing effect on performance of porting the original OpenCL code to CUDA. When exam-
ining the numerical schemes one by one, we see that the optimizations performed for the
high-resolution scheme appears to be highly portable when back-ported to PyOpenCL
for all GPUs. For the tuned nonlinear scheme, however, we see that the 840M and V100
GPUs give significantly higher performance using CUDA than OpenCL, but similar per-
formance on the GTX780. Finally, for the linear scheme, the tuning gives a similar in-
crease in performance both on CUDA and OpenCL, relative to the original versions. In
total, we see that certain scheme and GPU combinations result in a significant speedup
for CUDA over OpenCL, but we cannot conclude whether this is caused by differences
in driver versions or from other factors. We are therefore not able to claim that CUDA
performs better than OpenCL in general.

4.3. Measuring power consumption

‘We measure power consumption in two ways. The first method is by using the nvidia-smi
application, which can be used to monitor GPU state parameters such as utilization, tem-
perature, power draw, etc. By programmatically running nvidia-smi in the background
during benchmark experiments, we can obtain a log containing a high-resolution power



600 H.H. Holm et al. / Performance and Energy Efficiency of CUDA and OpenCL for GPU Computing

draw profile for the runtime of the benchmark. The downside of using nvidia-smi is
that information about power draw is only supported on recent high-performance GPUs.
From our selection of GPUs, this applies only to the Tesla V100 GPU. Further, nvidia-
smi monitors the energy consumption of the GPU only, meaning that we do not have
any information about energy consumed by the CPU. For each experiment, nvidia-smi
is started in the background exactly 3 s before the benchmark, and is configured to log
the power draw every 20 ms. This background process is stopped again exactly 3 s after
the end of the simulation. This approach allows us to measure the energy consumption
of the idle GPU both before and after each benchmark, and we ignore the idle sections
when computing the mean and total power consumption for each experiment. All results
presented here are with the idle load subtracted from the experimental results.

The second method is to measure the total amount of energy used by the entire
computer through a watt meter. The use of the watt meter requires physical access to the
computer, and we are therefore restricted to do measurements on the laptop and desktop,
containing the GeForce 840M and GeForce GTX780 GPUs, respectively. The watt meter
offers no automatic logging or reading, but displays the total power used with an accuracy
of 1 Wh. To get sufficiently accurate readings we need to run each benchmark long
enough to keep the GPU busy for approximately one hour, after which we read the total
and mean power consumption for each experiment. Before and after each benchmark,
we also record the background power of the idle system, and the maximum recorded
power during the experiment, to monitor whether the operating system is putting any
non-related background load on the computer. It should also be noted that the battery
was removed from the laptop during these experiments. Similarly to the first method,
we subtract the idle loads from the result of each experiment, but we will here have the
increased power load on the CPU also included.

4.4. Comparing power consumption

Figure 3 shows the results from the power efficiency experiments using the watt meter
on the laptop (840M) and desktop (GTX780). The top row repeats the results for compu-
tational performance also shown in Figure 2 for the relevant GPUs, whereas the second
row show the normalized mean power consumption with respect to the original OpenCL
versions. The first thing we notice is that CUDA seems to require less power on the 840M
compared to OpenCL for all versions of the three schemes. On the GTX780, however,
there are no differences between the two programming models for equivalent versions. In
fact, only the tuned high-resolution scheme seems to be different from the others (using
about 30% more power), and this behavior can also be seen on the 840M. The power ef-
ficiency of the three schemes is shown in the bottom row in Figure 3, and we see that on
the 840M the tuned CUDA versions are the most power efficient. This is because CUDA
is both more efficient and uses less power on this system. On the GTX780, CUDA and
OpenCL have equivalent power efficiency for all tuned schemes.

The results for the Tesla V100 are shown in Figure 4. The top row shows the com-
putational performance in megacells per second, repeating the results from Figure 2. The
second row shows the mean power used by each version of the three schemes. Note here
that both CUDA versions for the nonlinear scheme use 60-90% more power than the
OpenCL versions, which is the opposite result compared to the 840M results. For both
the linear and high-resolution schemes, the results do not differ significantly in favor of
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Figure 3. Comparison of original, ported and optimized codes measured in megacells per second (top row),
mean power usage (mid row), and megacells per joule (bottom row), normalized with respect to the original
OpenCL implementation, for the laptop (840M) and desktop (GTX780) GPUs. The power is measured through
a watt meter, and represents the power consumed by the entire computer. Note that the CUDA versions re-
quires less power than the OpenCL versions on the 840M, whereas there are no differences between equivalent
versions on the GTX780. In terms of power efficiency, CUDA is more efficient than OpenCL on the M840,
whereas the GTX780 gives the same power efficiency.

either CUDA or OpenCL, but the tuned OpenCL version uses slightly more power for
the high-resolution scheme. When we consider the power efficiency in the bottom row,
we see that the tuned CUDA versions are the best versions for all schemes. In particular
for the nonlinear scheme, this is mostly due to the large difference in computational effi-
ciency between CUDA and OpenCL for this particular scheme on this particular GPU.

In general, we observe that all experiments show a mean power usage within about
30% of the original OpenCL versions, with the exception of the nonlinear scheme on
the V100. On the other side, the computational performance increases up to 5 times (the
high-resolution scheme on the GTX780). This shows that the most important factor for
improving power efficiency is to increase computational performance.
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Figure 4. Comparison of original, ported and optimized codes measured in megacells per second (top row),
mean power usage (mid row), and megacells per joule (bottom row), normalized with respect to the original
OpenCL implementation, for the Tesla V100 GPU. The power is measured through nvidia-smi, and represents
the power consumed by the GPU only. There are only minor differences in mean power consumption between
different versions of the linear and high-resolution scheme, but CUDA uses more power than OpenCL for the
nonlinear scheme. CUDA is however more power efficient than OpenCL for all three tuned schemes.

5. Summary

In this work, we have benchmarked three different OpenCL codes, our ported code in
CUDA, our optimized CUDA code, and finally our OpenCL code with optimizations
found using the CUDA tools. Our results are shown for three different GPUs, thus repre-
senting many of the GPU architectures in use today. Finally, we have looked at the power
consumption for all versions of the code.

The original motivation for using OpenCL was to support GPUs and similar archi-
tectures from multiple vendors. Our motivation for changing from OpenCL to CUDA
was because of the better software ecosystem for CUDA, and we have been very happy
with our choice. CUDA appears to be a much more stable and mature development
ecosystem with better tools for development, debugging and profiling for our hardware.
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We found it interesting that our initial port from OpenCL to CUDA imposed a per-
formance penalty, due to different default compiler optimizations. Even though some au-
thors have reported OpenCL to be slower than CUDA, we find no conclusive results that
support this in general. The performance gain varied much more with the GPU being
used than whether we used CUDA or OpenCL. However, we do observe that for certain
combinations of scheme and GPU, we get a significant speedup for CUDA over OpenCL.
Additionally, we found that the performance gain of tuning the numerical schemes have
vastly different effects on the run time for different GPUs. Even though we profiled and
optimized mainly using a laptop GPU, the highest relative performance gain was for a
server class and a desktop class GPU.

There does not seem to be any clear relations between the power consumption
when comparing different schemes, optimization levels, GPUs, and programming mod-
els. When we look at power efficiency, we see that CUDA performs better than OpenCL
for all tuned schemes on the Tesla V100 and GeForce 840M GPUs, whereas there are
no differences on the GeForce GTX780. When we examine the impact of performance
tuning on power efficiency, there appears to be a systematic and clear relationship: A fast
code is a power efficient code.
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