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Abstract

Deteriorated power system components have a higher probability of failure than new com-
ponents. Still, the reliability of supply analyses traditionally models all components of the
same type with the same probability of failure, and thus neglects the effect of deterio-
rated components. This paper presents a methodology to integrate a condition-dependent
component probability of failure model into a power system reliability analysis. The com-
ponent state is described by a semi-Markov process, and the paper shows how this, under
reasonable assumptions, can be approximated by a Markov process. The Markov assump-
tion simplifies the analysis and allows the model to include preventive retirement and be
calibrated to statistical data. A case study using statistical data for Norwegian power trans-
formers shows that, in the Norwegian power system, the proportion of failures that are due
to the poor condition is small, partly due to the common strategy of preventive retirement.
However, if the condition of the transformers were worse, the impact of poor conditions
can be considerable. The methodology further enables the identification of the transform-
ers that contribute most to the risk to the reliability of supply. The paper thus highlights
the importance of accounting for the component condition in strategic decisions such as
long-term renewal planning

1 INTRODUCTION

Ageing power systems with deteriorating components are a
major concern for the continued reliable supply of electric
power. Addressing this concern calls for an integrated approach
to power system reliability analysis in which reliability analy-
ses both at the component level and system level are included.
Traditionally, the first level focuses on a single asset or compo-
nent in the power system (e.g. a transformer station) but does
not properly account for its importance in the power system
for the reliability of supply. The second level takes a broader
view of the power system but usually neglects how the con-
dition of individual components influences their probability
of failure and how this contributes to the overall power sys-
tem risk. For instance, the reliability of supply analyses applied
for long-term transmission system planning studies commonly
assumes the same failure rate for all components of the same
type. However, it is well known that deteriorated power sys-
tem components have a higher probability of failure than new
components.
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The objective of this paper is to develop and illustrate a
methodology for integrating information on the component
condition in the reliability of supply analysis. This has multiple
benefits. The methodology can aid asset management deci-
sions by assessing the benefit of, for example, replacing an old
transformer with a new one, and generally aid prioritization of
measures between different components and locations in the
power system. Moreover, better information on the compo-
nents’ probabilities of failure can improve the accuracy of the
reliability of supply analyses and better inform long-term system
development decisions.

1.1 Related work

In power system reliability analysis, component failures have tra-
ditionally been modelled by a constant failure rate. However,
some work has been done on accounting for the compo-
nent condition through condition-dependent failure rates. A
methodology for addressing and including ageing failures was
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2 TOFTAKER ET AL.

originally described by Li in [1], and this approach has been fur-
ther detailed in [2], and adopted by several subsequent papers.
A broader review of available methods is found in [3]. There,
age-related failures are categorized as either repairable or end-
of-life failures. In [4], the influence of modelling transformer
age-related failures in system reliability analyses is studied using
an Arrhenius-Weibull model. That work was extended in [5] by
quantification of uncertainties related to the failure model. In
[6], the condition-dependent probability of failure of transform-
ers is deduced based on the notion of an equivalent age similar
to [7], and this is included in system reliability modelling follow-
ing the approach of [1]. Other examples are found in [8] and [9],
where the impact of time-varying failure rates on distribution
system reliability is studied.

In this manuscript, we will not use the term ageing failure
for condition-dependent failures, but instead the term wear-
out failure. This highlights that these failures are caused by
the degradation of technical conditions, and not directly by age
itself. Ref. [3] follows [2] and assumes that a wear-out failure is
unrepairable and subsequently that a failed component will stay
out indefinitely. From the power system perspective and for the
purpose of reliability of supply analysis, it is however important
to consider the function performed by the component in the
power system rather than the actual physical component itself.
In other words, even if the physical component with a wear-out
failure cannot be repaired, its function in the power system can
be restored by replacing it with another physical component.

Two key challenges when accounting for the component con-
dition in power system reliability analysis are how to assess the
condition and how to deduce the wear-out failure rate from the
condition. For large-scale system analyses an estimate of the
aggregated overall condition of the components, which includes
all failure causes and failure modes, is useful to keep the level of
detail feasible. Such an estimate is often called a health index in
the literature. Many methods have been suggested for aggregat-
ing condition grades into an overall health index, and this is still
a topic of current research. Some early examples of applying
expert judgement and weighting schemes are those of Anders
et al. [10] and Jahromi et al. [11]. More recent examples are
methods that utilize e.g. fuzzy theory [12, 13], Markov chains
[14], Bayesian belief networks [15], machine learning methods
[16, 17], and adjustment of failure rates [18].

In general, one may try to deduce wear-out failure rate from
conditions based on a physical understanding of the degrada-
tion processes, or with statistical or data-driven methods. The
first approach is used in parts in [4] and [7]. An example of the
second approach is given in [19], where failure rates of under-
ground power distribution cables are studied as a function of
ageing and loading using regression models fitted directly to
statistical data. A challenge with purely statistical or data-driven
approaches is the large amount of data needed, which often is
not available. Models based on the physics of degradation can
circumvent this problem, but the prediction from such models
may not straightforwardly agree with the observed failure rates
in the power system. In [20], an effort is made to address this
shortcoming by calibrating the failure rate to statistics, but the
literature on this subject is otherwise limited.

Another factor that is important to take into account in
power system reliability analysis, but which is rarely discussed
in this context, is preventive retirement. This is a common
asset management strategy whereby ageing components with
the poor condition are replaced (i.e. reinvestment) before run-
ning to wear-out failure. From a reliability perspective, it has the
effect of considerably reducing the observed wear-out failure
rate compared to the potential, underlying failure rate without a
preventive retirement strategy.

Here, we propose a methodology for power system reliability
analysis that accounts for both component conditions, preven-
tive retirement, replacement of failed or retired components
with new components, and calibration of observed statistics.
The methodology thus addresses important shortcomings in
the literature.

1.2 Outline and contributions

The methodology proposed in this paper is based on a failure
model where the wear-out failure rate is established from avail-
able condition information given in terms of a health index.
This model is integrated into an existing, analytical method-
ology for power system reliability analysis. The presented
approach calculates the annual reliability of supply indices and
is intended for estimating the reliability of supply expected next
year or over the next few years. To illustrate the methodology,
a case study is presented using a simple power system model in
which condition information is included for all transformers.

Two of the main contributions of this paper are: (1) The
general integration concept for specifying condition-dependent
failure rates for individual components in a power system relia-
bility analysis, and (2) its application to integrate a transformer
health model [7]. Thus, the present work builds upon [7] to
bridge the gap between the individual components and the
power system in analyses of the reliability of supply. Unlike
related work such as [4] that integrates an Arrhenius-Weibull
model, or [21] where degradation is modelled by assuming a
bathtub curve, the present work integrates a more compre-
hensive, bottom-up component reliability model able to utilize
available condition information. Specifically, this work extends
[7] by the following additional contributions: (3) A competing
risk model considering both wear-out and mid-life failures, (4)
the inclusion of preventive retirement through a semi-Markov
process, and (5) the calibration of component reliability to real,
statistical data representative of the system. This allows us to
(6) give empirical insight into the influence of the component
condition on the reliability of supply.

The paper is organized as follows: Section 2 presents the gen-
eral framework for the integration of component and power
system reliability analysis. Section 3 describes how to account
for the component condition and preventive retirement. In
Section 4, the integration approach is demonstrated using an
example transformer condition model. The section also illus-
trates which data sources and data processing methods that
are necessary to integrate such a model in a power system
reliability analysis. It is then demonstrated how real condition
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TOFTAKER ET AL. 3

FIGURE 1 High-level framework for power system reliability of supply analysis, with the main concern of this paper highlighted in purple

and reliability data for Norwegian power transformers can be
used to quantitatively analyze the impact of the component
condition on the reliability of supply. Section 5 concludes the
paper by summarizing potential improvements, extensions, and
applications of the methodology.

2 METHODOLOGY FOR
INTEGRATING COMPONENT AND
POWER SYSTEM RELIABILITY ANALYSIS

This section describes the proposed methodology to account
for individual component reliability in power system reliability
analyses. The overall integration approach is described in Sec-
tion 2.1. Then, the concrete reliability of the supply analysis
methodology is briefly presented in Section 2.2 to illustrate the
requirements of the integration methodology as seen from the
power system perspective.

2.1 Overall integration approach

A high-level framework for the overall reliability of supply
analysis considered here is summarized in Figure 1. The blue
rectangles represent different modules in the framework and
the green boxes represent input and output data that define
the interfaces of these modules. The uppermost row of green
parallelograms represents the factors (information) that the
analysis ideally should take into account. The highlighted parts
of Figure 1 are the main concerns of this paper, namely the
integration of the technical condition of components in the
reliability of supply analysis.

Figure 1 distinguishes between a component reliability model
and a power system reliability model. The component reliability
model in general includes a failure model, a preventive retire-

ment model, calibration to observed failure statistics, and an
outage time model. Here, we will give attention to the modelling
of component failure rates. We will not consider component
outage times in similar detail.

Depending on the power system reliability analysis method-
ology, the inputs to the system reliability model could be failure
rates, probabilities of failure (e.g. for a given year or a given
hour), or average component availabilities. Here, we use as a
starting point an analytical reliability analysis methodology for
which the inputs must be in the form of annual failure rates. A
resolution of one year is sufficient for the failure rates since we
focus on the condition dependence of the failure rates, and the
condition typically does not vary appreciably within one year for
electric power components such as transformers.

2.2 Power system reliability analysis

Methods for power system reliability analysis are commonly
divided into two groups: (i) Analytical methods and (ii) Monte
Carlo simulation methods [2, 22, 23]. The high-level framework
in Figure 1 is general and could represent (in a generic and sim-
plified manner) any method for power system reliability analysis.
In the rest of this paper, we will focus on accounting for the
component condition in analytical methods. One reason is that
it allows us to provide additional analytical insights through the
presentation of the proposed methodology. Another reason is
that it allows us to integrate the methodology into an exist-
ing, comprehensive analytical reliability of supply methodology
(OPAL) [22, 24]. Previous works have demonstrated the inte-
gration into OPAL of other factors indicated in Figure 1, such
as multiple operating states from power market models [25,
26], time-dependent reliability data from the Norwegian fault
and interruption statistics database [26] (FASIT [27]), and time-
dependent interruption costs as calculated in the Norwegian
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4 TOFTAKER ET AL.

cost of energy not supplied (CENS) scheme [26, 28]. As with
most reliability of supply analyses, OPAL does however not
account for the technical condition of the individual power
system components. We should nevertheless stress that the
methodology proposed in this paper is general. Section 5 will
discuss how the methodology can be generalized to account for
the component condition in Monte Carlo-based methods for
the reliability of supply analysis [23, 29], and we also refer to
[30] for some already published initial work towards this goal.

The OPAL methodology is based on the analytical minimal
cut set methodology [22, 24]. Contributions to the reliability
of supply indices are calculated for each operating state, each
delivery point, and each contingency j that correspond to a min-
imal cut set for delivery point k and operating state i. For the
expected annual energy not supplied (ENS), these contributions
can be calculated as:

ENSai, j ,k = 𝜆′i, j ⋅ ri, j ⋅ Pinterr,i, j ,k. (1)

where 𝜆′i, j and ri, j denote equivalent failure rates and outage
times for contingency j , and Pinterr,i, j ,k denotes the power inter-
rupted at delivery point k. The interrupted power is estimated
in a contingency analysis that simulates the consequences in the
power system of the changes in grid topology for each com-
bination of contingency and operating state. Here, an optimal
power flow model is used to capture grid constraints and nec-
essary generator rescheduling and load-shedding actions during
the contingencies [25].

In the analytical method considered here, equivalent failure
rates and outage times for cut sets are calculated using approx-
imate frequency and duration techniques [22, 24]. Moreover,
we have here introduced the notation 𝜆′i, j = 𝜆i, jΔti∕(

∑
i
Δti ),

where Δti is the duration of operating state i, to account for the
fraction of the year represented by each operating state [24].

Other reliability of supply indices is calculated as described in
detail in [24]. The indices can be aggregated by summing over all
contingencies, all operating states, all delivery points, or a com-
bination of these sets. Here, the expected annual cost of energy
not supplied (CENS) will be calculated by assuming a specific
interruption cost ck that only depends on the customer type at
delivery point k:

CENSak = ck ⋅ ENSak. (2)

In the OPAL methodology, different failure rates 𝜆 can
be specified for each individual component, but the currently
available input data are average annual failure rates for each
type of component, as calculated from the FASIT system
[31]. The following section presents a methodology to provide
condition-dependent failure rates.

3 COMPONENT RELIABILITY MODEL

To understand and address condition-dependent failures, it is
useful to distinguish such failures from other types of failures.

This chapter describes a bottom-up approach to building a
condition-dependent component reliability model. Power trans-
formers are used as an example, but the approach applies
generally. An advantage of a bottom-up approach as opposed
to a top-down (e.g. regression) approach is that it better conveys
the underlying processes or phenomena leading to failure.

3.1 Overall modelling approach

The approach divides the transformer into two; the active
part (windings, core and oil) and all other parts (bushings,
tap changer, tank, cooling system, etc.). It is common for
transformer owners to have quantitative information on the
condition of the active part from oil sampling and other
measurements. For the non-active part, information on the
condition is often not available in an easy-to-use quantitative
format, or not available at all. Due to this, a condition-
dependent failure model is only pursued for the active part of
this paper. To establish the model, the active part is assumed to
be non-repairable, since a failure in the active part often is diffi-
cult or expensive to repair, and therefore in practice often results
in the whole transformer being scrapped. Failures in the active
part and in the non-active part are assumed mutually exclu-
sive, that is, simultaneous failures are disregarded. The failure
rates of the active and non-active parts can then be established
separately.

In general, also the outage time depends on which part of
the transformer failed, and on whether the failure propagated to
cause several of the transformer parts to fail. Here, the outage
time is however assumed the same for all transformer failures.
This is a simplification, but outage time modelling is a demand-
ing exercise that requires a separate analysis outside the scope
of the present paper.

Active part failures are divided into internally and exter-
nally caused, as shown in Figure 2. This classification is based
on a conceptual framework [32] that lays the foundation for
the standardized fault and interruption data collection and
reporting system that is implemented in the Norwegian power
system (FASIT) [27]. The internally caused failures are divided
into failures caused by defects from design, manufacturing or
installation and failures caused by the degradation of techni-
cal conditions. The first of these corresponds to the early-life
failures in the well-known bathtub failure curve, while the lat-
ter corresponds to the wear-out failures. The externally caused
failures are divided into failures caused by natural hazards, oper-
ational stress and human threats. Together, these correspond to
the mid-life failures in the bathtub curve, that is, failures giving
a close to constant failure rate when averaged over a long time.

Based on the classification in Figure 2, a condition-dependent
failure model for the active part is further developed in the
next section. To do so, some simplifications are made: Early-
life failures are neglected, and mid-life and wear-out failures are
assumed mutually exclusive, although in reality there may be
single failures that have multiple contributing causes.

In lack of condition data, failures in the non-active part are
treated simply as failures with constant failure rate, independent
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TOFTAKER ET AL. 5

FIGURE 2 Simplified classification of failures in the transformer active part into main causes. The same classification can be applied to the non-active part, but
this is not pursued in this article

of the transformer condition and age. The failure rate for the
non-active part can then be obtained directly from failure statis-
tics, that is, the failure rate is set equal to the observed historical
average failure rate of representative transformers.

3.2 Failure model for the active part

The condition-dependent component failure model developed
here is based on [7] and illustrated in Figure 3. It is developed
for the transformer active part, but the model applies gener-
ally. Because the condition varies with time, the model output
should be specified to be valid for a given time interval. Here
we focus on the present, that is, a time horizon of approximately
one year, and assume that component condition does not vary
significantly within one year. This is a reasonable assumption
in most cases, as condition typically does not vary appreciably
within one year for long-living electric power components such
as transformers. It does however mean that our approach is not
suitable for components with rapid degradation.

Module (a) in Figure 3 aggregates component condition
information. It estimates the overall condition of the compo-
nent in terms of a health index from measured condition data,
[7]. The aggregation model should ensure that all wear-out fail-
ure causes are accounted for. The model for the transformer
active part that will be used as an example is given in Section 4.2.

Module (b) introduces the notion of an apparent age as in
Ref. [7]. The apparent age can be defined as the age implied
by the component’s health index when compared to the average
health index of a reference data set (such as the total component
population). An example of a formula established for deduc-
ing the apparent age of the transformer active part is given in
Section 4.2.

Module (c) utilizes the concept of competing risks [33] to esti-
mate the total component failure rate including both wear-out
failures and all other failure types. Competing risks (or com-
peting failure types) means that the first of the failure types to
reach failure causes the component to fail. If the failure types are
assumed independent, the total failure rate 𝜆 of the component
is given by:

𝜆 (t ) =
N∑

l=1

𝜆l (t ) (3)

where 𝜆l is the failure rate for failure type l and N is the num-
ber of competing failure types. This paper includes mid-life
and wear-out failures so that N = 2. When failure types are
independent, 𝜆l is given by:

𝜆l (t ) =
dFl (t )dt

1 − Fl (t )
(4)

where Fl (t ) is the marginal cumulative distribution for the latent
failure times of failure type l. The latent failure time is the hypo-
thetical failure time for failure type l if the other failure types are
not present. However, since in reality, a component is subject
to several failure types, the latent failure time suffers from cen-
soring by the other failure types. It also suffers from censoring
by preventive retirement, which is a common asset management
strategy.

Since mid-life failures represent failures that are independent
of condition and give a close to constant failure rate when aver-
aged over a long time, the mid-life failure rate 𝜆ml is taken
directly from failure statistics without using Equation (4). Wear-
out failures on the other hand are determined by condition. To
enable the condition to be taken into account, we follow [7]
and assume that Equation (4) provides a better estimate of the
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6 TOFTAKER ET AL.

FIGURE 3 High-level framework for condition-dependent component failure model to be included in the power system reliability of supply analysis

wear-out failure rate for individual components if it is used as a
function of apparent age instead of calendar age. The wear-out
failure rate 𝜆w is then estimated by:

𝜆w (𝜏 (HI )) =
fw (𝜏 (HI ))

1 − Fw (𝜏 (HI ))
d𝜏

dt
(5)

where HI is the health index, 𝜏 is the apparent age, fw =

d Fw (t )∕dt , and Fw (t ) is the marginal cumulative distribution
function of the time to wear out failure. The derivative in Equa-
tion (5) is needed for the failure rate to be given per calendar
time (and not per apparent time). Due to censoring, a statis-
tical data set without bias to establish Fw is hard to acquire,
since long latent failure times are censored by other failure types
and preventive retirement. An approach to reduce the censor-
ing problem is to base Fw on scrapping statistics in addition to
wear-out failure statistics. An example taken from [7] is given in
Section 4.2, where an estimate of Fw is obtained by extrapolat-
ing the observed condition at scrapping to estimated potential
wear-out failure times.

Finally, module (d) calibrates the failure rate results to
observed failure statistics and considers preventive retirement.
This applies only to the wear-out failure rate since the mid-life
failure rate is taken directly from statistics. Calibration is neces-

sary for two reasons: (1) Censoring by other failure types and
preventive retirement makes it difficult to acquire a statistical
data set without bias, to correctly establish Fw . (2) Due to limited
statistical data at present, it cannot be expected that bottom-up
component failure modelling alone will accurately predict actual
failure rates in absolute terms, although such modelling may be
very useful for predicting relative failure rates for a set of com-
ponents. The calibration method is described in Section 4, after
preventive retirement first is accounted for in the next section.

3.3 Accounting for preventive retirement

The above failure model estimates the instantaneous wear-out
failure rate. Failure statistics generally provide annual failure
frequencies, that is, the expected number of failures per year.
Hence, to enable the failure model to be properly calibrated to
statistics, the annual failure frequency must be estimated from
the instantaneous failure rate. Since preventive retirement is so
common, it can have a reducing effect on the annual failure fre-
quency. Before calibrating, we, therefore, account for preventive
retirement.

To account for the effect that preventive retirement can
have on the wear-out failure frequency, we introduce the state
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TOFTAKER ET AL. 7

FIGURE 4 A state diagram describing the reliability due to wear-out
failure (left). The state diagram for the simplified model describing wear-out
failures (right)

diagram in the left side of Figure 4. The diagram illustrates
a component in a state of some degree of wear-out, called
"Up, old", from which the component can either transition to
a failed state ("Down") or be replaced preventively, thus reach-
ing the state "Up, new". In reality, there is a continuum of states
between old and new, but as we are concerned with a limited
time horizon we approximate this continuum by the two states
“Up, new” and “Up, old”. The transition from “Up, old” to
“Down” is given by the wear-out failure rate 𝜆w (𝜏(HI )) dis-
cussed in the previous section, while the transition from “Up,
new” to “Down” is given by 𝜆w (0) ≈ 0, and is assumed to be
negligible.

In addition, the component may transition to the “Up, new”
state by preventive replacement. The rate of preventive replace-
ment is denoted 𝜆PM . If the component has failed, it is replaced
and thus transitions to the “Up, new” state. This transition is
given by the repair rate 𝜇w . It is now reasonable to approxi-
mate the time to transition by exponential distributions, which
means the diagram in Figure 4 may be treated as a Markov
diagram.

Assume that we analyze a set of n components and that H Ii

is the health index of component i. Furthermore, assuming that
the outage time is short compared to the analysis horizon, the
number of wear-out failures Ni,w (t0, tend ) of component i within
the analysis horizon [t0, tend ] is independent of the outage time.
The accuracy of these approximations has been verified for this
case in a separate study [30]. This implies that by Wald’s equation
[34], the unavailability of the component due to wear-out failure
is equal to:

Ui,w =
E
(
Ni,w (t0, tend )

)

tend − t0

1
𝜇w

=
𝜔i,w

𝜇w
, (6)

where E (x ) is the expected value of the random variable x, 𝜇w

is the repair rate, and 𝜔i,w is the failure frequency.
The expected number of failures is:

E
(
Ni,w (t0, tend )

)
=

∞∑

n=1

nP (N (t0, tend ) = n) .

As the wear-out failure rate of a new component is 0, and the
condition is unchanged within the time frame, the probability

of more than one failure is zero, that is, P (N (t0, tend ) = n) = 0
for n > 1. It follows that E (Ni,w (t0, tend )) is equal to the proba-
bility of one failure. From the Markov diagram, it may thus be
deduced that the failure frequency is:

𝜔i,w =
P
(
Ni,w (t0, tend ) = 1

)

Δt

=
𝜆w (𝜏 (H Ii ))

(𝜆w (𝜏 (H Ii )) + 𝜆PM )Δt

(
1 − e−(𝜆w (𝜏(H Ii ))+𝜆PM )Δt

)
,

(7)

where Δt = tend − t0. To combine wear-out failures and other
failures in a way that can be integrated into existing power sys-
tem reliability analysis methods, the state diagram shown on the
left side of Figure 4 is simplified to the diagram to the right in
Figure 4. This is obtained by finding the equivalent failure and
repair rates causing the unavailability of the component (i.e. the
proportion of time spent in the state “Down”) to be preserved,
that is:

Ui,w =
𝜆i,w

𝜆i,w + 𝜇w

=
𝜔i,w

𝜇w
, (8)

where the right-hand side is taken from Equation (6). Solv-
ing for 𝜆i,w yields the corresponding equivalent wear-out failure
rate:

𝜆i,w =
𝜇w𝜔i,w

𝜇w − 𝜔i,w
(9)

3.4 Calibration to observed failure statistics

We can now use these results to calibrate the failure model.
The calibration should be done to a set of n components of
a particular type (e.g. transformers) with a known average fail-
ure frequency, such as the total population of the component
in a country, say Norway. We require the average wear-out fail-
ure frequency of the n components to be equal to the average
observed wear-out failure frequency in Norway, that is:

�̄�w =

∑n

i=1 𝜔i,w

n
= 𝛾w𝜔s (10)

where 𝛾w is the fraction of the total statistical failure rate due to
wear-out failures, and 𝜔s is the observed total failure frequency
for the component type. The requirement (10) can be translated
into an adjustment factor 𝛽 for the failure frequency for each
component given by 𝛽 = 𝛾w𝜔s∕�̄�w , that is, the calibrated failure
frequency of component i is:

�̃�i,w = 𝛽𝜔i,w (11)

A corresponding calibrated failure rate �̃�i,w may be obtained
from (8).
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8 TOFTAKER ET AL.

3.5 Mid-life failures

All other failures to the component are treated as mid-life fail-
ures with a failure rate 𝜆ml . This rate is obtained by matching
the model to the historical frequency of mid-life failures 𝜔ml =

(1 − 𝛾w )𝜔s , and once again using Equation (6) to preserve
unavailability, that is, 𝜆ml =

𝜇ml 𝜔ml

𝜇ml −𝜔ml

, where 𝜇ml is the repair rate

of mid-life failures. The overall failure rate for component i is
subsequently obtained from Equation (3) as 𝜆i = 𝜆i,w + 𝜆ml .

4 CASE STUDY

To demonstrate the integration approach in the preceding sec-
tion and investigate the effect of accounting for the component
condition in a (power system-level) reliability of supply analysis,
we consider a case study where we first compare the follow-
ing two scenarios: In scenario 0 all transformers are assigned
the average failure rate of transformers based on national fail-
ure statistics in Norway, while in scenario 1 each transformer
is assigned an individual condition and an individual failure rate.
Hence, scenario 0 is the traditional way of modelling component
reliability in power system reliability analyses, while scenario
1 is the new way proposed here. It is assumed that repair
rates for wear-out failures and mid-life failures are equal, that
is, 𝜇w = 𝜇ml . Different repair rates could be accounted for
as suggested by [2], but in the lack of firm knowledge about
what the difference in repair rates is, this is left for future
work.

The existing methods reviewed in Section 1.1 for integrat-
ing condition information in power system reliability analysis
are all based on different sets of condition data and applied to
a specific set of components. In the lack of component con-
dition reference data sets that could be used to benchmark
our method, scenario 0 serves as the benchmark for this case
study. However, in Section 4.5 we also present additional sce-
narios designed to understand the impact of key input parameter
uncertainties.

4.1 Test system

The network model considered for the case study is a 25-bus test
system that represents a power system with four distinct areas.
The network model is displayed in Figure 5. This test system
represents small regions of the Nordic power system, and it has
been developed and used for integrated power market and reli-
ability analyses [25, 31]. Actual generation and demand for the
different generator units and delivery points vary with the differ-
ent operating states and are a result of power market simulations
[25]. Data for the 208 operating states used in this case study
are given in [35]. The system includes eight power transform-
ers for which condition-dependent failures will be integrated
in power system reliability analysis in the following. Where not
otherwise stated, input data from [31] are used in the case
study.

4.2 Transformer failure model

To establish the transformer failure rate 𝜆W (𝜏(HI )) from Equa-
tion (5) it is necessary to establish a health index model HI , a
relationship between the health index and apparent age 𝜏(HI ),
and a probability distribution fw (𝜏(HI )). To illustrate this, the
transformer model in [7] is adopted. The main features of the
model are presented here, for a detailed presentation the reader
is referred to [7]. The model applies to the active part of the
transformer (windings, core, and oil), because this is the part for
which condition information is readily measured and collected
by transformer owners.

The health index is calculated based on a set of condition data
and is designed to meet the following criteria: (1) The health
index reflects the transformer reliability and is both lower and
upper bound, (2) Poor condition data are not masked by aggre-
gation, that is, the health is never better than that indicated by
the worst condition data. For details of the health index model,
the reader is referred to [7].

The relationship between apparent age and health index,
𝜏(HI ), is established from nationally collected data for scrapped
transformers. The relationship between health index and age is
found by fitting a sigmoid function to the data, and the apparent
age is found by inverting this sigmoid function. Furthermore,
we assume that, in the future, apparent age and calendar age
develops equally fast. The assumption means the derivative in
(5) is equal to 1.

The general wear-out failure time distribution fw is estab-
lished by fitting a normal distribution to the potential lifetimes
extrapolated from the investigation of the scrapped transform-
ers, and the estimated parameters are 𝜇 = 60 years and 𝜎 = 18
years. Note that the results from [7] must be used with caution,
as the data material used in [7] is limited. Nevertheless, they are
well suited for illustrating the case study here.

4.3 Transformer data

To populate the test system with realistic transformers, and use
the above transformer failure model, real transformer condition
data is needed. Data for a set of 18 Norwegian transformers is
studied in [7]. These data include sufficient information, and
eight of these transformers are selected for the test system. To
investigate the importance of accounting for component condi-
tion, the transformer in the worst condition has been assigned
to the branch in the test network that has the biggest contri-
bution to annual ENS (branch 29). The other transformers are
arbitrarily assigned.

To establish the failure rates for the eight transformers
in the test system using the model in Section 3, some sta-
tistical data is needed. Failure data for power transformers
in Norway are collected both in the FASIT database [27]
and in a separate database run by the user group for power
transformers in Norway. The data from these databases are
not publicly available, but a preliminary unpublished analysis
indicates an average failure frequency of 𝜔s = 0.0044, including
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FIGURE 5 Test network considered in the case study (adapted from [31])

all transformer parts and failure types. The fraction 𝛾𝑤 of
the total failure rate related to wear-out of the active part is
not explicitly given by the data in the databases, and it is not
always evident which failures are caused by wear-out, but a
preliminary analysis based on data reproduced in [35] sug-
gests 𝛾w = 0.12. These parameters are similar to international
statistics as provided by CIGRE [36]. Furthermore, the rate
of preventive retirement in Norway is not known, but data
from another non-public database indicates that the average
transformer age of the population has been stable at around 30
years the recent years. This means that in a period of 30 years,
all transformers are replaced. Neglecting the small failure rate,
we can hence roughly estimate the retirement rate to about
𝜆PM = 1∕30 ≈ 0.33 per year. Finally, the set of 18 transformers
from [7] is assumed to be representative of the Norwegian trans-
former population, and the wear-out failure model is calibrated
by using this set of transformers as described in Section 3.3.
Applying Equations (10) and (11) results in the calibration
factor 𝛽 = 0.12. The statistical parameters are summarized
in Table 1.

4.4 Results for energy not supplied

To analyze the importance of accounting for conditions, the reli-
ability of supply indices for scenarios 0 and 1 are calculated and
compared. In this section, we focus on the energy not supplied
index, and then other reliability of supply indices are discussed
in Section 4.6. Before running the reliability of supply analysis,

TABLE 1 Parameter values used in Scenario 1 of the case study

Parameter description Parameter Value

Overall historic failure rate 𝜔s 0.0044

Rate of preventive retirement 𝜆PM 0.033

Proportion of failures related to wear out of
the active part of the transformer

𝛾w 0.12

Calibration for wear-out failures to observed
failure rate

𝛽 0.12

the failure rates of the transformers are calculated and calibrated
as described in Sections 3.3 and 4.3. The result of the calculation
is displayed in Figure 6. The horizontal line shows the average
failure rate 𝜔s which is used for all transformers in scenario 0
and used to calibrate the failure rate in scenario 1.

In the present case, preventive retirement reduces the wear-
out failure rates by only 1.5%, while calibration has a larger
effect and reduces them by 88 %. The first is due to the short
time horizon of only one year in the analysis. Preventive retire-
ment will have a much larger effect on the failure rates when
considered over a longer time horizon. Preventive retirement
of transformers has been a common strategy in Norway for
many years. This is an important reason why the observed fail-
ure rate in Norway corresponds to a mean time to failure (∼200
years) that is far longer than the typically observed lifetime of
transformers (up to 60–70 years). Reasonable explanations for
the calibration factor may be that the data set used to estimate
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10 TOFTAKER ET AL.

FIGURE 6 Failure rates for the transformers used in scenario 0. The
failure rate is split in 2 components as described in Section 3

the life distribution in [7] is biased, the 18 transformers in [35]
are not representative of the transformer population, or that
there are additional measures that the operators take to prevent
functional failure and that such measures are triggered by infor-
mation not captured by the current lifetime model. The latter
would imply a kind of censoring of wear-out failures.

The results of the reliability of supply analysis are summa-
rized in Figure 7. The overall ENS increases by 1.23% from
scenario 0 to scenario 1. Five delivery points see a decrease
while two see an increase in ENS. As shown in Figure 7, the
delivery point at bus 30020 sees an increased ENS of 6.5 %.
This is to be expected as this delivery point is most affected
by outages of the transformer with branch ID 29, which was
given the worst condition. Note that we have only modelled
condition-dependent failures for transformers. The difference
between scenarios 0 and 1 will be greater if condition-dependent
failures are modelled also for other components in the test
system.

4.5 Sensitivities for energy not supplied
results

The parameters in Table 1 are uncertain and to investigate the
importance of this uncertainty, two additional scenarios are con-
structed. This makes a total of four scenarios as summarized
in Table 2. As the scenarios correspond to different values of
the parameters 𝛾w and 𝛽, we use the parameter values to spec-
ify the scenarios as shown in Table 2. The table also contains a
qualitative description of each scenario and the relative increase
in estimated annual ENS as compared to scenario 0.

Scenario 2 is used to quantify the importance of using an
accurate estimate of the proportion of wear-out failures 𝛾w . A
value of 𝛾w = 1 is chosen as this is the largest possible value,
and thus provides an upper bound on the influence that this
parameter might have on the results. The overall annual ENS
increased by 10.5%

Scenario 3 is similar to scenario 1 but this time the failure rate
predicted by the transformer model is not calibrated to statisti-
cal data. This scenario serves two purposes. Firstly, it quantifies
the importance of correctly predicting the average failure rate
and thereby the importance of including calibration. Secondly,
it illustrates a situation where the condition of transformers is
significantly worse than the average condition of transform-
ers in the Norwegian population. The result is that the annual
energy not supplied increased by 57.0%. The results for all four
scenarios are compared in Figure 8.

4.6 Results for additional reliability indices

The reliability of supply analysis also produces results for
other indices than the ENS index considered above [24]. We
investigated the results for the indices unavailability (annual
interruption duration) Ua, annual interruption frequency 𝜆a, and
the average interruption duration ra. The trends for Ua and 𝜆a
are visually indistinguishable from those in the plots for ENSa

FIGURE 7 Annual energy not supplied in proportion to scenario 0, where the colours show different delivery points (left). The relative difference in annual
energy not supplied on each delivery point as compared to scenario 0 (right)
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TOFTAKER ET AL. 11

TABLE 2 Summary of the 4 scenarios used to demonstrate the proposed methodology

Number 𝜸w 𝜷 Description

Relative difference

in annual ENS (%)

Scenario 0 0 0 This corresponds to using an average failure rate independent of condition. 0

Scenario 1 0.12 0.12 This corresponds to applying the statistical data to scale the proportion of mid-life
failures and calibrate the overall failure rate to match the overall historical failure rate.

1.23

Scenario 2 1 0.73 This corresponds to assuming all transformer failures are due to wear-out failures of the
active part. Calibration is employed

10.5

Scenario 3 0.12 1 This scenario serves two purposes; 1: Quantify the importance of correctly predicting the
average failure rate. 2: Illustrate a situation where the condition of transformers is
significantly worse than the national average.

57.0

FIGURE 8 Annual energy not supplied in proportion to scenario 0,
where the colours show different delivery points

in Figures 7 and 8. Plots for Ua and 𝜆a are therefore not included
here. Neither are the results for the ra index since the values for
this index are almost identical across the four scenarios.

We do however include results for the expected annual cost
of energy not supplied (interruption cost) index CENSa to illus-
trate the interplay between the criticality of the individual loads
and the condition of the individual transformers. To do so we
consider a variation of the data set in [31] where all delivery
points are assumed to be residential except for the delivery point
at bus 30020 which is assumed to be industrial. With the inter-
ruption cost data in [31] This results in CENSa values as shown
in Figure 9. For this case, it is more important to account for
the component condition when considering the costs of energy
not supplied than when considering other reliability indices. The
reason is that the most critical delivery point is the one most
affected by outages of the transformer with the worst condition.

5 CONCLUSIONS AND FURTHER
WORK

The paper presents a methodology to integrate a condition-
dependent component probability of failure model into the
reliability of supply analysis. The paper illustrates the integra-
tion of a specific model for transformers, but this may easily

FIGURE 9 Annual cost of energy not supplied in proportion to scenario
0, where the colours show different delivery points

be extended to other components. The modelling framework in
Section 3 applies generally, except for the division into active
and non-active parts, which can be omitted for other com-
ponents such as poles. The quantification of the modelling
framework described for transformers in Sections 4.2 and 4.3
must be established for each new component.

A case study using statistical data for Norwegian power
transformers shows that, in the Norwegian power system, the
proportion of failures that are due to the poor condition is
small. In a population where components at present are in good
condition, the importance of taking condition into account
will inevitably be limited in the short term. The sensitivity
analysis shows the importance of adjusting the failure model
to match representative statistical data. The results also show
that if the condition of transformers is worse than in Nor-
way, the impact of poor conditions could be significant. This is
especially important with respect to strategic decisions such as
long-term renewal planning. Further work is, therefore, ongo-
ing to extend the methodology to longer analysis horizons and
more comprehensive modelling of preventive measures and
asset management strategies. This will enable prediction of the
decrease in reliability of supply over a time horizon during
which the transformers are expected to degrade significantly,
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12 TOFTAKER ET AL.

and assessment of appropriate measures that can be taken to
counteract this, such as preventive retirement.

In this case study we for the lack of more detailed data used
the same outage time for both mid-life failures and wear-out
failures. The methodology does however allow for distinguish-
ing the outage times for the two failure types and investigating
the impact of longer outage times expected for wear-out fail-
ures. A natural extension of the proposed methodology is
incorporating a more detailed and dynamic model for the out-
age time that can account for its dependence on component
condition, time, location etc. This will increase the usefulness of
the methodology in asset management, for example, spare parts
logistics, and strategic planning.

Extending the methodology to longer time horizons requires
methods to forecast how the component condition develops
over time. To account for this, an alternative to the analytical
methods considered here is to use Monte Carlo methods to
sequentially simulate the condition and functional state of the
component as a function of time. The simulation may include
failure events, maintenance and other asset management mea-
sures, or other influencing factors. The simulated sequences (i)
may be part of a sequential Monte Carlo reliability of supply
analysis [2, 22], or (ii) may be used to calculate Monte Carlo
estimates of the component failure rate or unavailability as a
function of time. For the former approach, a first step has
already been presented in [30]. There it was used to validate the
analytical approach in the present work, and it will in the future
be extended to consider different asset management strategies.
For the latter approach, the Monte Carlo simulation would
replace the method described in Section 3 to provide input to
the analytical reliability of supply analysis, keeping the other
parts of the methodology described in this paper unchanged.

Introducing condition-dependent failure rates inevitably
introduces more parameters in the model, each of which is asso-
ciated with uncertainty. Including this uncertainty may be of
great importance [5]. On a longer time horizon, the uncertainty
in estimated reliability indices will increase, and it becomes even
more important to quantify it. Further research is needed to
quantify the uncertainty of the component reliability model and
to find ways to propagate this uncertainty through the analysis.

In conclusion, this work has demonstrated steps towards
better utilization of available information related to compo-
nent conditions and failures in the reliability of supply analyses.
Doing so also highlights relevant factors to consider (preventive
replacement, future renewal and maintenance strategies, dura-
tion of forced outages etc.) and gives insight into remaining
methodological challenges and data needs to further improve
decision support for power system development and asset
management.
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