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 
Abstract—A method is introduced for impedance and loss 

calculation of three-core power cables with steel armoring, based 
on 2D finite element method (FEM) computations. The pitching 
effect of the cores and armor wires is taken into account by 1) 
enforcing identical net current on the wires, and by 2) introducing 
a fictitious non-conductive material between the wires having a 
complex-valued permeability. The permeability is obtained by 
considering the effect of the pitching on the total energy in a 
volume slab around each wire, which involves the solving of a 
small 2D FEM problem in an optimization loop. The method 
permits to calculate the positive-sequence and zero-sequence 
impedance on cables, induced sheath currents, and losses in cores, 
sheaths, and armor. The method is validated against published 
results using a full 3D FEM model. The calculations are fast, 
requiring only a few seconds of computation time. The procedure 
is simplified by use of pre-calculated look-up tables for the 
fictitious material permeability value.  
 

Index Terms—Three-core cable, impedance, losses, armor, 
magnetic, permeability, twisting, pitching, finite element method. 

I.  INTRODUCTION 

HREE-CORE armored power cables are widely applied in  
offshore wind parks, for in-field collection and for export 

to shore. Such cables are normally designed as three single core 
cables inside a common steel wire armoring. The determination 
of the cable power transfer capability in thermal-electrical 
analyses requires the ability to correctly calculate the cable 
power losses on the individual metallic parts. It has been 
recognized in numerous works [1], [2] that usage of IEC 60287 
[3] will for such cables substantially overestimate the losses, 
which may lead to a non-optimal cable design. The difficulty in 
modeling three-core armored cables is mainly caused by the 
pitching (twisting) of the magnetic armor wires in relation to 
the power cores. The pitching results in the magnetic field 
getting a low-reluctance component parallel to the wires, in 
additional to the normal and radial components. This parallel 
field component causes an enhancement of the field inside the 
armoring, which increases the induced currents on the metallic 
sheaths (screens), in addition to modifying the eddy current 
pattern in the conductors and sheaths. The presence of magnetic 
steel wires also causes hysteresis losses in addition to eddy-
current losses, and these effects are dependent on the pitching 
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steepness. The pitching also causes an even current distribution 
among the armor wires which must be enforced in calculations.  

In the case of armored single-core cables, the wire pitching 
effect was included in a work by Bianchi and Luano [4]. They 
introduced a field decomposition approach assuming circular 
fields which allows to compute an equivalent permeability of a 
tubular representation of the armor by use of analytical 
expressions that consider skin effect on conductors. The 
approach was further developed in [5] by considering axial 
fields. The works in [4] and [5] are not applicable to three-core 
cables because 1) the closeness of the power cores leads to 
uneven current distribution on conductors (proximity effect) 
which is not accounted for, and 2) because the representation of 
the wire armor by a tubular conductor will for a three-core 
armor result in false circulating currents in the armor.  

A number of works based on Finite Element Method (FEM) 
calculation methods have therefore been proposed. Accurate 
impedance and loss calculation requires in general to use 3D 
FEM variants which include one effective pitch length of the 
cable [6], [7], but the resulting calculations are very demanding 
in CPU time and memory requirements. The computational 
requirements are greatly reduced by utilizing the problem 
periodicity by use of boundary conditions [8], which reduces 
the cable length that needs to be included in the calculation. The 
accuracy of this model type has been demonstrated to give a 
good agreement with measurements [9]. The difficulty with 
long computation times is completely avoided by the use of 2D 
FEM methods. Although the condition of equal current 
distribution among armor wires can be enforced in the 2D frame 
[1], [10], it remains to take into account the field enhancing 
effects caused by the pitching of the cores and the armor. One 
way of including the field enhancement effect is by representing 
the tubular space occupied by the armor with an equivalent non-
conductive material [11]. But such approach does not allow to 
analyze the cable in situations that include zero-sequence 
current components.  

This paper introduces an alternative approach for 2D FEM 
modeling of power umbilical cables which overcomes the 
aforementioned limitations. A fictitious material is introduced 
in the space between the wires that accounts for the magnetic 
field enhancement, while the wires themselves are explicitly 
represented. That way, the zero-sequence current components 
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can be included in the calculations. The material is non-
conductive with a complex-valued permeability that is 
calculated by considering the effect of the pitching of cores and 
armor wires on the magnetic energy within a local volume slab 
around each wire. The condition of equal current distribution 
among the steel wires is explicitly enforced by a procedure 
similar to the one in [10]. The model can directly utilize 
complex-valued permeability obtained from measured B-H 
curves on steel wires [2], [12]. The resulting method is 
implemented in a 2D FEM program which permits to calculate 
the positive-sequence and zero-sequence impedance of three-
core power cables in a few seconds, including the induced 
sheath currents and the losses on individual conductors. 
Calculated results for a 145 kV 800 mm2 cable are compared 
with 3D FEM calculations presented in [13]. One comparison 
from zero-sequence calculations is also presented. A procedure 
for simplifying the procedure is shown in Section IX which 
uses pre-calculated values for the fictitious material 
permeability. The effects of some adopted simplifications are 
assessed in the Discussion section.  

II.  PROBLEM STATEMENT 

Consider a three-core power cable as shown in Fig.1. The 
cable has three cores inside a common round-wire armoring, 
with each core consisting of a conductor and a metallic sheath. 
The cores and armor wires are pitched around the cable axis of 
symmetry, generally with different pitch (lay) lengths.  

The objective is to calculate the cable positive and zero-
sequence series impedance at the system operating frequency, 
as well as the induced sheath current and the power losses on 
the individual metallic parts (cores, sheaths, and armor). The 
following information is assumed to be available. 
1. Geometrical positions, diameters, and conductivities of 

metallic parts. 
2. Pitch length of cores and armor wires. 
3. Armor wire permeability. 

 
The calculations are to be performed using 2D FEM while 

including the (helical) pitching effects of the cores and the 
armor, including field enhancement, equal current distribution 
between armor wires, and additional eddy current and 
hysteresis losses. 

 
Fig. 1.  145 kV 800 mm2 three-core cable. 

III.  OVERVIEW OF PROCEDURE 

The major steps in the modeling procedure are the following. 
1. Calculate the permeability *  of a fictitious, non-

conductive material between armor wires, see Fig. 2. 
i. Define a volume slab around a single armor wire. 

ii. Calculate the fictitious permeability *( 0, )µ µ    for 

the material such that the magnetic field from applied 
currents in the cable axial direction gives approximately 
the same magnetic energy in the volume slab as that 
obtained when considering the effect of the pitching of 
cores and armor wires.  

2. Solve the impedance problem for the complete cable cross-
section using 2D FEM. 

i. Introduce the fictitious material between all adjacent 
wires. (This takes into account the armor field 
enhancement effects) 

ii. Impose the condition of identical net current on the steel 
wires. (This prevents false currents from circulating 
among the wires). 

iii. Solve for impedances, induced currents, and losses.  
 

 
Fig. 2.  Introducing a non-conductive fictitious material with permeability *µ  

in space between armor wires. 

IV.  FEM CALCULATION OF  IMPEDANCES AND LOSSES  

A.  Two-Dimensional Field Problem 

The impedances and losses are obtained by solving the 
Helmholz equation (1) which considers the magnetic field from 
an applied current density sJ in the z-direction. A is the z-

directional magnetic vector potential with associated magnetic 
flux density B A  , which has components in the x-y plane.  

 
1

div( grad ) sA j A J


    (1) 

This 2D field problem is to be modified by an approximate 
method for including the 3D effects caused by the pitching. This 
is achieved by 1) enforcing identical net current on the wires 
(Section V), and by 2) introducing a fictitious complex-valued 
insulating material between the wires (Section VII).  

B.  Field Solving And Loss Calculation 

The solving of the field problem (1) is in this work performed 
using the one-step finite element method proposed by Weiss 
and Scendes [14]. That approach leads to the solving of a linear 
equation on the form    

*µ

Fictitious
material

Volume slab
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   /d dz

j

 
          

a
0

A v
i

 (2) 

where A is the system matrix and i is a vector of specified 
currents imposed on conductors, ,k s k ki J   where k  is the 

conductor surface area. The solution vector explicitly contains 
the voltage drop /d dzv  on these conductors via the relation 

/sJ dv dz   , along with the vector potential a  on the 

nodes of the triangular mesh. For an n-conductor system, the n 
voltage drops /d dzv  are directly related to elements of the 
n n impedance matrix,   

 
1

1
n

n n nd

dz


  

v
Z i  (3) 

The power losses on individual conductors are afterwards 
calculated by integrating the losses over the conductor surface 
area (4), where eJ  is the resulting eddy current density, 

eJ j A  . 

 2| |s e
S

p J J dS   (4) 

The armor losses include hysteresis losses as well as losses 
in the fictitious, non-conductive material that is to be 
introduced. The positive-sequence amour losses are calculated 
indirectly as   

 3armor conductors sheathsp R I p p     (5) 

Further details regarding the actual implementation used in 
this work are given in [15].  

V.  ENFORCING IDENTICAL CURRENTS ON ARMOR WIRES  

A.  Considerations to Current Pattern on Armor Wires 

The armor wires follow a helical path around the cable. The 
following assumptions are made regarding the armor wire 
currents and voltages.   

1. The wire currents follow the helical path of the wires, 
with negligible current crossing between wires. 

2. The induced voltage on each wire is zero over the 
effective pitch length if the sum of conductor currents 
and sheath currents is zero.  

The above assumptions are consistent with past works.  

B.  Positive-Sequence Calculation  

When calculating Z , one applies positive-sequence currents 

(6) on the power conductors with the condition / 0dv dz   on 
the metallic sheaths.   

 2 2 /3[1 ] ,T jh h h e   i  (6) 

The symmetrical design of the cable implies that the sum of 
the sheath currents will be practically zero. The induced voltage 
on the wires that results from the conductor and sheath currents 

will therefore be zero, and so the induced wire currents will also 
be zero. This condition is enforced by specifying zero current 
on all the wires. The FEM solving returns the voltage drops 1v

, 2v , 3v  on the three phase conductors from which the positive-

sequence impedance is calculated,   

 2
1 2 3[1 ] [ ] / 3TZ h h v v v    (7) 

The currents and losses on the individual conductors are 
calculated as outlined in Section IV.Bs. 

C.  Zero-Sequence Calculation  

When calculating 0Z , one applies a zero-sequence current 

component on the power conductors and again the condition 
/ 0dv dz   on the sheaths. In this case, the induced wire 

voltages along one wire pitch are non-zero. It is therefore 
necessary to permit a non-zero current to flow on the wires 
while at the same time enforcing that the wire currents are 
identical.    

To better explain the proposed method, consider an example 
where the armor has only four wires. In order to calculate the 
zero-sequence impedance 0Z , one first calculates the voltage 

drops /dv dz  associated with three separate current 
applications 1i , 2i , 3i  as shown in Fig. 3. In these calculations, 

the metallic sheaths are treated as a common conductor such 
that the system has eight separate conductors. (Because of the 
symmetry, one can alternatively treat the sheaths as individual 

conductors with currents [1/ 3 1/ 3 1/ 3]T  in 2i .)   

 
 1i  2i  3i    

1 1/3 0 0 Phase conductor  
1' 2 1/3 0 0 Phase conductor 

3 1/3 0 0 Phase conductor 
4 0 1 0 Sheaths 2' 
5 0 0 1/4 Wire  

3' 6 0 0 1/4 Wire 
7 0 0 1/4 Wire 
8 0 0 1/4 Wire 

Fig. 3.  Current applications i1, i2, i3, conductors 1-8, and grouped conductors 
1', 2', 3'. 

 
Each of the three current applications results in eight voltage 

drops which are stacked in a matrix 8 3Z . Next, consider that 
the conductors are grouped as defined by the rightmost column 
in Fig. 3. In each current vector, a 1 A current is effectively 
applied on one group with zero current on the other groups. The 
voltage drop associated with each group is calculated as the 
average voltage drop on the individual conductors. The group 
voltages and currents give together a 3 3  impedance matrix,  

 3 3 8 3

1/ 3 1/ 3 1/ 3 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1/ 4 1/ 4 1/ 4 1/ 4

 
 
   
  

Z Z (8) 
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where 3 3Z defines the relation between current and voltage 
drops on the grouped conductors 1', 2' and 3'. The effect of the 
ground impedance gZ  external to the FEM solution boundary 

is added to all elements [15], 

 3 3 3 3
gZ  Z Z  (9) 

If one for instance assumes that the cable is buried in an 
infinite earth, the impedance gZ is given by (10)  [17] where 

R  is the radius of the FEM solution boundary. 0K  and 1K  are 

modified Bessel functions of the second kind, of order 0 and 1.  

 0

1

( )
,

2 ( )g
mK mR

z m j
R K mR


 

   (10) 

The equivalent sheath and armor conductors are bonded 
together by applying the condition 2 3/ /dv dz dv dz  . Simple 

derivations show that the bonding process leads to a 2×2 matrix 
which is obtained as  

 2 2 3 3 1 1( ( ) )T     Z P Z P  (11) 

with 

 
1 0 0

0 1 1

 
  
 

P  (12) 

Finally, the second row of 2 2Z  is eliminated by specifying 
/ 0dv dz   in the second row-equation. The resulting element 

is multiplied by three because the current application 1i  in 

Fig. 3 is one-third of a zero-sequence application. The zero 
sequence impedance is thus obtained as 

 
2 2 2 2

2 2 12 21
0 11 2 2

22

3 ( )
Z Z

Z Z
Z

 



    (13) 

The resulting currents on conductors (total), sheaths (total) 
and armor (total) are obtained as 

 
conductor

3 3
sheath 0 core

armor

1

0

0

i

i Z i

i


   
          
     

Y  (14) 

 

where 3 3 3 3 1( )  Y Z . The obtained current distribution (14) 

can now be applied as known currents to the conductors if one 
wishes to analyze the current distribution on individual 
conductors or power losses. The extension of the method from 
four to any number of wires is straightforward.  

VI.   MAGNETIC FIELDS  

The following describes a procedure for calculating the 
magnetic field components in the parallel and normal direction 
on the wires, considering the pitching effect of both cores and 
armor wires. An effective pitching angle is introduced such that 
the cores can be considered as straight in the 2D FEM analysis 
in Section VII, where the fictitious permeability is calculated.  

A.  Pitching 

Three-core cables are designed with a pitching of the cores 
and armor wires with respect to the cable axial direction. With 
a pitch length of cP  and aP  for the cores and armor, and mean 

radius aR  for the armor, we define pitching angles with respect 

to the armor radius, 

 
c

2
arctan aR

P


   (15a) 

 
2

arctan a

a

R

P


   (15b) 

B.  Positive-Sequence Fields From Cores Pitching 

The pitching of the cores results in a modification of the 
magnetic field components, compared to straight cores. In the 
following, the effect of the pitching on the field components in 
the circumferential ( )  and axial ( )z  directions is calculated 

when the cores are represented by filamentary conductors 
placed at the core centers. There is also generated a field 
component in the radial ( )r  direction but that component will 

not be considered because it does not have a component parallel 
to the steel wires.  

Consider the current along a helical conductor with pitch P  
and radius a  as shown in Fig. 4. The field components at an 
observation point ( , , )r z  are given by (16a) and (16b)  [16]. 

nK  denotes modified Bessel function of the second kind, and 

nI   is the derivative of modified Bessel function of first kind 

 
2

( )
2 2

I Ia
H kr F

r r
  
   (16a) 

 2
2

( )
2

z
Ia

H kr F
r

   (16b) 

where 

 0
1

( ) ( ) cos[ ( )]n n
n

F nI nka K nkr n kz 




    (17) 

 
2 r

k
p


  (18) 
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Fig. 4. Line current in helix with pitch P  and radius a  [16].  

 
The total field from three cores carrying a positive-sequence 

current is obtained by adding field contributions (16a) and (16b) 
from three line currents with locations i  displaced by 

( 1)2 / 3 , 1, 2, 3i i  .  

Consider first the field H  from three straight conductors, 
giving 0, 0zH H   . (This field can be calculated by (16a) 

using a sufficiently large value P a ). Next, consider the 
field H  for the helical case, where 0, 0zH H  . In what 

follows it is shown that the field H in the observation point can 
be estimated with excellent accuracy from the field H  from 

the straight conductors using (19a) and (19b). 

 cos( )H H    (19a) 

 sin( )zH H    (19b) 

As an example (Table I), consider cores with radial center 
positions a=53.34 mm, pitching 2.8 mcP  , and observation 

points on an armor with r=104.5 mm, giving 13.2    by 
(15a). These data correspond to the cable case study in later 
sections. 

TABLE I    
GEOMETRY DATA. 

 Radial position Pitch length 

Core centers a=53.34 mm 2.8 mcP   

Armor wires r=104 mm  

 
Fig. 5 shows the magnitude functions of H  and zH   

calculated using either the exact expressions (16a), (16b) or the 
approximation (19a), (19b). The agreement between the exact 
and approximate result is excellent. The real and imaginary 
parts have a similar accuracy (not shown).  

 
Fig. 5.  Field components H , zH  from 1 Ampere positive-sequence current 

application. 

C.  Positive-Sequence Fields Including Armor Wire Pitching 

The magnetic field from the cores gets components that are 
normal and parallel to the armor wires. Consider the field 
decomposition to a wire that has a pitching angle   by (15b). 

Figs. 6a and 6b illustrate the field decomposition of  H  and 

zH  on the wire, when the wire pitching direction is 

respectively the opposite and same direction as that of the cores. 
From the figures and (19a), (19b) it follows that the magnitude 
of the field components parallel and normal to the wire can be 
obtained as 

 sin( ) sin( )H H H         (20a) 

 cos( ) cos( )H H H   
      (20b) 

where the angle of   is negative when pitching directions are 

the same.  
 

  
Fig. 6a. Field components H 

  and H 
 . Pitching in opposite directions. 

 

 

Fig. 6b. Field components H 
  and H 

 . Pitching in same direction.  

D.  Zero-Sequence Magnetic Fields From Cores Pitching 

Consider now the same example but with a 1 A zero-
sequence current applied to the filamentary conductors. Fig. 7 
shows the field components H  and zH by (16a) and (16b), 

and an approximation of H  by H  (21). Clearly, the field H  

from the straight conductors gives an excellent representation 
of H  from the helical conductors.  

 H H   (21) 

zH is seen to be very small compared to H . Therefore, the 

contribution from zH  to the parallel component on a steel wire 

will also be small. One can therefore conclude that only the 
pitching of the steel wires needs to be considered in a zero-
sequence application when calculating the field components 
parallel and normal to the steel wires. The estimated values now 
become  

 0 sin( )H H   (22a) 

 0 cos( )H H    (22b) 

z

(r, , z)




H

H

zH



H 


H 
H

Wire



(r, , z)




Wire

z

H

H
zH


H 


H

H 

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Fig. 7.  Field components H , zH  from 1 Ampere zero-sequence current. 

VII.  INCLUDING PITCHING EFFECTS IN 2D FEM ANALYSIS 

A.  Field Decomposition 

The previous section has shown that the field components in 
the parallel and circumferential directions can be calculated by 
considering the cores as straight with the armor wires having an 
effective pitching angle. The effective pitching angle   is 

defined by (23a) and (23b) for positive and zero-sequence 
excitations, respectively. The sign in (23a) is positive for 
pitching in opposite directions, and negative with pitching in 
the same direction. 

       (23a) 

 0   (23b) 

Consider that a positive-sequence or zero-sequence current 
is applied on the phase conductors. The imposing magnetic 
field H  on an armor wire gets a circumferential component 
H  on the wires given by (24) where e


 and e


 are unit-length 

directional vectors.  

 cos sinH H H H e H e         
    

 (24) 

The effect of the field decomposition (24) is in the following 
two subsections quantified by calculating the associated 
magnetic energy in the two directions. Finally, a fictitious 
material is calculated such that the total magnetic energy is 
preserved in a 2D calculation without fields in the parallel 
direction. The analysis makes the assumption that the imposed 

fields H


 and H


 are invariant over the slab area.  

B.  Analysis Domain  

We wish to analyze the field in a volume slab that includes 
the fictitious material in Fig. 2. Due to problem symmetry, it is 
sufficient to analyze a quarter of the volume slab, as indicated 
by the shaded area in Fig. 8. The geometry is defined by the 
wire radius wr , the gap distance g , and wire permeability w
. The slab has height / 2wr g  (circumferential direction), 

width r b  (radial direction), and depth / 2wr g  (parallel 

direction). The distance b  is chosen sufficiently large to 
include all field fringing effects in the gap. (In this work, a value 

4 wb r  is used while in practice a much smaller distance can 

be used without noticeably changing the result, e.g. wb r ). 

The following subsections show that the effect of the parallel 
field component H  can be included in the normal component 

H  by introducing an artificial material whose permeability is 

calculated by requiring the magnetic field energy in the volume 
slab to be preserved. 

  
Fig. 8.  Volume slab for analysis of field decomposition.  

C.  Energy Associated With Parallel Field Component    

The wire magnetic properties in the parallel direction is 
assumed to be known from measurements, characterized by a 

complex permeability w
  that takes into account both eddy 

current effects (rotational currents) and hysteresis losses. The 

application of a field strength 1H   gives an associated 

energy W   in the volume slab that is calculated analytically by 

(25). The energy is complex-valued when w
  is complex-

valued.    

 
2 2

0

1

2

( )( ) ( )
2 4 2 4 2

V

rw
w w w

W H B dV

µ µ r g r g
r b r r

 



 
       

  

  

  (25) 

D.  Energy Associated With Normal Field Component    

The magnetic field associated with an imposed field H  in 

the normal direction is affected by fringing effects in the air gap 
which need to be taken into account. Ignoring the effect of eddy 
currents, the associated 2D field problem is the Poisson 

equation (26) with a wire permeability w
 , where K  is a scalar 

vector field such that H K  .  

 div( grad ) 0K   (26) 

Consider the application of a field strength 1H  . The 

energy W  within the shaded area in Fig. 8 is obtained by 

solving the scalar field problem (26) in that area using 2D FEM, 
with boundary conditions given in Fig. 9. The Neumann 
condition on the left and right boundary forces the H-field 
( )H K   to become parallel to these boundaries, while the 

Dirichlet condition on the top and bottom boundary forces the 
H-field to become normal to those boundaries. Moreover, the 
H-field is practically constant along the right boundary. From 
H K  we get  | | 1H  , which is the same field that was 

applied in the parallel direction in the preceding sub-section. 

brw

g

rw
µw
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The energy W   is extracted from the solution by the FEM 
solver, which for the volume slab is defined by (27). In this 
work we will use the same wire permeability in the normal and 

parallel direction, w w    .  

 
1 1

( )
2 2 2w

V A

g
W HBdV r HB dA      (27) 

It is to be observed that the field H  in (27) is distorted due 
to field fringing effects. Also, W W    because the normal 

field component has a series gap, thereby providing a high-
reluctance path for the magnetic flux.  

 
Fig. 9.  Field problem for energy calculation, normal field component. 

E.  Total Energy 

The total energy is given by (28) when considering that  the 
imposed field H  has components cosH H    and 

sinH H   (24).  

     2 2
tot cos sinW W W     (28) 

F.  Representing Total Energy in 2D FEM calculations by 
Fictitious Material in Wire Gaps 

In a 2D FEM computation, there is no parallel field 
component. In order to include the (increased) energy in the 
FEM computation, we introduce a fictitious material with 

unknown (complex) relative permeability *µ  and zero 

conductivity in the space between the armor wires such that 

totW W  , see Fig. 10. The permeability *µ  is obtained 

iteratively by finding the root (zero value) of (29) with W  

calculated by solving (26) within the rectangular box in Fig. 10. 

     
*

2
tot *min(| ( ) cos |)

µ
W W µ    (29) 

The fictitious material will give field enhancement in both 
the radial and the circumferential directions. The material 
should therefore be chosen anisotropic with *r   in the 

circumferential direction and 1r   in radial direction. 

However, because the field lines will with normal (small) gap 
distances tend to follow the low-reluctance path in the 
circumferential direction, it is permissible to simplify the 
problem by assuming *r   in both directions.  

  
Fig. 10.  Introducing non-conductive fictitious material with permeability *µ . 

G.  Minimizing Cost Function 

The minimization of (29) requires repeated solving of the 
field problem (26) within the rectangular box in Fig. 9 with two 
free variables, *Re{ }  and *Im{ } . The following two-step 

procedure is used in this work.    
1. Find *| |  such that | |  is minimized, with *  fixed. 

2. Find *  such that | |  is minimized, with *| |  fixed. 

Both steps 1 and 2 involve finding the minimum of a 
concave function and is therefore fast. The procedure starts with 

* 0  . Suitable bounds are specified for *| |  and * . 

Steps 1-2 are performed two times, requiring less than 2 
seconds of CPU time.  

VIII.  COMPARISON AGAINST 3D FEM CALCULATIONS  

The modeling accuracy is in the following assessed for an 
145 kV 800 mm2 three-core armored cable by comparing 
calculated results against those by a 3D FEM program [13]. 
Additional information about the geometry and the calculated 
results were provided by one of the authors of [13], Prof. Juan 
Carlos del Pino López. 

A.  Cable Geometry and Material Parameters 

The cable geometry and material properties are defined in 
Fig. 1 and Table II. There exists a small 0.16 mm gap between 
the wires. The three cores have a pitch (lay) length of 2.8 m 
while two alternative pitch lengths are considered for the armor: 
4.5 m and 2 m, with pitching in opposite direction of the cores.  

 
TABLE II    

CABLE PARAMETERS. 
Item Parameter Value Unit 

Conductor Radius 17.5 mm 

 Conductivity @20 C 48.23·106  S/m 

 Thermal coefficient 0.00393 C-1 
Sheath Radius, outside 43.8 mm 

 Thickness 3.7 mm 

 Conductivity @20 C 4.7·106  S/m 

 Thermal coefficient,  0.004 C-1 

Armor  Outside diameter 214.6 mm 

 Number of wires 114  

 Wire diameter 5.6 mm 

 Conductivity @20 C 7.3·106  S/m 

 Thermal coefficient,  0.0045  C-1 

 Permeability 300-j50  

0
K

n





0

K

n






div( grad ) 0K rw

1r 

1/ ( / 2)wK r g 

0K 
wr b

/ 2wr g

0
K

n





0

K

n





div( grad ) 0K 

rw

1r 

1/ ( / 2)wK r g 

0K 
wr b

/ 2wr g
*
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TABLE III    
PITCHING. 

Item Pitch length, P  ,   

Cores 2.8 m (positive direction) 13.2 
Armor 
wires 

4.5 m or 2.0 m (negative 
direction) 

8.3 or 
18.2 

B.  Parameter Conversion 

In order to compare with calculated results by the 3D FEM  
model, some parameter conversions are necessary.  
    1)  Armor Permeability 

The permeability listed in Table II ( 300 50)rµ j   was in 

the 3D FEM calculations [13] used as a material constant, i.e. it 
was used along with the steel wire conductivity. This implies 
that the permeability imaginary part is intended to account for 
hysteresis losses only. In the proposed work (this paper), the 

permeability in the parallel direction w
  is assumed to account  

for both eddy current losses and hysteresis losses. A parameter 
conversion process is therefore applied which calculates a 
modified permeability where the effect of the conductivity is 
included, see Appendix. Note that the modified permeability is 
only used for calculating the fictitious permeability *  whereas 

the original permeability ( 300 50)rwµ j   is used in the 2D 

FEM calculation of the complete problem (1) where the wire 
conductivity is non-zero, Fe  .  

    2)  Conductivities 
The 3D FEM model was in [13] applied in a thermal-

electrical analysis, resulting in different temperatures on the 
metallic parts (conductors, sheaths, armor). The conductivities 
in Table II are accordingly modified by (30), using the average 
temperatures on the conductors from the 3D FEM calculations 
together with the thermal coefficients   from Table III. The 
average temperatures are listed in Table IV, for the two armor 
pitch lengths used in the following subsections.  

     20

20

( )
( )

1 ( )

T
T

T T







 
 (30) 

 
TABLE IV 

AVERAGE TEMPERATURE ON CONDUCTORS. 
 Temperature T  

Armor pitch length Phase conductors Sheaths Armor 
4.5 m 67.3 C 59.6 C 48.3 C 
2.0 m 70.1 C 62.2 C 51.1 C 

C.  Positive-Sequence Excitation Results 

In the first comparison, the armor pitch length is 4.5 m, 
giving an effective pitch angle 21.5    by (23a). A 50 Hz 

positive-sequence current of 732 A is applied to the phase 
conductors, with the sheaths and armor grounded.  

The first row in Table V shows the calculated results by the 
3D FEM model [13]. The next four rows show the deviation 
from the 3D result by three alternative 2D FEM models. Models 
M2 and M3 do not include the fictitious material. 
 M1: 2D FEM model proposed in this work.  

 M2: 2D FEM model with enforcement of identical current 
on all armor wires. 

 M3: 2D FEM model where currents are allowed to 
circulate among the (bonded) armor wires.  

 
The proposed model (M1) is seen to give an excellent 

agreement with the result by the 3D model, for series 
impedance ( R , X ), induced sheath currents, and power 

losses in phase conductors, sheaths and armor. Use of M2 and 
M3 gives much higher errors. With both methods (M2, M3), the 
missing field enhancement gives too low sheath currents, and 
the sheath losses are therefore too small. The conductor and 
sheath losses are also affected by proximity effects, which are 
different for the three models (M1, M2, M3) due to differences 
in the magnetic field strength and its distribution inside the 
armor. Use of M3 also gives much too high  armor losses due 
to false circulating currents among the armor wires. 

The permeability of the artificial material used by M1 is 

* 2.89 1.30r j   . Fig. 8 shows the scalar magnetic potential 

K  by solving (19).  
 

TABLE V    
RESULT BY 3D FEM AND PER CENT ERRORS BY 2D FEM  

MODEL ALTERNATIVES. 2.8 m , 4.5 m, 732 Ac aP P I   .  

 R+ 
[Ω] 

X+ 
[Ω] 

Isheath 
[A] 

Pcond 

[W/m] 
Psheath 

[W/m] 
Parmor 

[W/m] 
3D FEM 0.0501 0.122 158.9 50.0 25.7 4.8 
M1 err % -1.0 -0.2 2.0 -2.7 -0.1 11.9 
M2 err % -12.0 -2.1 -5.0 -3.3 -14.5 -88.3 
M3 err % -8.0 -8.1 -16.3 -5.1 -34.2 103.8 

 

 
Fig. 11.  Magnetic scalar potential (K) in solution area. 

 
Table VI shows the same result when the armor pitch length 

is reduced to 2.0 m such that the effective pitch angle is 
31.4   . The proposed model (M1) still gives a good 

agreement with the 3D FEM model. The armor losses are now 
16.7% too high, but this amounts to only 0.8 W/m which is 
insignificant compared to the total losses (84.8 W/m). The 
errors by models M2 and M3 are generally higher than for the 
previous case with 4.5 m armor pitch length. The permeability 
of the artificial material is * 5.49 3.08r j   .     
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TABLE VI    
RESULT BY 3D FEM AND PER CENT ERRORS BY 2D FEM  

MODEL ALTERNATIVES. 2.8 m , 2.0 m, 732 Ac aP P I   . 

 R+ 
[Ω] 

X+ 
[Ω] 

Isheath 
[A] 

Pcond 

[W/m] 
Psheath 

[W/m] 
Parmor 

[W/m] 
3D FEM 0.0528 0.125 167.2 50.8 29.0 5.0 
M1 err % -1.2 -0.7 1.1 -2.4 -2.0 16.7 
M2 err % -16.2 -4.1 -10.3 -4.4 -24.6 -88.4 
M3 err % -13.4 -9.6 -20.5 -5.6 -41.5 71.1 

 

D.  Zero-Sequence Impedance  

A comparison with 3D FEM was made for the zero-sequence 
impedance 0 0Z R jX  . The temperature on power 

conductors, sheaths and armor are 68 C, 60 C and 51 C, 
respectively, and the sea conductivity is 5 S/m. The cores and 
armor pitch lengths are 2.8 mcP   and  3.5 maP  , with 

pitching in opposite directions.  
Table VII shows the calculated result by 3D FEM, and the 

deviation from this solution by models M1, M2 and M3. It is 
observed that all three models give a good agreement with the 
3D FEM result, with the result by M1 marginally less accurate 
than that of M2 and M3. The difference in the result by models 
M1, M2 and M3 is much smaller than with the positive-
sequence calculations.  

 
TABLE VII    

ZERO-SEQUENCE IMPEDANCE. 2.8 m , 3.5 mc aP P  . 

 2.8 m , 3.5 mc aP P   

 R0 [Ω] X0 [Ω] 

3D FEM 0.16701 0.12972 

M1 dev% 1.5% -1.6% 
M2 dev% -1.0% -0.5% 
M3 dev% -1.0% -0.6% 

  

E.  CPU Times 

The calculations were performed using a 155 368 element 
triangular mesh. The ensuing calculation of the impedances, 
induced currents, and losses required 17 sec on a 2.8 GHz dual 
core desktop computer. Using a coarser mesh with 39 232 
triangles gave practically the same result, but within 3.2 sec. 

IX.  SIMPLIFIED CALCULATION ASSUMING REAL-VALUED 

WIRE PERMEABILITY  

Often, the information about the armor wire permeability is 
given by a real-valued quantity w . The effective permeability 

eff  considering eddy current effects can still be calculated by 

the approach in Section B in Appendix when assuming 

mat wµ  , leading to a complex-valued permeability. The 

procedure can be further simplified by simply setting eff w 

. With this assumption, the permeability *  of the fictitious 

material becomes real-valued, and it depends only on the ratio 
/ wg d  between the wire gap distance g  and the wire diameter 

2w wd r , in addition to the effective pitching angle   and the 

permeability value w .  

Fig. 12a shows the calculated value for * 1   as function of 

 , with / 0.01wg d  . It is observed that the permeability *  

to be used increases with increasing values for   and w . It 

follows that look-up tables can be easily generated for various 
combinations of / wg d ,   and w . That way, 2D FEM 

modeling can be easily used for impedance and loss 
calculations. Figs. 12b and 12c show the corresponding results 
for two alternative values 0.02 and 0.03 for / wg d . 

 

 
Fig. 12a.  Permeability of fictitious material. / 0.01wg d  . 

 
Fig. 12b.  Permeability of fictitious material. / 0.02wg d  . 

 
Fig. 12c.  Permeability of fictitious material. / 0.03wg d  . 

 
Table VIII shows with bold characters the calculated 

positive-sequence quantities, when using a real-valued 
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permeability 2 2300 50 304wr     for the case with 2.0 m 

armor pitch length. With  / 0.0285wg d  , this gave 8.6µ   

for the fictitious material. The accuracy is lower than for the 
original model M1 (Table VI), but still substantially more 
accurate than the results by M2 and M3.   

 
TABLE VIII    

RESULT BY 3D FEM AND PER CENT ERRORS BY 2D FEM  
SIMPLIFIED MODEL. 2.8 m , 2.0 mc aP P  . 

 R+ 
[Ω] 

X+ 
[Ω] 

Isheath 
[A] 

Pcond 

[W/m] 
Psheath 

[W/m] 
Parmor 

[W/m] 
3D FEM 0.0528 0.125 167.2 50.8 29.0 5.0 
M1 dev% -2.0 1.1 4.7 -2.0 4.5 -40.5 

X.  DISCUSSION 

A.  Representation of Magnetic Field Distribution 

The pitching of cores and armoring leads to a magnetic field 
distribution that is not correctly represented in the solution by 
standard 2D FEM calculations because the conductors are here 
assumed to be straight. This work has shown how to 
approximately take into account the pitching effects on 
electrical parameters by introducing a non-conductive, 
magnetic material between the armor wires, which intends to 
take into account the field components that result parallel to the 
armor wires.  It is to be noted that the procedure is only an 
approximation. E.g., it does not consider the increase in 
magnetic energy in the space between the cores and armor that 
is associated with the axial, solenoid-like field caused by the 
cores pitching.  

B.  Impact of Proximity Effects on Modeling Assumptions 

One specific simplification being made is the use of core 
centers as locations for the equivalent filamentary current when 
calculating the effect of the pitching on the field component 
parallel to the wires. In reality, the proximity effects causes a 
displacement of the radial position a  in (16a), (16b) and (17). 
With a positive-sequence current excitation, the displacement 
is such that a  is reduced on the power conductors and increased 
on the sheath conductors. The relative shift is in general 
dependent on the conductor sizes and the frequency of the 
applied currents.  

C.  Comparison With 3D FEM Results 

Despite the approximations being made, the resulting 
method was shown in Section VIII to give an excellent 
reproduction of calculated positive-sequence parameters 
(impedance, induced sheath currents, total losses) for an 
800 mm2 cable when compared to a full 3D FEM solution, with 
errors smaller that 2%. The accuracy is much better compared 
to the result by a plain 2D FEM calculation, with or without 
enforcement of equal current on the armor wires. One  
validation was made for the zero-sequence result. Here, a good 
result was obtained for all 2D FEM variants.  

D.  Simplified Variant    

Section IX proposes a simplified variant using real-valued 
permeability for the steel wires, which leads to a real-valued 

permeability *µ  for the fictitious material. This approach was 

shown to give a slightly reduced accuracy for positive-sequence 
parameters than the one using a complex permeability. 
Nevertheless, the accuracy was found to be substantially higher 
than for alternative 2D approaches, including enforcement of 
equal wire currents (M2) and bonded wires (M3). Look-up 
values for *µ  were presented in Figs. 12a, 12b and 12c that can 

be used for determining the fictitious material, without having 
to resort to the more sophisticated approach in Section VII. The 
permeability values are dependent on the ratio between gap 
distance and wire diameter, and not on the wire diameter itself. 

Therefore, the presented *µ  values are applicable for any three-

core cable with single-layer armoring.   

E.  Further Work  

The method in this work is intended for modeling three-core 
cables with a single-layer steel armoring having a small gap 
distance between the wires. Further developments and 
validations should be performed for this geometry and other 
geometries, e.g. two-layer armors, and armors with a wide gap 
between the wires.  

XI.  CONCLUSION 

A 2D finite element model is proposed for calculating the 
positive and zero-sequence impedance parameters of armored 
three-core cables featuring a single-layer steel armor. The 
model takes into account the pitching (twisting) effect of 
cores and armor wires by introducing a fictitious non-
conductive material between the wires with permeability *µ , 

in addition to enforcing identical currents on the wires. That 
way, the magnetic field enhancement effects and additional 
losses caused by the pitching are accounted for. Comparison 
with calculated results by a full 3D model demonstrates good 
accuracy for positive-sequence parameters: impedance, 
induced sheath currents and loss distribution on conductors. 
The model should be attractive for practicing engineers 
because 1) it can be applied using widely available 2D FEM 
programs, and 2) the calculation time is very short (a few 
seconds). The use of the method is simplified by use of 
precalculated look-up tables for *µ . The accuracy of the 

approach should be assessed also for zero-sequence 
parameters as well as other cable designs, e.g. three-core 
cables with two-layer armors, and armors with a wide 
separation between the wires. 

APPENDIX A -  PERMEABILITY CONVERSIONS 

A.  Permeability Representations  

The wire permeability is treated as a material constant mat  

in the complete 2D FEM model (Section IV), i.e. with Fe 
. But the calculation of the parallel and normal field components 
with associated energies (Section VII) requires the use of an 
effective permeability eff , i.e. with 0  . Therefore, two 

alternative permeability representations mat  and eff  are 
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needed. 

B.  Conversion From mat  to eff  

Consider the (parallel) magnetic field created by a unit 
length current sheet around a wire with radius wr . The 

associated impedance is given by (31) [21], where I0 and I1 are 
modified Bessel functions of the first kind.  

21
0 0 0 0

0

2 ( )
, ,

( )
w

r w r
w w

I m r
Z j L L µ µ r m j µ µ

mr I m r
      (31) 

A reference impedance is calculated by (31) using mat   

and the actual steel conductivity, Fe  . The effective 

permeability eff  is next calculated by numerical optimization 

where the conductivity is set to a low value (32). The solving is 
done in two stages. The magnitude of eff  is first modified so 

that the error in | ( ) |effZ   becomes zero, and the angle of eff  

is next modified such that the error of ( )effZ   becomes zero. 

The two-step procedure is repeated until convergence. The 
procedure resulted in that the permeability 300 50mat j    in 

Section VII was converted to 173 128eff j   .  

     Femin( ( , 0) ( , ))
eff

eff mat
µ

Z Z          (32) 

C.  Conversion From eff  to mat  

The opposite situation is that the permeability is given as the 
effective permeability eff , e.g. when obtained from B-H 

measurements on representative steel wires. The material 
constant mat  is easily calculated using a very similar 

procedure as the one in the preceding sub-section, with obvious 
modifications. It is then tacitly assumed that the permeability is 
constant in the wire, i.e. unaffected by the variation in field 
strength over the wire cross-section area.   
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