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Abstract

Optimisation tools for long-term grid planning considering flexibility resources require
aggregated flexibility models that are not too computationally demanding or complex. Still,
they should capture the operational benefits of flexibility sufficiently accurately for plan-
ning purposes. This article investigates the sufficiency of an aggregated flexibility model
for planning tools by comparing it against a detailed flexibility model. Two different con-
straint formulations, namely based on recovery period and temporal proximity, were tested
to account for post activation dynamics of flexibility resources. The results show that the
recovery period based formulation results in excessive demand reduction. The proxim-
ity constraint formulation on the other hand results in realistic activation of flexibility
resources, which represents an improvement over the base formulation without constraints
for post activation dynamics. The results show how a too simple model of the opera-
tional behaviour of demand flexibility may overestimate its benefits as an alternative or
supplement to grid investments.

1 INTRODUCTION

Distribution grids have traditionally been designed to handle the
load flows of the peak load hour, and local congestions and volt-
age quality problems are solved by grid reinforcements. There is
an increased interest in utilising flexibility resources as an alter-
native or supplement to the traditional grid infrastructure in the
grid planning process. Flexibility resources include, for exam-
ple, industrial and residential shiftable loads and energy storage
systems which may be activated for peak shaving or voltage con-
trol and thereby reduce needs of investment in traditional grid
infrastructure [1].

Traditional infrastructure such as power lines and cables,
transformers, and compensators have well-determined capaci-
ties. The potential and capacity of flexibility resources, on the
other hand, are highly dependent on operational conditions.
The benefits of flexibility in terms of reduced or deferred grid
investment costs are thus determined by their behaviour dur-
ing grid operation. In order to take flexibility resources into
account in long-term distribution grid planning, models captur-
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ing the relevant operational constraints and benefits are needed
in the software tools used for grid planning. The requirements
for such flexibility models depend on two major factors: The
first is the types of grid services being considered in the plan-
ning tool; the second is the level of aggregation or simplification
to be taken, driven by computational limitations and data avail-
ability. A general requirement is that it is important to capture
constraints related to temporal interdependencies in the flexi-
bility resources. This is a new requirement that did not apply
to planning tools in which only traditional grid infrastructure
is considered.

Existing demand flexibility models in the literature are either
developed and applied from an operational perspective or from
a long-term planning perspective. For the first type of models,
the focus is typically on the modelling of activation, rebound
effects and aggregation of individual flexibility resources (e.g.
individual loads within households) [2]. Optimisation models
for long-term grid planning purposes, on the other hand,
typically only allow for a simplified mathematical representation
of grid operation and flexibility activation. Computational
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complexity is one important reason, since such models also
need to consider power flow constraints in an extended
grid area and over an extended time horizon with multiple
investment options [3–8].

A number of works have analysed the temporal modelling of
demand flexibility models with the aim of computational effi-
ciency. Avramidis et al. propose a linear approximation to deal
with the binary nature of shiftable loads in multi-period optimal
power flow and compare it to a non-linear formulation [9]. A
linear programming approach is used in [10] to provide optimal
residential load control in real-time pricing environments. Sim-
plified power-time flexibility models are introduced in [11] to
investigate the potential of load shifting on large scale. In [12],
two types of flexible demand models, namely directly and stor-
age managed flexible demand models, are introduced in the
context of active distribution management. Vanin et al. focus on
the modelling of binary constraints and apply different linearisa-
tions and convex relaxations to model flexibility in unbalanced
three phase networks [13].

As for long-term grid planning applications, Klyapovskiy
et al. propose a framework for incorporating flexibility and use
a simulation based approach to compare investment options in
a medium voltage distribution grid [14]. Utilisation of demand
response to balance for wind power generation uncertainty is
analysed in [15] utilising a simplified demand response model
based on assumed demand response bids. Noucier et al. ana-
lyze the effects of implicit and explicit incentives on distribution
system investments utilising a bi-level optimisation model [16],
whereas [17] uses a two-stage optimisation model for opti-
mal investment sizing, utilising Benders decomposition. Grid
expansion models including implicit (price-dependent) demand
response programs and investments to enable load shifting are
proposed in [18] and [19], respectively.

Although a variety of demand flexibility models exist for
long-term planning and for operational studies, the method-
ologies presented in the literature are often limited to load
reduction (curtailment) [15, 16] or rely on given ranges for up
and downward flexibility provision [12, 14, 17–19] and load
recovery times [14, 19] for tractable formulation of the opti-
misation problem. However, the effects of generalisation and
parametrisation of such models on the accuracy have not been
discussed sufficiently in the literature, which is the aim of
this article.

Although a variety of demand flexibility models exist for
long-term planning and for operational studies, the methodolo-
gies presented in the literature often rely on given ranges for
up and downward flexibility provision and load recovery times
for tractable formulation of the optimisation problem. How-
ever, the effects of generalisation and parametrisation of such
models on the accuracy have not been discussed sufficiently in
the literature, which is the aim of this article.

Here, we combine the long-term planning perspective and
the operational perspective by applying a generic, parametrised
demand flexibility model designed for long-term planning and
comparing it to a more detailed, operational model. Our focus
is on residential demand flexibility resources and on capturing
flexibility services for congestion management in distribution

grids. Our motivation is the need for a demand flexibility model
that represents the operational behaviour of demand flexibil-
ity sufficiently accurately for the purpose of distribution grid
planning studies while still being relatively generic and not
demanding in terms of input data requirements. In simple terms,
the general research question is: How does the operational
benefits and costs of demand flexibility, as an alternative or sup-
plement to grid investments, depend on how demand flexibility
is modelled?

In particular, we will assess the sufficiency of possible
mathematical formulations for representing rebound effects in
long-term grid planning tools. If such temporal interdepen-
dencies are not properly accounted for, planning tools may
overestimate the operational benefits when comparing the use
of flexibility to investment in traditional grid infrastructure.

With respect to the literature summarised above, this article
presents the following main contributions:

∙ It presents a generic model of demand flexibility, including
two novel formulations for temporal interdependencies. This
demand flexibility model is incorporated in a comprehensive
tool for optimal long-term grid planning considering power
flow and grid constraints.

∙ It provides the parameterisation of the generic flexibility
model based on real load demand data and more detailed
models of selected individual demand flexibility resources.

∙ By comparing the generic and the detailed flexibility model,
the sufficiency of the generic demand flexibility model for
grid planning is investigated. This investigation identifies and
illustrates effects that are not captured by the more coarse-
grained generic flexibility model but that are relevant for
long-term grid planning purposes (e.g. rebound effects).

The rest of the article is structured as follows. First, mod-
els for demand flexibility are introduced in Section 2, including
(a) detailed models of individual flexibility resources and (b)
a generic demand flexibility model for aggregated flexibility
resources. The flexibility representations are investigated and
compared using a test case in Section 3. The findings are
summarised in Section 4.

2 MODELLING OF FLEXIBILITY
RESOURCES

This section first describes the models for selected individ-
ual demand flexibility resources in the residential sector that
we consider as examples in this article (Section 2.1). It then
describes how they are activated according to a detailed opera-

tional model for demand flexibility in Section 2.2. Since these
models need to capture the time dependencies and rebound
characteristics for the load types and geographical area they
are representing, load measurements from Norway are used
to construct the detailed models presented here. Further, Sec-
tion 2.3 describes the generic demand flexibility model for
long-term grid planning purposes. Finally, Section 2.4 describes
a comprehensive tool for optimal long-term grid planning that
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5004 BØDAL ET AL.

incorporates the generic demand flexibility model. For brevity,
the latter will be referred to as the planning tool.

2.1 Modelling of individual residential
demand flexibility resources

In the residential sector, the flexible resources can be classified
based on their power and energy capacity, and ease of shifting.
Temperature-controlled loads such as space heaters and elec-
tric water heaters (EWH) have high power and energy storage
capacity. White goods such as cloth washing machine (CWM),
cloth drying machine (CDM) and dish washing machine (DWM)
have low energy capacity, but very high shiftability to any time
of the day. They are classified as atomic loads due to their
autonomous operation [20].

2.1.1 EWH flexibility

EWH has quantifiable heat capacity, predictable demand and
flexibility, and all-season availability. EWH is modelled as a gen-
eral thermostatically controlled load (TCL) with temperature
hysteresis described for each individual EWH l as (1) and (2)
adopted from [21].

dTtl

dt
=

1
Cl Rl

(
T a

t − Ttl + StlRl Pm
tl

)
(1)

Stl =

⎧⎪⎨⎪⎩
1 if S(t−1)l = 0 and Ttl ≤ T min

l

0 if S(t−1)l = 1 and Ttl ≥ T max
l

S(t−1)l Otherwise

(2)

In general, the volume and power rating of EWH in a Nor-
wegian single family house is 200 L and 2–3 kW [22]. EWH
consumption data was collected from multiple single family
houses in Norway for a duration of 285 days from March 2016
to February 2017 [23]. Data analysis of the smart meter data
reveals that typical temperature hysteresis is 5◦C. The EWH has
a lower temperature threshold Tmin of 70◦C to avoid the growth
of Legionella [24], and an upper threshold Tmax which is 75◦C.
The typical value of thermal capacitance of the hot water tank
is found to be 0.335 kWh/◦C. The average demand profile for
24 h for a single family house is as shown in Figure 1. The EWH
model in (1) can be modified to (3) by adding the heat demand
to the ambient temperature loss as shown in (4):

dTtl

dt
= Stl

Pm
tl

Cl
− Ṫtl (3)

where

Ṫtl =
1

Cl Rl
(T a

t − Ttl ) + Ṫ Load
t (4)

Today, EWH flexibility can be controlled by switching them
OFF, only when the internal thermostat is ON. The internal
thermostat will disconnect EWH during the temperature hys-

FIGURE 1 Average heat demand profile from a EWH at single family
house

teresis. Therefore, EWH cannot be forced to switch ON during
the temperature hysteresis period. The downward flexibility is
achieved by forcing the EWHs to switch OFF, and the upward
flexibility is achieved by using their rebound characteristics. The
flexibility potential of EWH is characterised as available flexible
power, flexible energy and resultant rebound at different hours
of a day. EWHs can be switched OFF for a maximum duration
of 2–6 h without violating user comfort [22], [25]. The duration
depends on the size of the hot water tank and hot water
demand. For the detailed flexibility model, EWH flexibility has
been activated during every hour of a day for 1 h on the base
profile and corresponding rebound is calculated. A group of
1000 EWHs are used for the simulation and calculation. Final
values are normalised to per unit. A detailed analysis of flexi-
bility activation on EWHs is available in [26]. Equations (2)–(4)
are used to generate different discrete demand profiles with
flexibility activation at all hours of the day, which includes the
rebound effect due to temperature loss. The generated power
profiles are used in (6) of the detailed flexible demand model in
Section 2.2.

2.1.2 Atomic loads flexibility

Unlike TCLs, atomic loads cannot be interrupted if they are
already started and in operation. Interrupting their operation
may affect their programmed operational sequence. Therefore,
atomic loads that are started cannot be interrupted in order to
move load to another hour. On the other hand, atomic loads can
be shifted to any desired hour of the day, which is not possible
with EWHs as they are bound to keep the water temperature
within the limit. The probability distribution of an atomic load
to start at different hours of the day and their demand pro-
file are used to identify their flexibility potential [2]. The power
consumption profiles for different modes of operation of cloth
washing machines (CWM), cloth drying machines (CDM) and
dish washing machines (DWM) are shown in Figure 2. Their
probability to start at different hours of a day is shown in
Figure 3. To have average load profile and their flexibility poten-
tials, a sufficiently large number of cases have to be simulated.
For the detailed flexibility model, simulation of a population
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BØDAL ET AL. 5005

FIGURE 2 Average demand profile of atomic loads

FIGURE 3 Probability of atomic loads to start at different hours of a day

of 1000 households was used, and the resultant profiles are
normalised to per unit.

2.2 Activation of flexible demand
components in a detailed demand flexibility
model

The activation of all the flexible load components must be
scheduled over the operational planning horizon to get an
aggregated demand flexibility at the relevant buses, which is use-
ful for operation of the distribution grid. A detailed operational
model is developed to model the optimal flexibility activation
for managing congestions in the distribution grid and accurately
estimate the operational costs and benefits. Its purpose in this
article is to serve as a basis of comparison for the more coarse-
grained grid planning tool introduced in the next section. The
model represents the operational planning problem faced by a
flexibility aggregator responsible for a set of buses downstream
of the potential congestion. The aggregator is given forecasts
of the (reference) load demand and a net exchange capacity by
the distribution grid operator. The objective is to find the lowest
cost activation of the flexible demand components such that the
resulting load is lower than a net exchange capacity, thus avoid-
ing costly load reduction or curtailment of the non-shiftable
residual load.

The cost of flexibility activation as measured by compensa-
tion to the energy consumer per units of energy that is shifted

in time is given by C SD . For comparison with the generic model
in Section 2.3, we also include the flexibility option of (volun-
tarily) reducing load, which is compensated at a cost of C nce

per unit of energy that is not consumed. Load curtailment rep-
resents forced reduction of load and is a slack variable which
ensures feasibility of the optimisation model. In addition, the
cost of load curtailment, C curt , is added to the objective func-
tion and is typically two orders of magnitude higher than the
marginal generation costs. The objective function is shown in
(5). Note that load reduction and load curtailment apply to a
residual component of the load demand that is not modelled as
shiftable demand:

min
∑
t∈

�T

(∑
l∈

C SD
l

pSD
tl
+C nce

l
pnce

tl
+C curt

l
pcurt

tl

)
(5)

Here, we will consider time stepsΔT of 1 h. The optimisation
model combines the response of each load component l ∈ 

by considering the profiles for activating each component for
a given hour of the day t ∈  . The net shift up (SU) and shift
down (SD) is calculated according to (6):

pSU
tl
− pSD

tl
=

∑
a∈t

(
PSD

tal
𝛿SD

al
+ PSU

tal
𝛿SU

al

)
∀l ∈ , ∀t ∈ 

(6)

The shift profiles, P
SU ∕SD

tal
, represent the load changes for

load component l in hour t from shifting load in hour a. The
activation of upward or downward shifting in hour a is given by

𝛿
SU ∕SD

al
. The resulting net load from summing the contribution

of all load components at the bus after flexibility activation is
given by (7):

p
flex
t = P

ref
t +

∑
l∈

(
pSU

tl
− pSD

tl

)
− pnce

t − pcurt
t ∀t ∈  (7)

The net load has to be lower than the net exchange capacity
from the bus to the rest of the grid as shown in (8):

p
flex
t ≤ Pexch

t ∀t ∈  (8)

Furthermore, the load shifting is limited by the initial load
for each load component, and the total energy shifted should be
equal in both directions as shown in (9) and (10), respectively:

pSD
tl

≤ P
ref

tl
∀l ∈ , ∀t ∈  (9)∑

t∈

pSU
tl
=

∑
t∈

pSD
tl

∀l ∈  (10)

2.3 Generic demand flexibility modelling
for long-term planning purposes

The detailed model in Section 2.2 considers whether each indi-
vidual flexibility resource should be activated for each hour.
Explicitely modelling them would result in an intractable num-
ber of integer variables for large power systems with many buses
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5006 BØDAL ET AL.

and flexibility resources and long planning horizons. A generic
demand flexibility model is therefore developed to represent the
aggregated response per bus for a range of different demand
flexibility resources. Aggregation reduces the number of vari-
ables and results in tractable models, which can include flexible
demands in large scale grid planning studies.

The main novelty of this model, compared to the exist-
ing models in the literature reviewed in Section 1, is the two
constraint formulations for capturing intertemporal dependen-
cies introduced in Section 2.3.3. Different parameterisations
of the generic demand flexibility model can be used to
represent [27]: electric vehicles, industrial demand flexibility,
residential demand flexibility, thermal loads, and hydrogen
production as an industrial load. For each type of flexibility
resource, parameter values must be appropriately chosen to
represent their behaviour in a realistic manner.

The demand is specified for each bus, n, in the aggregated
model as compared to each load component, l , in the detailed
model. There are two types of electricity demand in the aggre-
gated model, firm or flexible demand. Firm electric demand is

modelled by a reference demand, P
re f

tn , and involuntary load cur-
tailment, pcurt

tn to be activated in extreme case, and is modelled
similarly as in Section 2.2.

For flexible loads, the generic demand flexibility model has
two options for changing the net load: 1) voluntary load reduc-
tion (pnce

tn ) and 2) load shifting up (pSU
tn ) or down (pSD

tn ). The

resulting net load after flexibility activation, p
flex
tn , for load at bus

n at time t is shown in (11):

p
flex
tn = P

ref
tn + pSU

tn − pSD
tn − pnce

tn − pcurt
tn ∀n ∈  , ∀t ∈ 

(11)

Additional constraints are added to obtain the desired
behaviour for the different flexibility resources as described in
the following paragraphs.

2.3.1 Load reduction

Load reduction represents the permanent and voluntary reduc-
tion of load from the reference demand. The load reduction is
constrained by an upper limit which is relative to the reference
demand as shown by (12):

0 ≤ pnce
tn ≤ P

nce,max
n P

ref
tn ∀n ∈  , ∀t ∈  (12)

Activating load reduction has a cost, C nce
n pnce

tn , which is added
to the objective function. The total reduction of consumed
energy is represented as ence

tn for each time step in (13). The total
energy reduction is limited by E

nce,max
n defined over the time

horizon T as shown in (14):

ence
tn − ence

(t−1)n = �T ⋅ pnce
tn ∀n ∈  , ∀t ∈  (13)

ence
tn ≤ E

nce,max
n ∀n ∈  , ∀t ∈  (14)

2.3.2 Load shifting

Load shifting implies that load is temporarily reduced or
increased compared to the reference load demand. The total
energy shifted up eSU

tn and down eSD
tn are defined in (15) and (16),

respectively:

eSU
tn − eSU

(t−1)n = �T ⋅ pSU
tn ∀n ∈  , ∀t ∈  (15)

eSD
tn − eSD

(t−1)n = �T ⋅ pSD
tn ∀n ∈  , ∀t ∈  (16)

Energetically, the total amount of load shifted upward has to
be equal to the total amount of load shifted downward at the
end of the time horizon as shown in (17):

eSU
Tn

= eSD
Tn

∀n ∈  (17)

To consider appropriate bounds on the power consumption,
the maximum load shifted at time t is limited using (18) and (19).
The maximum load shifted varies with time dependent on the
reference load.

pSU
tn ≤ p

SU ,max
tn = P

SU ,max
n P

re f
tn ∀n ∈  , ∀t ∈  (18)

pSD
tn ≤ p

SD,max
tn = P

SD,max
n P

re f
tn ∀n ∈  , ∀t ∈  (19)

These constraints give rise to a flexibility band

[P
re f

tn − p
SD,max
tn , P

re f
tn + p

SU,max
tn ] around the reference demand

P ref
tn . The costs of load shifting are added to the objective

function according to C SU pSU
tn and C SD pSD

tn for up and down
shifting, respectively.

2.3.3 Recovery and proximity constraints

Some types of demand flexibility has to recover in order to be
utilised again or has automatic rebounds as discussed in Sec-
tion 2. This is captured by the shifting profiles for each flexible
demand component in the detailed model. For a more generic
model for planning purposes, additional constraints can help
capture some of the response characteristics from the indi-
vidual flexible demand components in the aggregated demand
flexibility model.

Two options for such constraints capturing temporal interde-
pendencies are formulated for improving the generic demand
flexibility model. As it is not obvious a priori which formula-
tion produces the most realistic demand flexibility behaviour,
this will be investigated in the case study in Section 3.

The first option is the recovery period constraints in (20)
and (21). These constraints ensure that activated flexibility
reduce the future potential flexibility activation for the dura-
tion of a recovery period. This is modelled by subtracting the
load shifting activated during the recovery period leading up
to time t from the maximum load shifting. We define the
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FIGURE 4 Temporal interdependencies as represented by constraints on
available flexibility potential defined by a load recovery period

FIGURE 5 Temporal interdependencies as represented by proximity
constraints for load shifting

set of times in the recovery period which affect time t as
 rec

t = {t − T rec , … , t − 1}:

pSU
tn ≤ p

SU,max
tn −

∑
j∈ rec

t

pSU
jn ∀n ∈  , ∀t ∈  (20)

pSD
tn ≤ p

SD,max
tn −

∑
j∈ rec

t

pSD
jn ∀n ∈  , ∀t ∈  (21)

The resulting constraints on the potential flexible demand
available to be shifted is illustrated in Figure 4 for the case
of downward demand shifting. The constraints in (20) and
(21) are always tighter than (18) and (19), making those
constraints redundant.

The second option is the proximity constraint, which can be
used to model that flexible loads can have rebound effects
after downward load shifting or that the energy must be con-
sumed within some time, for example, running the washing
machine within the day. This constraint ensures that some share
of the upward shifting is activated in proximity to the downward
shifting as formulated in (22) and illustrated in Figure 5. The
downward shifting during period  down

t = {t − T prox , … , t − 1}
should be accommodated by a share, 𝜎prox , of upward shifting

in the period 
up

t = {t − T prox + 1, … , t + T prox}.

∑
j∈

up
t

pSU
jn ≥ 𝜎prox

∑
j∈ down

t

pSD
jn ∀n ∈  , ∀t ∈  (22)

2.4 Incorporating the generic demand
flexibility model in a long-term grid planning
tool

The generic flexibility model described in Section 2.3 has been
incorporated in a comprehensive model for optimal long-term
transmission and distribution grid planning [28, 29] developed
in the FlexPlan project [30]. This is a large-scale stochastic
mixed integer linear programming model for finding the optimal
combination of planning candidates, including both invest-
ments in flexibility (either energy storage systems or enabling
demand flexibility) as well as in traditional grid infrastructure
for a given number of scenarios and planning years. For such a
long-term planning tool to be computationally tractable, appro-
priate simplifications of the modelling of grid operation is an
absolute necessity.

This article focuses on the operational modelling embedded
in the grid planning tool. For detailed descriptions of all aspects
of the full planning tool we refer to [28, 29], and here we only
represent briefly those aspects most relevant for the purposes of
this study. To be able to compare its representation of demand
flexibility with that of the more detailed model presented in Sec-
tion 2.2, we consider the operational costs and benefits over an
operational planning horizon of a few days. The relevant parts
of the model objective then takes a similar form as (23) for the
detailed model:

min
∑
t∈

�T

[∑
g∈

Cg ptg

+
∑

n∈

(
C CU pSU

tn +C CD pSD
tn +C nce pnce

tn +C curt pcurt
tn

)]
(23)

The main difference from (23) is that there are no integer vari-
ables for flexibility activation and that the sum goes over all
buses n ∈  in the distribution grid. The terms Cg ptg represent
power generation costs or power import costs.

The operational optimisation model embedded in the grid
planning tool needs to capture the effect of voltage drop and
reactive power flow in distribution grids. To keep the optimi-
sation model linear, a linearised branch flow model for radial
distribution grids has been implemented. Moreover, the model
includes constraints to capture branch flow limitations and bus
voltage magnitude limitations. The full mathematical formula-
tion of the power flow model and all other constraints can
be found in [28]. The optimisation model has been imple-
mented in Julia/JuMP language [31] on the basis of the packages
PowerModels.jl [32] and PowerModelsACDC.jl [33].
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5008 BØDAL ET AL.

FIGURE 6 CIGRE medium voltage grid benchmark, based on [34]

3 CASE STUDY

The flexibility representations of the detailed operational model and
the planning tool are investigated using a test grid specified in
Section 3.1. Further, Section 3.2 investigates the sufficiency of
the flexibility modelling for the base case, whereas sensitivities
to the representation of temporal interdependencies includ-
ing rebound effects are investigated in Sections 3.3 and 3.4,
respectively. We focus on investigating the operational costs and
benefits as estimated by the flexibility models, but we briefly
motivate the investigation and put it in the context of a grid
planning problem in Section 3.1. The implications of the results
for this grid planning problem are illustrated in Section 3.6.

We should also emphasize that the goal of this case study is
not to present a comprehensive flexibility aggregation method-
ology but rather to combine selected available demand flexibility
resources using a detailed model (with available, real data) to
highlight some key considerations for representing aggregated
demand flexibility in long-term planning models.

3.1 Test grid and grid planning problem

The chosen test distribution grid is the CIGRE Medium Voltage
(MV) distribution grid benchmark (European configuration) as
shown in Figure 6 and further described in [34]. Load demand
data from Norway is used to test the demand flexibility model
for distribution grids, based on the original data of the CIGRE
MV grid benchmark. Since the load time series are all for res-
idential loads, the original data are modified to represent only
residential load for all buses in the distribution grid. The power
factor values are the same as for the residential component of

TABLE 1 Load breakdown in bus 1, based on typical household electricity
consumption [36]

Load component Share (%)

Firm load 75.7

Water heater 19.0

White goods 5.3

the loads in [34]. The residential load in bus 1 is divided into the
three load components based on the typical Norwegian residen-
tial load energy shares as shown in Table 1. EWH and atomic
loads flexibility are aggregated in different ratio due to variations
in their power and energy capacity [2].

All of the electricity in the distribution grid is imported from
the upstream power system at bus 15. The power system is
represented by a large generator with a marginal cost of 30
€/MWh. The power transfer capacity at the transformer feed-
ing the feeder connected to bus 1 is reduced from 25 MW in
the CIGRE MV benchmark data set to 15 MW such that this
becomes a limiting restriction in the grid. Simply put, the grid
planning problem is the choice between (a) investing in a trans-
former with larger power transfer capacity (25 MW) and (b)
utilising demand flexibility. For the grid investment alternative
(a), we assume a a transformer lifetime of 40 years, linear depre-
ciation, an analysis horizon of 10 years, and a discount rate of
4%. Using information in [35], we estimate a transformer invest-
ment cost of 600 k€ and use the net present value method to
calculate an annuity of the investment of 36 494 € . In other
words, annual operational costs due to flexibility activation need
to be below this value for the flexibility alternative (b) to be cost-
effective. The case study will investigate how the estimate for
the operational cost depends on the flexibility model.

For simplicity of presentation, and to allow a transparent
comparison of the demand flexibility models, the case study
is designed so that we can focus on the demand flexibility at
one of the buses in the grid. We focus on the first bus on the
longest feeder, namely bus 1. The load demand at this bus dom-
inates the load demand contributions further out in this feeder
of the CIGRE MV grid benchmark. For simplicity, the load
demand at the other load points is therefore assumed to firm
demand.

Although voltage magnitude limits are also considered by the
planning tool in the case study, in this particular case they do not
impose binding constraints on the capacity of the distribution
grid to supply the load demand. (We refer to [28] for a variation
of the case study where voltage restrictions become limiting for
the capacity of the distribution grid.)

3.2 Base case results

The total residential load from the detailed demand flexibility
model is obtained by combining the activation of different flex-
ible loads at bus 1. The results from detailed model are used to
set the parameters for the generic flexible demand model in the
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TABLE 2 Input parameters for the demand flexibility model

Parameter Description (Ref unit)

Selected

value

Ence,max Maximum accumulated voluntary load
reduction (MWh)

1000

Pnce,max Superior bound on voluntary load reduction
(p.u. ∈ [0,1])

1

PSU ,max Superior bound on upward demand shifted
(p.u. ∈ [0,1])

0.29

PSD,max Superior bound on downward demand
shifted (p.u. ∈ [0,1])

0.164

ESD Maximum accumulated load shifted
downward during time horizon (MWh)

124.2

T rec Recovery period for demand shifting (h) 0

T prox Proximity period for demand shifting (h) 0

C nce Compensation for voluntary demand
reduction (€ /MWh)

200

C SU Compensation for upward demand shifting
(€ /MWh)

0

C SD Compensation for downward demand
shifting (€ /MWh)

20

C curt Compensation for involuntary demand
reduction (€ /MWh)

2000

planning tool. For example, the resulting maximum value for
upward and downward load shifting from the detailed model,
which is 0.29 and 0.164 p.u. of the reference load, respectively,
for this case, become the input parameters for the generic flexi-
ble demand model in the planning tool. Similarly, the total load
shift for the simulation period in the detailed model gives the
value for the relevant parameter in the planning tool, which is
set to 124.2 MWh. In the following, a simulation period of 48
h is considered to illustrate the impact of flexibility modelling
choices. A summary of the parameters chosen for the generic
demand flexibility model for this case study is shown in Table 2.
(For detailed information on estimations of flexibility costs, we
refer to [27].) The cost for upward shifting (cSU ) is set to zero
to avoid double-counting of the flexibility activation cost since
demand shifted downward at any give time needs to be shifted
upward again due to (17).

Initially, the recovery period and proximity constraints
are disabled. The resulting net load after activating demand
flexibility for the detailed model and the planning tool are
compared in Figure 7. The reference load and the net exchange
capacity from bus 1 represent the default state and limits of
the distribution grid. The net exchange capacity is calculated
by subtracting the loads further along the radial of bus 1 from
the import capacity of the transformer connecting this radial to
the transmission grid. Since the reference load exceeds the net
exchange capacity much of the time, replacing the transformer
(i.e. grid reinforcement) would be necessary in the absence of
demand flexibility as an alternative.

The resulting load profile from the detailed model is either
close to the reference load or the net capacity. This is because

FIGURE 7 Resulting load profiles from the planning and detailed model
compared to the reference load and the exchange capacity to the load point
(bus 1). (Net capacity is calculated as the transmission capacity to the bus
minus the further down the radial of bus 1.)

(a)

(b)

FIGURE 8 Load shifting and reduction for the flexible load in bus 1,
from the planning tool (top) and the detailed load flexibility model (bottom)

the water heater has a rebound effect as this is a TCL, such
that the corresponding upward load shifts are closer to the
respective downward load shifts. The planning tool tends to
increase load at night when the load is generally lower. In
the base case, the load from the planning tool is different
from the detailed model as it does not have any repre-
sentation of the rebound effect. While the net profiles are
a little different, both are below the net exchange capacity
(Figure 7).

The load shifting for the two different models are shown in
Figure 8. Upward shifting is more concentrated for the plan-
ning tool than the detailed model. Significant amounts of the
upward shifting in the planning tool occurs in the beginning of
the time period. There is also a greater distance from the upward
shift to the downward shift in the planning tool compared to
the detailed model. Distributed upward shifting and less time
between downward and upward shifting in the detailed model
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5010 BØDAL ET AL.

(a)

(b)

FIGURE 9 Load shifting and reduction with recovery period of 1 and 2 h
for the recovery period constraint

are results of the detailed profiles for shifting of water heater
and white goods loads. The detailed model distributes the load
shifting over several hours according to the load shift profile,
while the planning tool assumes that the effect of one load shift-
ing activity can be concentrated to 1 h. The detailed model is
also able to account for the fact that upward shifting for the
water heater is an automatic rebound from reducing the water
heater load, such that it can only happen after the downward
shift.

Both models have the same net shift down as this is equal to
the amount the reference load exceeds the net exchange capac-
ity. However, the detailed model shifts demand both up and
down at the same time. This is to control the rebound from
the water heater which lead to a forced shift upward. Thus, it
can be favorable to shift white goods down when the rebound
occurs.

The detailed model results in a higher total load reduction
than the planning tool. This is caused by limited downward
shifting at these specific times from the load profile of the water
heaters and white goods. In the planning tool, the maximum
shifting is represented in a simplified way as a proportion of
the reference demand. Thus, the planning tool is not able to
accurately represent the maximum demand flexibility at all times
since the share of the reference load which is controllable is
not constant.

3.3 Impact of the recovery period
constraints

The impact of the recovery period constraints on the outcome
of the planning model is tested by setting the recovery periods
to 1 and 2 h as shown in Figure 9. All other parameters are kept
at their base case values.

(a)

(b)

FIGURE 10 Load shifting and reduction with proximity periods of 1 and
2 h

Increased recovery periods lead to more distributed upward
shifting. The upward shifting is more similar to the detailed
model results for a recovery period of 2 h. However, the recov-
ery period constraints lead to excessive load reduction instead of
downward load shifting. The reason is that the recovery period
constraints reduce the potential for load shifting in consecu-
tive hours when the reference load demand exceeds the net
exchange capacity. The reduced total downward load shifting
leads to reduced total upward load shifting, such that there is
significantly less load shifting in total when the recovery period
constraint is used.

3.4 Impact of the proximity constraint

The recovery period constraint is replaced by the proximity con-
straint and the impact of this constraint is evaluated. The value
of the proximity parameter 𝜎 is set to 0.6, which is found to
give the most similar costs compared to the detailed model after
testing values between 0 and 1 with an increment of 0.1 in
combination with proximity periods of 1, 2 and 3 h. Longer
proximity periods were also tested without resulting in more
similar costs compared to the detailed model. While this param-
eter testing is not exhaustive, it is considered sufficient for
illustrating the impact of this constraint. Setting 𝜎 to 0.6 means
that downward shifting of demand will result in at least upward
shifting equal to 60% of the downward shifted energy within
the proximity period. The impact of the proximity constraint in
(22) on the resulting load shift is shown in Figure 10 for recovery
periods of 1 and 2 h.

The upward load shifting is more distributed compared to the
original load shifting from the generic demand flexibility model
in Figure 8. The proximity constraints do also lead to simulta-
neous upward and downward demand shifting, similar to the
detailed model but a bit more frequently. In the detailed model,
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BØDAL ET AL. 5011

FIGURE 11 Comparison of costs from load shifting and load reduction
from the different demand flexibility models. Changes in generator costs from
the detailed model solution are added to the planning tool bars

this is to control the rebound of the water heaters, while here it
is the result of the modelling.

Load reduction is higher than for the base case configuration
of the generic demand flexibility model, which is more accu-
rate according to the detailed model. Increasing the proximity
period from 1 to 2 h increases the load shifting and reduces
the load reduction, which is less similar to the detailed model
results.

For planning purposes, the most important outputs of the
operational model are the profiles for net flexible load and
total costs for load shifting, reduction and curtailment. The net
load shifting is often equal to the detailed model in the periods
where some extra simultaneous upward and downward shift-
ing occur. The advantage of the simultaneous shifting is that
it reduces the demand flexibility such that the generic demand
flexibility model is able to capture some of the more expensive
load reduction.

3.5 Comparing operational costs for
different demand flexibility modelling choices

The operational costs due to demand flexibility estimated with
the different planning tool configurations are compared with
the costs estimated with the detailed model in Figure 11. These
operational costs include costs from load shifting and load
reduction. In addition, the difference in generation costs from
the detailed model are included for the results for the planning
tool. (Because the total operational costs are dominated by gen-
eration costs, only the difference is illustrated for the generation
costs in this figure.)

The base configuration of the planning tool underestimates
the operational costs to 70% of detailed model costs as it
overestimates the demand flexibility. On the other hand, the
recovery period constraints underestimate the demand flexibil-
ity, which leads to high levels of load reduction. Load reduction
is more expensive than load shifting and is typically the last
resort before (involuntary) load curtailment. The excessive load
reduction due to the recovery period constraints with 1- and 2-h
recovery periods results in an overestimation of the load reduc-
tion costs by a factor of 2.8 and 3.9 compared to the detailed
model.

FIGURE 12 The annualised cost of investing in a new transformer
compared to purchasing flexibility from flexible loads as a function of the
number of days per year with transformer congestions. The break-even points
are indicated on the x-axis for the different demand flexibility models

The impact of the proximity constraint on load shifting gives
a better result than the recovery period constraints. The prox-
imity constraint is able to avoid excessive load reduction and
keep the total amount of shifting similar to the base case results.
The total costs related to load shifting and load reduction are
closer to the detailed model when the proximity constraints
are included compared to the base configuration. A proxim-
ity period of 1 h gives total costs, which are 96% of the
detailed model costs. Compared to the detailed model, the
costs are slightly shifted toward load shifting (+9.9%) rather
than load reduction (-26.8%). Increasing the proximity period
further leads to overestimation of the demand flexibility and
lower costs.

3.6 Implications for the grid planning
problem

The operational cost for the 2 days are extrapolated in Figure 12
to illustrate the implications that the different flexible demand
models will have on grid planning decisions. In practice, trans-
former congestions that require flexibility activation will only
occur for a number of days throughout the year. For simplicity
we assume that the operational costs estimated in Figure 11 are
representative for these congested days. For the rest of the year,
no operational costs due to flexibility activation are incurred.
The annual flexibility costs as a function of a number of con-
gested days are compared to the annualised investment costs
for a new transformer.

Using the operational costs from the detailed model, 89
congested days or more are needed for the investment in a
new transformer to be profitable over using demand flexibility.
In comparison, the base model for demand flexibility over-
estimates the break-even point for transformer investment at
132 days with congestions. In other words, the less detailed
base model overestimates the benefits of demand flexibility as
an alternative to transformer investments. According to the
detailed model, the annual operational costs will be 148% of
the annualised transformer investment costs if the transformer
is congested 132 days per year. The proximity constraints for
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5012 BØDAL ET AL.

flexible demand modelling gives the closest break-even point to
the detailed model at 94 days.

4 CONCLUDING REMARKS

Based on the investigations in the previous section, we can
summarize some insights about the behaviour and operational
benefits of demand flexibility according to (i) the generic
demand flexibility model for planning purposes and (ii) the
detailed operational model for individual flexibility resources.
Without additional constraints to represent temporal interde-
pendencies, the generic flexibility model generally overestimates
the flexibility potential. This is because the detailed model effec-
tively has more constraints: It represents (i) rebound effects,
(ii) realistic load profiles of flexible demand components, and
(iii) the fact that the flexibility potential realistically does not
vary in proportion to the total reference load demand. This
implies that a too simple model of demand flexibility may over-
estimate its benefits as an alternative or supplement to grid
investments.

On the other hand, the detailed flexibility model also has
additional degrees of freedom in the sense that it can arbitrage
between individual flexibility resources with different character-
istics that are connected to the same bus. For example, loads for
white goods can be shifted to counteract the rebound effect at
the same time step for the electric water heaters.

The behaviour of demand flexibility as represented by the
planning tool becomes more realistic when the proximity con-
straints are included. This formulation seems to be better suited
to model demand flexibility in long-term planning models than
the recovery period constraint. Possible modifications to the
recovery period constraint should be considered such that the
shifting capacity is not reduced too much. One alternative is to
reduce the shifting capacity by a predetermined fraction of the
load shifted during the recovery period instead of the sum of all
load shifted as in (20) and (21).

Both the recovery period constraints and the proximity
constraints add new parameters that need to be determined
for long-term grid planning studies. Both these time parame-
ters and the parameters for maximum upward and downward
demand shifting can be used to control and calibrate the effec-
tive flexibility potential to avoid that it gives too optimistic
or too conservative estimates for the operational benefits of
flexibility when compared with grid reinforcement. Present-
ing a model calibration methodology was not the aim of this
article, but future work could investigate methods for deter-
mining the parameter values for the generic demand flexibility
model that best represent the characteristics of different indi-
vidual flexibility resources. Here, we focused some specific
examples (water heaters and white goods), and there is ample
scope of future research considering other flexibility resources
(e.g. various industrial loads, space heating, electric vehicles
etc.).

An interesting extensions of this work would be to extend the
models demonstrated here for residential demand flexibility in
distribution grids to larger-scale power system studies. Consid-

ering the operational benefits of demand flexibility on a national
or regional level would require a higher level of aggregation and
including other flexibility resources, load demand sectors etc.

NOMENCLATURE

Indices

l Load (for the detailed model)
g Generator
t Time
a Time (at which flexibility was activated; for the detailed

model)
n Bus

Sets

 Loads (for the detailed model)
 Buses
 Time steps
t Time steps affected by activation of load shifting in

time t

 rec
t Time steps in recovery period of load shifted in time

t


up∕down

t Time steps for upward/downward load shift in
proximity period of time t

Variables

ptg Generation (MW)

p
SU ∕SD

tl
Load shifted upward/downward (MW)

𝛿
SU ∕SD

al
Activation of upward/downward load shift
(binary)

pnce
tl

Voluntary load reduction (leading to energy not
consumed; for the detailed model) (MW)

pnce
tn Voluntary load reduction (leading to energy not

consumed; for the planning model) (MW)
ence
tn Accumulated energy not consumed (voluntary)

(MWh)
pcurt

tl
Load curtailed (not voluntary; for the detailed
model) (MW)

pcurt
tn Load curtailed (not voluntary; for the planning

model) (MW)

p
flex
t Net load after activation of demand flexibility

(MW)

e
SU ∕SD
tn Accumulated energy shifted upward/downward

(MWh)

p
SU ∕SD,max
tn Maximum load shift upward/downward (MW)

Parameters

Ttl Water temperature (◦C)
T a

t Ambient temperature (◦C)
Cl Thermal capacitance (kWh/◦C)
Rl Thermal resistance (◦C/kW)
Pm

l
Rated power consumption (kWh)

Sl ON/OFF control status (binary)
T min

l
Minimum temperature threshold (◦C)
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BØDAL ET AL. 5013

T max
l

Maximum temperature threshold (◦C)
Ṫtl Rate of temperature change due to hot water

demand and ambient loss (◦C/min)
Ṫ Load

t Rate of temperature change due to hot water
demand (◦C/min)

Cg Cost of generation (€ /MW)
C SD Cost of shifting load downward (€ /MW)
C nce Cost of energy not consumed (voluntary load

reduction) (€ /MW)
C curt Cost of load curtailment (not voluntary) (€ /MW)
ΔT Length of time steps

P
SU ∕SD

tal
Upward/downward load shift profile for activa-
tion in hour a (MW)

P
re f

t Reference profile for load (MW)
Pexch

t Exchange capacity (MW)
Pnce,max Maximum voluntary load reduction share (p.u.)

PSU ∕SD,max Maximum share of load shift upward/downward
(p.u.)

E
nce,max
n Maximum accumulated voluntary load reduction

(MWh)
𝜎prox Share of downward load shift that must be

compensated by upward load shift within the
proximity period (p.u.)
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