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Abstract—The development of big data pipelines is a chal-
lenging task, especially when data storage is considered as
part of the data pipelines. Local storage is expensive, hard to
maintain, comes with several challenges (e.g., data availability,
data security, and backup). The use of cloud storage, i.e., Storage-
as-a-Service (StaaS), instead of local storage has the potential of
providing more flexibility in terms of such as scalability, fault
tolerance, and availability. In this paper, we propose a generic
approach to integrate StaaS with data pipelines, i.e., computation
on an on-premise server or on a specific cloud, but integration
with StaaS, and develop a ranking method for available storage
options based on five key parameters: cost, proximity, network
performance, the impact of server-side encryption, and user
weights. The evaluation carried out demonstrates the effec-
tiveness of the proposed approach in terms of data transfer
performance and the feasibility of dynamic selection of a storage
option based on four primary user scenarios.

Index Terms—Storage-as-a-service, big data pipelines, data
locality, data placement strategies, software containers

I. INTRODUCTION

Big data pipelines are designed to support one or more of
the three big data features commonly known as the three Vs
(volume, velocity, and variety), while processing data through
a series of data processing steps. The implementation of a big
data pipeline includes several aspects of the computing contin-
uum such as computing resources, data transmission channels,
triggers, data transfer methods, integration of message queues,
etc., making the design and implementation process difficult.
This process becomes even more complex if a data pipeline is
coupled to data storage, such as a distributed file system, which
comes with additional challenges such as data maintenance,
security, scalability, etc. [1]. Cloud storage systems (e.g.,
Amazon S3, Elastic Block Store, or EBS, Azure Blob Storage,
Google Cloud Storage) offer very large storage with high fault
tolerance, addressing several big data related storage concerns
[2]. Moving data to cloud storage, i.e., Storage-as-a-service
(StaaS), moves the extra overhead of data redundancy, backup,
scalability, security, etc. to the cloud service provider.

In this respect, the objective of this paper is to demon-
strate that the integration of StaaS with big data pipelines
is a promising direction. This necessitates a one-of-a-kind

solution for data pipeline design and a method for real-
time data placement with unknown data volumes, availability,
location, data security, etc. constraints. To this end, we first
propose an approach to realize big data pipelines with hybrid
infrastructure, i.e., computation on an on-premise server or
on a specific cloud, but integration with StaaS; and secondly
develop a ranking method to find the most suitable storage fa-
cility dynamically based on the user’s requirements, including
cost, proximity, network performance, impact of server-side
encryption, and user weights [3].

The rest of the paper is organized as follows. Section II
provides the related work. Section III presents the proposed
approach and ranking method. Section IV provides an evalu-
ation, while Section V concludes the paper.

II. RELATED WORK

The scientific community has extensively acknowledged the
necessity to use cloud computing to execute scientific work-
flows/pipelines [4]. Many studies investigated and demon-
strated the viability of employing cloud computing for de-
ploying big data pipelines in terms of both cost [5] and
performance [6].

Abouelhoda et al. propose Tavaxy, a system that enables
seamless integration of the Taverna system with Galaxy pro-
cesses based on hierarchical workflows and workflow patterns
[7]. Wang et al. [8] present early results and experiences in
enabling interaction between Kepler SWFMS and the EC2
cloud. Antonio et al. [9] analyses hybrid multi-cloud storage
systems and different data transfer techniques in general.
These approaches discuss the benefits and possibilities of
deploying big data pipelines in cloud infrastructure; however,
they do not discuss the possibility of hybrid big data pipelines
in a multi-cloud environment.

Zhang et al. [10] describes BerryStore, a distributed object
storage system suited for the storing of huge quantities of
small files. In a large Web application, file sharing generates
a large number of requests. BerryStore is built to manage
these requests. The essential insight is that extraneous disk
operations should be avoided when reading metadata. The
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Fig. 1. Proposed approach for Big data pipelines with StaaS.

proposed mechanism does not provide any support for inte-
gration with the big data pipelines. Yuan et al. [11] studied
the unique characteristics of scientific cloud operations and
proposed a clustering data placement strategy capable of
dynamically moving application data across data centers based
on dependencies. Simulations on their cloud workflow system
SwinDeW-C shown that their data placement strategy may
significantly reduce data traffic during the execution of the
process. The suggested system is heavily platform dependant
since it only works for Hadoop. There are several other data
placement techniques developed for Hadoop [12]–[14].

Er-dun et al. [15] addresses the issues connected with
scientific workflows in the cloud computing environment,
specifically the load balancing of datacentres. After examining
the storage capacity of data centers, data transit patterns,
and datacentre loads, they came with a workable data place-
ment strategy using a genetic algorithm. In compared to
other data placement strategies, the genetic algorithm-based
data placement methodology performs well in terms of data
center load balancing and data movement volume. While
the proposed technique is effective, it does not address any
functional requirements from the owners or developers of big
data pipelines. It is limited to the number of datasets and the
number of movements.

Our proposed approach incorporates multi-cloud storage
providers, focuses on big data pipelines, provides results
dynamically, and is platform independent.

III. INTEGRATION OF DATA PIPELINES AND STAAS
The proposed approach is shown in Figure 1, where the

compute steps of a data pipeline are encapsulated in software
containers as suggested by [16], and deployed on a server. A
communication medium is setup for inter-step communication,
for example pulling and pushing information about different
pipeline events (trigger events) and execution results. The local

Fig. 2. Relation between cost, network performance, and physical distance.

storage, in this proposed approach, is replaced with hybrid
cloud storage as a service. To reduce the cost of network
egress in the case of on-premise computation servers, the inter-
step data storage concept is also introduced. Data placement
method finds the most suitable storage facility to store data
from data pipeline server using a ranking method.

There are several parameters that affects the choice of cloud
storage such as the cost of storage space, security, perfor-
mance, and the location. These parameters are interdependent
on each other. So there is a possibility that the cloud service
provider that fulfills security requirements does not have the
best network performance, or the one with closest to the data
pipeline server is more expensive. This scenario is visually
represented in Figure 2. The focus of the proposed method



Fig. 3. Evaluation matrix; each row is allocated to a cloud service provider
and column represents the parameters.

is mainly on data locality, that is smart data placement to
achieve maximum performance output. But different locations
with different cloud storage providers have different costs.
In addition to that, all data centers have different network
infrastructure, so that network performance can vary between
different data centers. The challenge is to decide which criteria
is best suited to the situation and user requirements.

VIKOR, a multi-criteria decision analysis (MCDA) method
[17], is used to rank different scenarios based on the user
weights given by the experts or decision makers. VIKOR
method is selected based on the framework developed by
Jankowski et al. [18]. It is an innovative tool for choosing
the MCDA approach that is most appropriate for the decision
issue. For this very evaluation model, four different parameters
are selected in addition to the user weights. These parameters
are as follows: cost (i.e., based on storage, bandwidth, and
READ and WRITE operations – see [3]), proximity (i.e.,
using IP ranges provided by the cloud service providers and
GeoIP), network performance (i.e., throughput), the impact
of server-side encryption (i.e., performance). Figure 3 shows
the evaluation matrix for the proposed method. Values for the
parameters are calculated using the independent software tools
we developed. Server-side encryption is implemented on the
stored data in each cloud storage provider and it’s affect is
tested on the performance. The last column shows the weights
set by the user. The evaluation matrix explained above is given
as an input to the MCDA VIKOR algorithm, and the output
is the ranking of the cloud service providers.

IV. EVALUATION

We evaluated our approach by comparing the data transfer
performance of the storage option selected by our method
against to the best guess region and demonstrated the fea-
sibility of dynamic selection storage options based on four
primary user scenarios. A data pipeline is deployed and tested
with all the above mentioned characteristics. Five parameters
are used as evaluation criteria to rank different cloud storage
options based on the user’s requirements and software tools

Fig. 4. Google region pair comparison in parallel execution. The x-axis shows
the number of seconds taken.

are developed accordingly. The results from each software tool
are then put into the evaluation matrix and used as input for the
ranking method. For this paper, we have considered three cloud
storage providers: Amazon Web Services (AWS), Microsoft
Azure, and Google Cloud Platform (GCP).

A. Performance evaluation

A data pipeline is deployed in the USEast region. The data
pipeline is then integrated with six different storage facilities.
Two from AWS, two from Azure, and two from GCP. Since the
pipeline server is located in the USEast region, one can choose
between available regions, us-east-1 to us-east-4. Our method
suggested the us-east-4 region instead of the first region, with
the sole wight on the proximity. We setup storage on both
region pairs and tested the performance. A data pipeline with a
total of 3,601 WRITE operations were carried out, with a total
size of 3.2 Megabytes (MB). To avoid temporary downtime,
the operation was repeated three times. Execution time with
region suggested outranks the other. The results for parallel
execution for GCP is shown in Figure 4.

B. Scenarios

Underlying workload characteristics play an important role
for the selection of storage options, as there is often a trade-off.
The application portfolio needs to be considered as a whole,
as well as individually. The following are the user scenarios
those are served well by the public cloud. Requirements are
given for each scenario in terms of space (GB), bandwidth
(GB), and the number of write and read operations.

Scenario 1 - Temporary requirements (Req.:1000, 15000,
5000, 5000): As the cloud uses a pay-as-you-go, utility-based
pricing model, it is well-suited to short-term and transient
workloads and projects. Example use cases are proof of con-
cepts, pilots, application testing, etc. Table I ranks the cloud
providers when a user puts equal weights for all parameters,
that is 25% for cost, proximity, the impact of encryption, and
network performance. Based on these input and the momentary
conditions, GCP is ranked first by the algorithm1.

1S and R represent the maximum utility of the majority and a minimum
individual regret of the opponent respectively. Q integrates R and S for a
compromise solution [17].



TABLE I
SCENARIO 1: TEMPORARY REQUIREMENTS

Rank Alternatives Si Ri Qi
1 AWS 0.25 0.15 0
2 GCP 0.28 0.25 0.52
3 Azure 0.75 0.25 1

Scenario 2 - Highly variable workloads (Req.: 2000,
25000, 10000, 10000): Demand variability comes in two
distinct flavours: predictable (seasonal, cyclical, etc.) and
unpredictable, e.g., month-end processing and on-season vs.
off-season. Table II ranks the cloud providers when a user puts
70% weight on the network performance, 10% on the cost,
10% on the proximity, and 10% on the impact of encryption.
In this case, cost is a secondary factor, and network perfor-
mance has priority. Based on these input and the momentary
conditions, Azure is ranked first by the algorithm.

TABLE II
SCENARIO 2: HIGHLY VARIABLE WORKLOADS

Rank Alternatives Si Ri Qi
1 Azure 0.3 0.1 0
2 AWS 0.45 0.42 0.45
3 GCP 0.71 0.70 0

Scenario 3 - High security, low scale/volume solutions
(Req.: 1000, 15000, 5000, 5000): Although many customers
fear the absence of security of the cloud, there are many
capabilities within cloud storage to restrict and monitor access
to resources. Table III ranks the cloud service providers when
a user puts 80% weight on the impact of encryption, 10% on
network performance, and only 5% on the cost and proximity.
Based on these input and the momentary conditions, GCP is
ranked first by the algorithm.

TABLE III
SCENARIO 3: HIGH SECURITY, LOW SCALE/VOLUME SOLUTIONS

Rank Alternatives Si Ri Qi
1 AWS 0.08 0.06 0
2 GCP 0.10 0.10 0.04
3 Azure 0.90 0.80 1

Scenario 4 - Dormant workloads (Req.: 5000, 1000, 2000,
2000): A dormant workload occupies no compute capacity
and generates no network traffic, reducing the running costs
to just storage. Example use cases are test/development, user
acceptance testing, unit and system testing, etc. Table IV ranks
the cloud service providers when a user puts 70% weight
on cost, 10% on proximity, network performance, and the
impact of encryption. Based on these input and the momentary
conditions, AWS is ranked first by the algorithm.

V. CONCLUSIONS

We proposed a generic approach for implementing big
data pipelines with StaaS integration. It allows on-premise

TABLE IV
SCENARIO 4: DORMANT WORKLOADS

Rank Alternatives Si Ri Qi
1 GCP 0.11 0.1 0.01
2 AWS 0.14 0.08 0.02
3 Azure 0.90 0.70 1

processing and on-cloud and local storage temporarily for
inter-step data input and output. We tested our approach
in terms of the data transfer performance and demonstrated
its feasibility through four different representative scenarios.
Regarding the future work, more parameters could be added
into the evaluation matrix. The results of the evaluation matrix
could also be compared against actual decision makers.
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