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Abstract: Automated robotic platforms are an important part of precision agriculture solutions for
sustainable food production. Agri-robots require robust and accurate guidance systems in order to
navigate between crops and to and from their base station. Onboard sensors such as machine vision
cameras offer a flexible guidance alternative to more expensive solutions for structured environments
such as scanning lidar or RTK-GNSS. The main challenges for visual crop row guidance are the
dramatic differences in appearance of crops between farms and throughout the season and the
variations in crop spacing and contours of the crop rows. Here we present a visual guidance pipeline
for an agri-robot operating in strawberry fields in Norway that is based on semantic segmentation
with a convolution neural network (CNN) to segment input RGB images into crop and not-crop
(i.e., drivable terrain) regions. To handle the uneven contours of crop rows in Norway’s hilly
agricultural regions, we develop a new adaptive multi-ROI method for fitting trajectories to the
drivable regions. We test our approach in open-loop trials with a real agri-robot operating in the field
and show that our approach compares favourably to other traditional guidance approaches.

Keywords: navigation and guidance; image processing; deep learning; automation and robotics

1. Introduction

Automating agricultural practices through the use of robots (i.e., agri-robots) is a key strategy for
improving farm productivity and achieving sustainable food production to meet the needs of future
generations. For example, the “Thorvald II” robot [1], developed in Norway, is able to autonomously
perform actions such as picking strawberries [2] and applying UV light treatment to greenhouse crops
such as cucumbers [3]. A basic requirement for such robots is to be able to navigate autonomously to
and from their base station and along the crop rows.

In open fields, real-time kinematic (RTK) GNSS provides an accurate position for the robot
but does not inherently describe the location or extent of the crops. Onboard sensors such as scanning
lasers [4] or machine vision cameras [5] can enable the robot to sense the crops and structures
surrounding the robot directly. However, lidar-based methods work best in structured environments
such as greenhouses, and traditional visual approaches rely on distinct and regular crop rows [6]
and often employ image features specially crafted for a particular crop appearance.

Norwegian strawberry farms are often located in steep or hilly areas, with crop rows that are
not necessarily straight or evenly spaced. Coupled with the dramatically changing appearance of the
crop throughout the season (Figure 1) this presents a challenging case for guidance of autonomous
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agri-robots. We sought, therefore, methods that would enable our Thorvald platform to detect crop
rows of varying appearance and to steer the robot accurately along curved or uneven rows.

Figure 1. Top: The Sensors mounted on the “Thorvald” Robot Platform for dataset collection on hilly
terrains. The variation of crop rows from the strawberry fields in Norway have illustrated from the
RGB images listed above. Second Row: The transition of plant growth from July to September in 2019
defines the illumination problems in which the plants or shadow covers the entire driveable areas.
Third Row: presents the change in color of the plants throughout the season and showcase the problem
of random plants growing over lanes or the occurrence of bare patches along with the crops.

Convolutional neural networks (CNNs) use many more image features than hand-crafted
approaches, and semantic segmentation CNNs [7], trained on per-pixel annotated images, have been
shown to be able to distinguish crops from lanes in a more generalized manner, e.g., for identifying crop
rows in tea plantations [8]. We similarly adopt a fully-convolutional CNN trained on our own image
dataset for detecting strawberry crop rows and show that this approach gives robust segmentations
even in difficult scenes.

Extracting agri-robot steering commands from a segmented or thresholded image is traditionally
performed by applying a Hough transform [9] or linear regression [10] to leverage the regularity of
typical agricultural scenes. However, such approaches will fail when presented with curved or uneven
crop rows. Thus, we base our guidance algorithm on the multi-ROI trajectory estimation approach
of [11], in which the segmented crop rows are fitted in several smaller ROIs before combining into a
single trajectory. However, we find the fixed-width ROIs in this approach less suited to hilly scenarios
with varying crop row widths. Therefore, we extend this approach and present a new adaptive
multi-ROI trajectory estimation technique that uses a search-based scheme to automatically adapt the
ROIs to the varying width of the crop rows.

In this paper, we present a description of our adaptive multi-ROI trajectory estimation approach
(Sections 3.2 and 3.3), as well as results from open-loop experiments with the Thorvald platform
(Section 4) that demonstrate the potential benefits of employing this approach for agri-robot guidance
in hilly strawberry fields. We also evaluate our approach against other trajectory estimation approaches
(Section 5). The main contribution of this paper is the novel adaptive multi-ROI algorithm; however,
for completeness we also describe our semantic segmentation approach (Section 3), used to generate
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segmented input images for the trajectory estimation. We conclude by summarizing our contributions
and discussing future work towards closed-loop field testing on board Thorvald (Section 6).

2. Related Work

Here, we introduce the traditional visual methods for crop detection and their limitations in
various situations. Besides, the crop row fitting using existing methods are reviewed.

Excess Green Pixel Index (EGPI) [12] is one of the widely used techniques in separating vegetation
from soil taking into account that only crops have excessive greenness in the image. The index is
written in the form:

EGPI = 2g− r− b (1)

where r, g and b were the color channels of the RGB image. Similarly other color vegetation indices [13]
like normalized difference vegetation index (NDI) and the Normalized Green–Red Difference Index
(NGRDI) have also been proposed as extensions in segmenting more visually demanding vegetations.
In some use cases (Figure 1), the index will begin overestimates the vegetation with the pixels from
noncrop regions. Furthermore, it performs poorly if the color of the crop shifts to red or yellow
(Figure 1) during late September at the end of the cropping season. For overcoming the reliance of
EGPI, Support Vector Machines (SVMs) are introduced in [14], which takes into account the spectral
components of the plants. Another prominent work on crop detection is using 3D stereo vision
methods [15] in which there is a significant crop and soil height difference, but it will not be the case
of early crops. It is visually demanding to differentiate the crop and noncrop region on the inclined
fields only based on height. The problem of tiny plants addressed in [16] and applied Dual Hough
transform relative to the crop row pattern. [17] uses dynamic programming to generate a template
using geometric structures of the crop rows and able to detect the straight and curved crop rows.

Nowadays, segmentation using machine learning methods garners significant interest in precision
agriculture. The CNN-based semantic segmentation is used on sugar beet plants [18], remote sensing
data of few crop types in agriculture [19] and on rice paddy fields [20]. The performance of CNN-based
approaches for detecting crop rows at various stages of growth tested against conventional crop
detection techniques [21] and comparatively, the deep learning technique achieves better segmentation
results. However, not much work has been done using CNN semantic segmentation in steering the
agricultural robots along with the variety of crop rows.

In urban scenarios, the discontinuous lanes are handled by sliding window algorithm [22] where
the search windows slide in increments for fitting the driving regions. Similarly, in agricultural cases,
blobs [23], or clusters of pixels are used for segmenting the crop regions. Similarly, ref. [24] proposed
the concept of multi-ROIs on crop row segmentation that describes the center points estimation of
the crops given the inter-row spacing beforehand and applies linear regression over the predicted
center points.

However, most of the existing detection methods do not seem to adapt to the crop rows of varying
inter-row spacing, which also changes in color, shape, and width throughout the cropping season.
The application of multi-ROIs is useful for fitting the varying and curved crop rows. The methodology
proposed in this work uses the CNN-based semantic segmentation (SegNet) to identify crops and
lanes, which involves the newly annotated dataset generation from the strawberry fields. Moreover,
we demonstrate the improved version of the existing multi-ROI algorithm [11] that can adapt to
the differing crop rows using incremental search along the equally spaced horizontal strips. Lastly,
a quadratic polynomial is applied over center points to obtain the desired centerline (trajectory) for the
robot guidance.

3. Approach

When the RGB image from the robot mounted camera is received, the main objective of this
work is to generate the centerline of the crop on which the agricultural robot is currently positioned.
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Then the robot can autonomously steer along the predicted centerline till the end of the crop row.
The overall approach, as shown in Figure 2 includes the following steps:

1. Offline CNN Training and Inference: Annotate the selected RGB images from the data recording
in the real fields and do the training with the labeled dataset by semantic segmentation.
The well known SegNet has chosen as a base model and gets the weights as a preprocessing
step. Predict the incoming RGB image by trained weights and outputs the mask during the
CNN inference.

2. Crop Row Fitting: With the crop or lane label as a predicted mask, identify the starting points
as peaks. Then, the image is equally divided into N horizontal strips in which the adaptive
multi-ROI algorithm is applied to find the label centers for each ROIs. Generate the centerline by
applying the regression fitting over the estimated label centers.

Figure 2. Pipeline for the proposed Adaptive Multi-ROI based crop row guidance is presented as three
sub parts: Offline CNN Training involves data collection and training the dataset, Offline CNN Inference
does CNN prediction over incoming RGB image, and Crop Row Fitting applies the fitting procedure
over predicted mask by the proposed adaptive multi-ROI method.

3.1. Data Collection and Annotation

The “Thorvald” platform from Saga Robotics (Agricultural Robotics Company, Ås, Norway) is
used for gathering the dataset. The robot is mounted (Figure 1) with the RGB module and a Stereo
Camera named Intel Realsense camera D435 (1920 × 1080 max resolution, Rolling Shutter, 69.4 HFOV,
42.5 VFOV, Intel Corporation, United States). The camera is attached using mounting accessories at the
height of 1.05 m and 0.785 m in driving direction from the center of the robot. The camera publishes
RGB images of size 640 × 480 at the rate of 6 fps. Since the semantic segmentation requires a set of
data covering the crops’ diversity, we made a dataset collection campaign on different periods in the
strawberry fields with a group of sensors mounted on the robot. The data is recorded in the form
of rosbag files provided by ROS. The images are gathered with the RGB camera along with depth
information obtained from stereo cameras and can be accessed by the ROS image topic in the respective
bag file. The annotations are done by the open-source annotation tool Labelme [25], which gives the
annotated images with the label values for each associated pixel. Figure 3 displays the overlay of
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annotated mask over the corresponding RGB image in which the labeled classes like Background,
Crops, and Lanes are stored as 0, 1 and 2 values in the image.

(a) Actual RGB image (b) Annotated Image

Figure 3. Overlay of the annotated mask on the RGB image for training.

3.2. Crop Row Segmentation Network

For semantic segmentation, we applied the well-tested SegNet [26], which is a CNN with an
encoder-decoder architecture. We used the implementation with ResNet50 as the base model in the
Image Segmentation Keras Library [27], with input size 640 × 352, output size 640 × 480, and 3 output
classes. The model is trained on our dataset, using the train/test split described in Section 4. Training is
performed with default parameters from [27] for 21 epochs on the Google Colab platform. The adadelta
is used as optimizer, batch size is set to two and loss chosen to categorical crossentropy. There is no
explicit regularization or augmentation of the dataset. Though the dataset is trained for 21 epochs,
the predictions ran with the “early stopping” criterion of 11 epochs due to its lower loss value. Once the
training is done, the weights are stored and used to predict the incoming images. The output of CNN
is a per-pixel classification with the labels of interest, i.e., crops, lanes, and background in this work.

3.3. Crop Row Fitting Using Multi-Roi Algorithm

Once the CNN inference process has completed, the segmented grayscale image is available
for estimating the centerline of the crop rows. The next step proceeds with the crop row fitting
process by doing the following steps: (a) Identification of starting points as peaks to fit the first ROI,
i.e., a rectangular window pointing to the regions of interest, in the label area (b) extract the pixel points
belonging to the segmented label using multiple ROIs (c) Adaptive search scheme that automatically
adjusts the fitted ROIs to the crop rows of varying width. In the end, the regression fitting is applied
over the selected pixel points to determine the robot’s guided line.

3.3.1. Identification of Starting Points

For exploring the pixels of interest, the bottom thirty percent of the segmented image is cropped
(Figure 4b,c) and warped to the overhead view for identifying the starting points of the predicted label.
The image warping is done using perspective transform M that contains the 3 × 3 matrix. The warped
image ImgW has been obtained using the following:

ImgW = M ∗ Img (2)

where M is obtained using OpenCV function “getPerspectiveTransform” after the setting the size of
warped image ImgW (size is chosen as 640 × 640 for optimal estimation). The peaks p̂i are estimated
by summing the columns of the warped image and obtain the column pixel with maximum white
pixels (red/pink colored in Figure 4). For crop-based guidance, at least one peak (Figure 4d) has to
be found, whereas the lane-based guidance requires minimum detection of two peaks (Figure 4f) for
robot guidance. The estimated peaks are projected back into actual segmented image (Figure 4e,g)
using the inverse of the transform matrix M and apply inverse mapping over the warped image.
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The implementation of the peak estimation used is from the SciPy library with the “find_peaks”
function and project the location of the peaks by inverse warping to the original image. When the
peaks estimation function could not find any peaks either due to the presence of bare patches or due to
camera projection in the hilly terrain, the cropping ratio will be increased to do more exploration. If the
minimum numbers of peaks cannot be detected after exploring half of the image, then the current
image frame will be rejected for further processing and skips to the next frame.

(a)

(b)

(c) (d)

(e) (f) (g)

Figure 4. The peaks are estimated (red) on both the crop and lane label by summing the columns
of the warped image. The peaks are projected (pink) back by inverse warping on the segmented
image. (a) Incoming RGB image, (b) Crop Label, (c) Lane Label, (d) Estimated Peaks (Warped Lane
Label), (e) Projected Peaks (Inverse Warped Lane Label), (f) Estimated Peaks (Warped Crop Label),
(g) Projected Peaks (Inverse Warped Crop Label).

3.3.2. Extraction of Label Points

As a next step, it was experimentally determined that taking the bottom seventy percent of
the image (Figure 4e,g) will give satisfactory results avoiding the overlap of the labels towards the
vanishing point. Hence the bottom seventy percent of the image has been cropped to extract the
segmented label pixels as label points. At first, the image is equally divided into N number of
horizontal strips totaling 10 in this case. The segmented labels have explored from the starting points
that are found in the previous step. Each starting point has an independent exploration process that
occurs sequentially. A rectangle shaped micro-ROI with fixed left ml and right margin mr is used for
identifying the label points beginning from the associated starting point. The height of each micro-ROI
is the same as the corresponding substrip (33 pixels). The width varies for each substrip initially set
to 100 pixels and decreases gradually at a rate of 5% as it progresses over the substrips. The first
micro-ROI have fitted over the projected starting points, as in Figure 5a. The white pixels within the
micro-ROI boundary region has taken as label points, and label center rn∈N of the label points within
the micro-ROI bounds in the form:

rn∈N = {xcn∈N , ycn∈N} = {
1
L ∑

i
xi,

1
L ∑

i
yi} (3)

where xi and yi represent the white pixels belonging to the segmented plants inside the micro-ROI
and L is the number of white pixels. The first micro-ROI will slide as per the mean of the white pixels
within micro-ROI (green rectangle and red circle indicate the micro-ROI and its center in Figure 5a).
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The second micro-ROI is applied in the upper substrip (Figure 5b) assigning the label center r2

equivalent to the label center r1 of the points from the previous micro-ROI. The second micro-ROI
will slide based on the mean value of the label points along the second substrip and update the label
center r2 (blue color in Figure 5c) so that the micro-ROI can contain most of the label points in that
particular substrip. The same procedure of applying the micro-ROIs has implemented to the remaining
eight strips. Hence the updated label centers rn∈N of the micro-ROI in each substrip (Figure 5d) have
obtained. The procedure repeats for other available starting points. Finally, the average label centers
are taken as a mean of all the label centers (Figure 5e) belonging to every starting point, and regression
fitting is carried out to estimate the polynomial over average label centers as centerline (Figure 5f) for
robot guidance.

(a) First Sub-ROI Fit (b) Second Sub-ROI Fit (c) Adjusted Sub-ROI

(d) Fitting in all strips (e) Regression Fitting (f) Guided Line

Figure 5. Step by Step Procedure for fitting multiple windows over the pixels of interest as (a) Window
applies over peaks and adjusted based on mean values of the white pixels. (b) The neighboring strip
has a second window with the same center as the previous window. (c) Second window adjusted with
the mean of white pixels within its boundaries. (d) The same method extends until the last horizontal
strip. (e,f) Estimating the centerline for crop row guidance using regression analysis.

However, due to its size or shape of the plants, or the hilly terrains in the strawberry fields
(Figure 6), the fixed margins of the micro-ROIs could not be able to fit the crop rows of different
width. A regression fitting over incorrectly fitted ROIs gives an inaccurate crop row guidance for
the robot. The adaptive multi-ROI is proposed in which a search-based scheme uses two sub-ROIs
for updating margins of the micro-ROIs, thereby taking the crop rows structure in every respective
substrip into consideration.

Figure 6. The above scenarios highlight the issue of the multi-ROI fitting using fixed margins (ml , mr)

to the crop rows having different width. Courtesy: identified peaks (pink), rectangular boxes (green)
indicates the ROIs and the chosen label as label points (blue) within bounds.



Sensors 2020, 20, 5249 8 of 17

3.3.3. Adaptive Search Scheme

If the nth micro-ROI have at least one white pixel of the segmented label, then the proposed
adaptive multi-ROI is introduced to explore the crop rows along the strip. After applying this scheme,
the centers rcn∈N of the label points and the respective ROI is updated accordingly. The adaptive
scheme has the following steps:

1. To begin the exploration, the left and right sub-ROI (blue and yellow color in Figure 7a) with
rectangle shape has initiated from the known label centers rn∈N for every projected peak.
The height (hrl , hrr) for the left and right sub-ROI will be constant and equal to the height
of the corresponding substrip. The width of both the sub-ROI can be chosen as value based on the
crop type to have an optimal exploration area. For the strawberry crops, the size of the sub-ROIs
is set to 40 pixels.

2. The sub-ROI on the left (blue) and right side (yellow) from the label centers rcn∈N are constrained
to move only in the left and right directions along the corresponding substrip.

3. As in Figure 7b, both the sub-ROI will move in the opposite direction with the constant increment
i, i.e., the center cl or cr of the left and right sub-ROI will shift i number of pixels in their search
direction. The sub-ROI will give the flexibility to search along the strip in a sequence until it
found the edge of the label or until it reaches the boundaries of the nth substrip. A search has also
stopped if the current sub-ROI overlap with the already fitted sub-ROI from the neighboring areas.

4. For every increment, a rectangular mask template maskn is generated using the sub-ROI
(Figure 8b) in the shape of the respective strip. A bitwise AND operation is performed between
the generated template and the nth strip stripn (Figure 8a) as:

resn = stripn ∧ maskn (4)

where the resultant image resn (Figure 8c) will contain the pixels belonging to the label region.
The percentage of white pixels in the clusters has calculated, and a check is done if it is less than
the minimum threshold T. If the threshold is satisfied, then the edge of the label is reached.

5. If the minimum threshold T is not satisfied for ith increment, then the search scheme repeats
from step 3 with the 2ith increment as displayed in Figure 7c. The sub-ROI based search will
continue with xi increment (where x = 1, 2, . . . , 16) until one of the stopping criteria is met.

6. When one of the search stopping criteria is met, the distance between the center rn∈N and cl or cr

have been updated as new margin values ml or mr. The mean of the white pixels within updated
ROI bounds has taken as the new label centers rn∈N for nth substrip and repeat the entire process
for the next substrip until the last substrip is searched (Figure 8d).

(a) Sub-ROIs. (b) i Increment. (c) 2i Increment.

Figure 7. The proposed Adaptive Multi-ROI methodology to adapt to the varying crop row widths
using incremental search along horizontal strips.

Unlike the standard multi-ROI approach, the proposed adaptive multi-ROI based algorithm can
dynamically change its path if a row is slanted (Figure 9a) or tiny plants (Figure 9b) or not evenly
spaced (Figure 9c). This adaption helps the robot to attain better trajectory generation in visually
changing strawberry fields. After the adaptive search scheme, the average label centers have been
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obtained for regression fitting to estimate the guided line. Algorithm 1 gives an overview of the overall
crop row fitting process.

(a) Substrip

(b) Mask

(c) Result (d) Predicted edges

Figure 8. The figure showcases the resultant image obtained using substrip and mask that helps to
find the edge of the labels. The sub-ROIs are stopped when it reaches the edges and update the label
centers for each micro-ROI.

(a) Larger Plants (b) Tiny Plants (c) Uneven Plants

Figure 9. The figure showcases the usage of the proposed adaptive multi-ROI methodology in the
cases comparing to the existing multi-ROI method.

Algorithm 1 Multi-ROI based Crop Row Fitting.

1: procedure MULTI-ROI FITTING(image) . Input
2: Input: predicted image, margin ml , mr;
3: Identification of Peaks p̂i;
4: for each peak do
5: for each horizontal strip do
6: Fit ROI with center rn of label points, ml , mr;
7: Recenter rn as mean of white pixels;
8: if label points not empty then
9: Initialize left and right sub-ROIs Rn∈(l,r);

10: ml , mr = incremental_search(Rn, stripn);
11: Update ROI with center rn;
12: Apply regression fitting over rn∈N ;
13: Generate guided line Lc; . Output

4. Experimental Setup

Four crop rows are chosen for experiments based on their color variations, different crop width,
irregular spacing and projection of their shadows. The RGB images from the selected crop rows are
carefully split into training and testing data. Overall, the dataset generalized the variations for training
the convolutional neural networks. The selected crop rows have different crop row dimensions after
measuring the beginning of the row by hand-held tape. The total image frames for every crop row
during the dataset collection are also noted, but the frames involving the end of the crop row are
disregarded since they are beyond the scope of this work. The dataset collected for each crop row at
different periods has given a naming convention like YYMMDD_L(N)_(D) in which the first section
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mentions the date of data collection in year month date format. It is followed by lane number varying
from 1 to 4 for the selected crop rows; otherwise, it uses R for a random lane. Lastly, the direction of
the real field is included in which the lane can be faced north or south side.

4.1. Dataset

The recorded images were carefully split into separate sets for training and testing of the
segmentation network. To achieve a representative training set covering the variation of all the
rows, without geographically overlapping with the test set, the following splitting procedure was
followed: (a) Every dataset was divided into three parts. (b) Twenty chosen images from two parts
are taken for training, and ten images from the remaining part are kept for testing. (c) In the case of
dataset facing north or facing south, twenty images from two parts in one direction and ten images
from another direction are taken. The labeled dataset consists of 317 images for training and 120 for
testing in total. The camera images and the corresponding annotations are made publicly available
https://doi.org/10.6084/m9.figshare.12719693.v1.

4.2. Crop Row Segmentation

To visualize the quality of the segmentation, per-pixel results of the lane class with its true
positives, undetected vegetation and undetected soil are plotted on top of the input image. Quantitative
assessments of the segmentation algorithm in isolation are outside the scope of this paper.

4.3. Adaptive Multi-Roi Experiments

The proposed adaptive multi-ROI is a subset of the actual multi-ROI algorithm. The sub-ROIs
will begin incremental search only if there is at least one white pixel within the ROI. Otherwise, it will
be termed as seasonal plants and skip to the next horizontal strip or complete the fitting procedure.
The generated label centers rn are given to regression fitting for fitting either the straight line or the
polynomial based on the residual. By comparing the fitted image with the output image from the
segmentation predictions, the multi-ROI fitting procedure is evaluated. The performance of various
crop row fitting methods is shown in terms of intersection over union (IoU) (Equation (5)) as:

Fitting IoU =
mask ∩mask f it

mask ∪mask f it
(5)

where mask is the output image from CNN segmentation taken as ground truth and mask f it is the
template generated by fitting methods. Moreover, the metric called “Crop Row Detection Accuracy”
(CRDA) introduced in [17] will be applied to check how well the estimated centerline is to the ground
truth images. The performance metric CRDA is computed by using the horizontal coordinates xc of
the centerline Lc for each crop row to the corresponding horizontal coordinates xc of the ground truth
images. The equation is written with the number of the crop rows (N = 1) and the number of image
rows (M = 252) as

CRDA =
1

N ×M

M

∑
i=1

N

∑
j=1

S∗(xc,i, xc,i, sc,i) (6)

where

S∗(xc, xc, sc) = max
(

1−
(

xc − xc

ηsc

)2

, 0
)

(7)

However, only one crop row is detected in these use cases, the matching score equation (S∗) is
normalized with the known crop row spacing sc in pixels instead of inter-row spacing parameter s [11]
in Equation (7). However, the crop rows in the test sets have varying spacing, therefore max(sc) has
been used with the scaling factor η for each horizontal strip. The average matching scores belonging to

https://doi.org/10.6084/m9.figshare.12719693.v1
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all the image rows (M) will give a metric representation within the range of 0 to 1 as the worst and
best estimates.

Ground Truth Images

For evaluation, each image for testing should have the centerline as ground truth. Since each image
set is different, the ground truth has to be generated by manual annotation (Figure 10). The plants are
more extensive so that the crop boundaries are annotated manually as a polygonal ROI, and a binary
mask is generated. The image is divided into N strips. A center point xc is the average between the
min and max x values for each substrip of the center crop mask. In this way, every substrip has center
points and runs a regression fitting over all the center points in N strips. These ground truth values
are associated with each image used by CRDA metrics for evaluating the estimated centerline by four
crop fitting methods. In total, 400 ground truth images have been created.

Figure 10. Ground Truth Centerline by manual annotation. The left image is the raw RGB image from
the camera. The middle image is the binary mask generated by freehand masking; the final image
corresponds to the centerline of the crop row as ground truth (pink).

5. Results

5.1. Crop Row Segmentation

Figure 11 shows some example segmentation results for the lane class, to provide some intuition
about the quality of the segmentation. Here, the quality of the segmentation is overall very good,
also for difficult cases with in-line vegetation and shadows. Most of the false positives and negatives
are due to inaccurate labels.

(a) (b) (c)

(d) (e) (f)

Figure 11. Presents the example input images during different stages of the harvesting season (a–c) and
their CNN segmentation results for the lane class (d–f). Green is correct prediction, blue is undetected
soil, magenta is undetected vegetation. Best viewed in color.
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5.2. Crop Row Fitting with Adaptive Multi-Roi

The usage of semantic segmentation gives the flexibility of using the labels of interest. The crop
row fitting using adaptive multi-ROI can be tested either on the crop or lane labels since both can
generate the guided centerline for the robot. The methodology has been designed as such the guided
line can be estimated as an average of Ln odd number of fitted crop labels or Ln even number of fitted
lane labels. For evaluating the various use cases, the image sets have been organized as follows: larger
plants, tiny plants, uneven plants and inclined terrains. The images suited for every use case are
handpicked from the gathered datasets. The crop row fitting methods have been tested over four
image sets, each containing 100 images.

At first, the standard multi-ROI was tested on the image sets for evaluating its performance.
The multi-ROI fitting performed over the predicted image for the lane label. It is noticeable that
the multi-ROI fitting could not handle the change in width among the crop rows (Figure 12a–d).
These led to the incorrect estimation of the centerline, which makes the robot deviate from the driving
region. To overcome this problem, the adaptive multi-ROI is introduced, which does an incremental
search algorithm along the strip for estimating the ROI margins. The search algorithm finds the exact
margins for each ROIs in all the test cases. The predicted labels in Figure 12e–h detail the centerline
generation over the estimated centers rn∈N on two of the predicted lanes region. Then, the centerline
has been determined by regression fitting with the average points of both lines. Similar tests have been
performed with the crop label where only one crop has fitted (Figure 12i–l); therefore, the fitted crop
was taken as the centerline.
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(a) CRDA:0.8393 (b) CRDA:0.7030 (c) CRDA:0.5703 (d) CRDA:0.6783

(e) CRDA:0.9087 (f) CRDA:0.8943 (g) CRDA:0.7813 (h) CRDA:0.8326

(i) CRDA:0.9902 (j) CRDA:0.9847 (k) CRDA:0.9735 (l) CRDA:0.9966

Figure 12. Fitting results for four test cases depicting the variance of strawberry crop rows. Columns
represent Multi-ROI fitting results using fixed-size ROIs (green) (a–d). The proposed Adaptive
Multi-ROI fitting results using adaptive-size ROIs (green) are showcased for lanes (e–h), and crops
label (i–l). The Adaptive Multi-ROI can find the cluster centers (red) in the lane or crop regions. A
regression fitting applied over the average of fitted labels (yellow) and obtained the centerline (cyan)
for the robot to follow the crop row. The metric CRDA tells how well the centerline for autonomous
guidance is estimated against the ground truth.

Table 1 shows the average total execution time and obtained fitting IoU using multi-ROI and
adaptive multi-ROI methods with the test sets. The fitting IoU tells how well the crop rows have fitted.
The proposed adaptive multi-ROI take more time in execution than the multi-ROI due to the additional
incremental search time taken by sub-ROIs. Even though the adaptive multi-ROI consume more time,
the fitting IoU is much higher, determining better overlays with the predicted mask. Hence it can be
concluded the adaptive multi-ROI perform the fitting better than the standard method in all the use cases.

Table 1. Comparisons of fitting IoU between multi-ROI and proposed Adaptive multi-ROI approach.

Multi-ROI Adaptive Multi-ROI

Test Set Execution Fitting Execution Fitting
(100 Images) Times IoU Times IoU

Larger Plants 0.40 ± 0.01 0.9003 0.68 ± 0.05 0.9615

Tiny Plants 0.21 ± 0.01 0.7328 0.41 ± 0.03 0.8924

Uneven Plants 0.25 ± 0.01 0.8482 0.53 ± 0.01 0.9100

Inclined Terrains 0.30 ± 0.00 0.8365 0.63 ± 0.02 0.9378

The performance of the proposed multi-ROI crop row fitting methods have been evaluated along
with the traditional line fitting approaches on the image sets. The modified version of the CRDA
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metric has been used for evaluating the crop row fitting methods. At first, the probabilistic Hough line
transform ran on the image sets to find the centerline and evaluate it with the ground truth images.
The RGB image has warped into an overhead view, and Hough transforms fit a group of straight lines
over predicted labels. The Hough transform parameters have fine-tuned to achieve better results for
these use cases, and then the average of all the lines has taken as the guided line. The next method
involves the linear regression based on the least-squares that use templates created by areas containing
the predicted label. In this method, the contours are found around the labels (crop or lanes) in the
image. Then the straight line is fitted over each contours region by minimizing the objective function.
Smaller labels that are farther away in the image are removed by their contour area to improve the
estimation performance. The centerline can be taken as an average of fitted lines and compared with
ground truth. Moreover, the estimated centerline from the multi-ROI and the proposed adaptive
multi-ROI methods has also been evaluated using the image sets.

From the tests using crop and lane labels on image sets, the Table 2 displays the mean and standard
deviation of the CRDA scores by fitting methods. The Hough transform has decent results (>0.55*) on
all image sets but perform poorly when the crop rows are broader, like in the tiny plants (lane label) or
larger plants (crop label) set. In linear regression, the results are slightly better (>0.60*) than Hough but
give below optimal accuracy when it comes to irregularly shaped crop rows. The multi-ROI technique
achieves results close to 0.80* on image sets but suffers on the situations when crop row has a larger
width than the ROI margins. It could be improved if the margin of the ROI was preset based on the crop
row width, which would not be practical while running online in real fields. The adaptive multi-ROI
methods give improved results over standard multi-ROI by dynamically handling the crop rows width.
Therefore, the introduction of adaptive multi-ROI crop row fitting gives improved results on guidance
with CRDA achieves close to 0.90* in most test cases. The video of the proposed crop row guidance
approach tested over four different crop rows is available online: https://youtu.be/IxK51ewD6os.

Table 2. Crop Row Detection Accuracy for the estimated centerline over the testing image sets.

Hough Transform Linear Regression Multi-ROI Adaptive Multi-ROI

Test Set Crops Lanes Crops Lanes Crops Lanes Crops Lanes
(100 Images) Label Label Label Label Label Label Label Label

Larger Plants 0.6450 ± 0.31 0.7221 ± 0.17 0.8754 ± 0.11 0.7134 ± 0.18 0.7155 ± 0.46 0.9251 ± 0.09 0.9599 ± 0.06 0.9457 ± 0.06

Tiny Plants 0.5306 ± 0.34 0.5456 ± 0.15 0.7963 ± 0.22 0.8035 ± 0.18 0.9382 ± 0.11 0.7753 ± 0.07 0.9679 ± 0.06 0.8933 ± 0.04

Uneven Plants 0.6719 ± 0.32 0.5631 ± 0.13 0.8333 ± 0.21 0.5136±0.12 0.9142 ± 0.11 0.8636 ± 0.08 0.9679 ± 0.06 0.9333 ± 0.06

Inclined Plants 0.5085 ± 0.34 0.5050 ± 0.06 0.8183 ± 0.21 0.3324 ± 0.13 0.8857 ± 0.27 0.7929 ± 0.11 0.9835 ± 0.02 0.8801 ± 0.06

6. Discussion

The performance of the entire crop row guidance depends on the quality of the segmentation
and the crop row fitting. The output from the segmentation part has shown good accuracy when
used together with the multi-ROI fitting. Further quantitative tests of the segmentation network and
its ability to generalize across different rows and seasons are beyond this paper’s scope and will be
treated in the future paper. In this paper, the focus is mainly on the multi-ROI fitting. Even though the
entire crop row guidance system seems to work well for most scenarios, there are tricky situations
where the crop row is reduced to a certain accuracy.

It is common in real fields when the plants do not always grow sequentially along the crop rows,
either due to soil compaction or lack of sunlight, which leads to specific gaps termed as bare patches.
As in Figure 13a,d, due to the bare patches, the fitting using crop label could handle the gaps in the
segmented crop rows and shifts to the next substrip (Figure 13b) for the further fitting process. Thus
the crop row fitting pipeline has not been interrupted in these scenarios. However, fitting using lane
labels will misfit the label points belonging to one segmented lane to the neighboring lanes. The misfit
leads to two situations. First, since the overlapping of micro-ROIs is not permitted, the micro-ROI
from the first lane fit the label points from the second lane leaving the micro-ROI from the second lane
with no exploration area. For the overlapping case, the situation has been handled by assigning the

https://youtu.be/IxK51ewD6os
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same center values for the micro-ROIs (Figure 13c) of the overlapping lanes. The second case is when
the micro-ROI explore the neighboring lane, which is not a part of the crop row fitting procedure. This
scenario generates the deviated guided line like zig-zag movement that does not replicate the actual
scenario (cyan in Figure 13f). This situation has been identified by finding the radius of curvature R of
the guided line and then set the limit for the value to be greater than a certain minimum value. The
radius of curvature can be calculated as

R =
(1 + (2ax + b)2)

3
2

2a
(8)

where a and b are the polynomial coefficients by fitting the coordinates of the guided line, x is the
horizontal coordinates of the guided line. If the limit condition is not satisfied, then the most distant
center among all center points of the guided line along the horizontal axis is taken as an outlier and
the outlier value replaced with the horizontal center from the previous substrip. The procedure is
repeated until the limit condition is satisfied and suboptimal guided centerline (pink in Figure 13f) is
obtained even in tricky cases.

(a) Scenario 1 (b) Crop Label (c) Lane Label

(d) Scenario 2 (e) Crop Label (f) Lane Label

Figure 13. Handling of bare patches scenarios using adaptive multi-ROI fitting.

All the discussed crop row fitting methods have a minimal performance on the inclined terrains,
mainly due to the camera visualization of the labels in which some sections of the labels are not
visible. Hence it makes the estimated centerline also inclined towards the more visible side. It could be
improved by skewing the image based on the inclination information obtained from other sensors like
calibrated IMU or depth cameras.

7. Conclusions

In this work, we have proposed a crop row guidance system by vision systems using a CNN-based
segmentation combined with adaptive multi-ROI based crop fitting. With the evolution of machine
learning, the crop models can be learned with the big data and adapted to the changes in the
environments. For generating the essential big data required for machine learning, the onboard
sensors mounted on the agricultural robot deployed for the data collection. Furthermore, the proposed
crop fitting procedure applies multiple smaller windows along the equally divided horizontal strips
on the input image. The methodology has estimated the guided line to higher precision in most of the
use cases after analyzing with the ground truth.
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Furthermore, the tests showcased improved results compared with the other fitting methods.
Since the agricultural robot runs at an average of 1.5 km/h, the proposed methodology could run
online in the real fields. The future work involves finding the need for the automatic transition when
the robot reaches one end of the crop row by following the proposed crop row guidance. The extension
will be developing the robot to autonomously maneuver to nearby crop rows and follow the crop row
guidance in the next row. Therefore, the agricultural robot will have closed-loop field testing for the
entire field.
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