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SuperKEKB is an asymmetric energy electron positrion collider currently under commissioning in
Japan. It aims to achieve a record high luminosity of 8 × 1035 cm−2 s−1, for which accurate control of β�y is
needed. The advanced final focus system is also relevant for studies related to future linear colliders, which
similarly need to achieve very small beam sizes. To work for SuperKEKB, the K modulation technique is
generalized to allow known quadrupole fields between the modulated magnets and the interaction point.
Initial measurements taken in HER agree with simulations, and show that K modulation is suitable for
measuring the minimum of the β function at the interaction point within 1%, however it is too uncertain to
be used for measuring the displacement of the beam waist away from the interaction point. In addition, tune
shift equations for a modulated quadrupole are derived without assuming a thin lens perturbation, giving a
simple method to calculate the tune shift to second order in the quadrupole strength modulation.
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I. INTRODUCTION

This article is based on results available in [1]. Currently
under commissioning, SuperKEKB is an asymmetric
energy electron positron collider at the High Energy
Accelerator Research Organization in Japan (KEK) [2].
It is composed of a 7 GeV ring for electrons and a 4 GeV
ring for positrons, called the High Energy Ring (HER)
and Low Energy Ring (LER), respectively. The accelerator
is an upgraded version of KEKB which operated between
1999 and 2010, during which the physics experiment
Belle collected an integrated luminosity of 1.04 ab−1,
and achieved a record high instantaneous luminosity of
2.11 × 1034 cm−2 s−1 in 2009 [3]. This made possible the
detection of CP violation in B mesons and contributed to
the confirmation of the Kobayashi-Maskawa theory [4].
SuperKEKB and the upgraded Belle II aim at a luminosity
of 8 × 1035 cm−2 s−1, surpassing the previous record by a
factor 40. This will allow for an integrated luminosity of
50 ab−1, enabling precision measurements of rare events
and thus testing of the Standard Model as well as
potentially revealing hints about new physics [5].

This factor 40 increase in luminosity comes mainly
from two improvements: increasing the beam current by a
factor of 2 and decreasing β�y by a factor 20 down to
0.3 mm, β�y being the vertical β function at the interaction
point (IP). See Table I for a list of machine parameters. The
luminosity is inversely proportional to β�y, and precise
measurements along with control of this value is therefore
important. Several well established techniques exist for
measuring the β function, and an overview including
comparisons between the methods is found in [6].
Currently in SuperKEKB, β function measurements are
done globally using an orbit response matrix method [7]. K
modulation directly measures the average β function at a
modulated quadrupole by measuring the corresponding
tune shift. As a result K modulation is slow for global
measurements, but can be used for measuring β� and has
been used to do so in other machines with uncertainty
below 1% [8,9]. However, it has been shown that the
uncertainty of β� measurements using K modulation
grows significantly for small values of β� [10], raising
the question whether K modulation will give accurate
measurements in SuperKEKB.
Precise β� measurements in SuperKEKB are interesting

for other machines as well. Future linear colliders like
CLIC [11] and ILC [12] require luminosities on the order
of 1034 cm−2 s−1 to meet the demands of the experiments.
Such luminosities further require small beam sizes and
strong focusing quadrupole magnets with large chromatic
aberrations that must be corrected in the final focus
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systems. For CLIC there are currently two types of focusing
systems proposed [13], one of which is also the baseline for
ILC and is being tested at ATF2 [14]. The other focusing
system is similar to the one used to correct the chromaticity
from the final focusing quadrupoles in SuperKEKB LER
and HER. This focusing system was tested at FFTB [15],
but SuperKEKB will demonstrate the system at smaller IP
beam sizes and initial studies have investigated the pos-
sibility of reducing β�y by a factor 3 beyond the nominal
value [16], which would give a further 40% reduction in the
vertical beam size at the IP if chromaticity and nonlinear
effects can be properly corrected. Such dedicated studies of
the final focus system would make it possible to compare

the SuperKEKB system with that used in ATF2, and would
require accurate β� measurements. Figure 1 shows vertical
beam size measurements from ATF2, together with the
planned beam size for HER and LER, as well as a tentative
goal for a possible focus system study. Table II displays the
chromaticity of the various machines discussed above,
approximated using the formula ξy ∼ L�=β�y.

II. THEORY AND METHOD

A. Tune shift from modulation
of a quadrupole magnet

We seek an expression for the change in tune when
slightly changing the strength of a quadrupole magnet. This
is normally done by assuming the perturbation can be
approximated as a thin quadrupole, following the method
described in [18]. By acting on the one turn matrix Toriginal

with a thin lens matrix we get the new full turn transfer
matrix Tnew
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FIG. 1. Measured vertical beam sizes in ATF2 [17] for different
values of β�x and β�y as compared to the nominal value. On the left
are the nominal vertical beam sizes intended for SuperKEKB
rings HER and LER. An additional line is added for the case of
reduced β�y in LER.

TABLE I. Main parameters of SuperKEKB [2].

LER (eþ) HER (e−) Unit

Energy E 4.000 7.007 GeV
Current I 3.6 2.6 A
Number of bunches 2 500
Bunch current 1.44 1.04 mA
Circumference C 3 016.315 m
Emittance ϵx=ϵy 3.2=8.64 4.6=12.9 nm/pm
Coupling 0.27 0.28 %
β function at IP β�x=β�y 32=0.27 25=0.30 mm
Transverse beam size at IP σ�x=σ�y 10.1=48 10.7=62 μm=nm
Crossing angle 83 mrad
Momentum compaction αp 3.20 4.55 10−4

Energy spread σδ 7.92 6.37 10−4

Total cavity voltage Vc 9.4 15.0 MV
Bunch length σz 6.0 5.0 mm
Synchrotron tune νs 0.0245 0.0280
Betatron tune Qx=Qy 44.53=46.57 45.53=43.57
Energy loss per turn U0 1.76 2.43 MeV
Damping time τx;y=τz 43.2=22.8 58.0=29.0 msec
Beam-beam parameter ξx=ξy 0.0028=0.0881 0.0012=0.807
Luminosity L 8 × 1035 cm−2 s−1

TABLE II. Comparison of chromaticity, ξy ∼ ðL�=β�yÞ, in the
final focusing quadrupoles for CLIC, ILC, ATF2, FFTB and the
Low/High Energy Ring in SuperKEKB.

L� [m] β�y½μm� L�=β�y
CLIC 3.5 70 50 000
ILC 3.5=4.1 410 8500=10 000
ATF2 1 100 10 000
FFTB 0.4 100 4000
SuperKEKB LER 0.94 270 3500
SuperKEKB HER 1.41 300 4700
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Tnew ¼ Toriginal

�
1 0

�ΔKL 1

�
; ð1Þ

where ΔKL is the change in integrated strength of the
magnet. The two transfer matrices are given by

Toriginal

¼
�
cosð2πQÞþα0 sinð2πQÞ β0 sinð2πQÞ

−γ0 sinð2πQÞ cosð2πQÞ−α0 sinð2πQÞ

�
;

ð2aÞ

Tnew

¼
�
cosð2πQ0Þþα00sinð2πQ0Þ β00sinð2πQ0Þ

−γ00sinð2πQ0Þ cosð2πQ0Þ−α00sinð2πQ0Þ
�
:

ð2bÞ

The new tune Q0 is equal to the original tune Q plus the
tune shift ΔQ. β0, α0, and γ0 are the optical functions at the
thin lens quadrupole before the modulation, while β00, α

0
0,

and γ00 are the optical functions after the modulation. See
Fig. 2 for an illustration of the method. By taking the trace
of both sides of Eq. (1) we get

2 cosð2πQÞ � β0ΔKL sinð2πQÞ ¼ 2 cos½2πðQþ ΔQÞ�:
ð3Þ

This equation can also be used also for a thick quadrupole
by approximating β0 ≈ β̄.
In the above, the quadrupole modulation was approxi-

mated with a thin quadrupole. We show now a slightly
different approach that reproduces the same results to linear

order in ΔK, but that also gives the second order tune shift
from ΔK without assuming a thin quadrupole. Instead of
using a thin lens perturbation, we replace the magnet of
strength K with a magnet of strength K þ ΔK by acting on
the one turn matrix with the inverse of the original quadru-
pole transfer matrix, M−1ðKÞ, followed by the transfer
matrix of the modulated quadrupole MðK þ ΔKÞ, see
Fig. 2. This gives the one turn transfer matrix Tnew including
the modulation

Tnew ¼ ToriginalM−1ðKÞMðK þ ΔKÞ: ð4Þ
For a focusing quadrupole these matrices are given by

MðKÞ ¼

0
B@ cosð ffiffiffiffi

K
p

LÞ sinð ffiffiffi
K

p
LÞffiffiffi

K
p

−
ffiffiffiffi
K

p
sinð ffiffiffiffi

K
p

LÞ cosð ffiffiffiffi
K

p
LÞ

1
CA; ð5aÞ

M−1ðKÞ ¼

0
B@ cosð ffiffiffiffi

K
p

LÞ − sinð ffiffiffi
K

p
LÞffiffiffi

K
p

ffiffiffiffi
K

p
sinð ffiffiffiffi

K
p

LÞ cosð ffiffiffiffi
K

p
LÞ

1
CA: ð5bÞ

Calculating M−1ðKÞMðK þ ΔKÞ and expanding to second
order in ΔK gives

M−1ðKÞMðK þΔKÞ

¼
�
1þ a11ΔK þ b11ΔK2 a12ΔK þ b12ΔK2

a21ΔK þ b21ΔK2 1þ a22ΔK þ b22ΔK2

�

¼ Iþ aΔK þ bΔK2; ð6Þ

where the coefficients aij and bij are given by, writingffiffiffiffi
K

p
L ¼ ϕ,

a11 ¼
sin2ðϕÞ
2K

; ð7aÞ

a12 ¼
L
2K

�
1 −

sin ð2ϕÞ
2ϕ

�
; ð7bÞ

a21 ¼ −
L
2

�
1þ sin ð2ϕÞ

2ϕ

�
; ð7cÞ

a22 ¼ −
sin2ðϕÞ
2K

¼ −a11; ð7dÞ

b11 ¼
1

8K2
½ϕ sin ð2ϕÞ − ϕ2 − sin2ðϕÞ�; ð7eÞ

b12 ¼
1

16K5=2 ½3 sin ð2ϕÞ − 2ϕ − 4ϕcos2ðϕÞ�; ð7fÞ

b21 ¼
1

16K3=2 ½sin ð2ϕÞ þ 2ϕ − 4ϕcos2ðϕÞ�; ð7gÞ

b22 ¼
1

8K2
½−ϕ sin ð2ϕÞ − ϕ2 þ 3sin2ðϕÞ�: ð7hÞ

FIG. 2. Illustration of a one turn matrix (top left), and a one
turn matrix with a thin quadrupole perturbation ΔK (top right).
Below is a one turn matrix where a quadrupole of strength K
is removed (bottom left), and a one turn matrix where a
quadrupole of strength K has been replaced by a quadrupole
of strength K þ ΔK (bottom right).
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For completeness, the coefficients for a defocusing
quadrupole are found the same way and are given by

a11;def ¼ −
sinh2ðϕÞ

2K
; ð8aÞ

a12;def ¼
L
2K

�
1 −

sinh ð2ϕÞ
2ϕ

�
; ð8bÞ

a21;def ¼
L
2

�
1þ sinh ð2ϕÞ

2ϕ

�
; ð8cÞ

a22;def ¼
sinh2ðϕÞ

2K
¼ −a11;def ; ð8dÞ

b11;def ¼ −
1

8K2
½ϕ sinh ð2ϕÞ − ϕ2 − sinh2ðϕÞ�; ð8eÞ

b12;def ¼
1

16K5=2 ½3 sinh ð2ϕÞ − 2ϕ − 4ϕcosh2ðϕÞ�; ð8fÞ

b21;def ¼ −
1

16K3=2 ½sinh ð2ϕÞ þ 2ϕ − 4ϕcosh2ðϕÞ�; ð8gÞ

b22;def ¼ −
1

8K2
½−ϕ sinh ð2ϕÞ − ϕ2 þ 3sinh2ðϕÞ�: ð8hÞ

Using Eq. (6) we can then find an expression for the trace
of Tnew in Eq. (4)

TrðTnewÞ ¼ cosð2πQÞ½2þ ða11 þ a22ÞΔK þ ðb11 þ b22ÞΔK2� þ α0 sinð2πQÞ½ða11 − a22ÞΔK þ ðb11 − b22ÞΔK2�
þ β0 sinð2πQÞða21ΔK þ b21ΔK2Þ þ γ0 sinð2πQÞð−a12ΔK − b12ΔK2Þ; ð9Þ

where β0, α0 and γ0 are the optical functions at the edge of
the modulated magnet. Note that a11 ¼ −a22 such that
a11 þ a22 ¼ 0 in Eq. (9). We know that the trace of Tnew is
also equal to 2 cosð2πðQþ ΔQÞÞ. To linear order inΔK we
insert the coefficients a11, a12, a21, a22 and solve

2 cos½2πðQþ ΔQÞ� ¼ 2 cosð2πQÞ − β̄ΔKL sinð2πQÞ;
ð10Þ

where the average β function in a focusing hard edge
quadrupole is given by [10]

β̄ ¼ β0u0 � α0u1 þ γ0u2; ð11Þ
and the sign depends on if the quadrupole is upstream or
downstream of the IP. For a focusing and defocusing
magnet the coefficients are respectively

u0;foc ¼
1

2

�
1þ sinð2ϕÞ

2ϕ

�
¼ −

a21
L

; ð12aÞ

u1;foc ¼
sin2ðϕÞ
KL

¼ a11 − a22
L

; ð12bÞ

u2;foc ¼
1

2K

�
1 −

sinð2ϕÞ
2ϕ

�
¼ a12

L
; ð12cÞ

u0;def ¼
1

2

�
1þ sinhð2ϕÞ

2ϕ

�
¼ a21;def

L
; ð12dÞ

u1;def ¼
sinh2ðϕÞ

KL
¼ −

a11;def − a22;def
L

; ð12eÞ

u2;def ¼ −
1

2K

�
1 −

sinhð2ϕÞ
2ϕ

�
¼ −

a12;def
L

: ð12fÞ

Equation (10) is exactly equal to Eq. (3), when assuming
β0 ≈ β̄, but now we have included the length of the
modulated quadrupole in the calculation. For a defocusing
quadrupole the only difference is a change of sign as
included in Eq. (3).
Returning to Eq. (9), we can now find the change to

Eq. (10) due to the second order terms in ΔK

2 cos½2πðQþ ΔQÞ� ¼ 2 cosð2πQÞ − β̄ΔKL sinð2πQÞD:

ð13Þ

With D equal to

D ¼ ð1 − ΔKEÞ; ð14aÞ

E¼ cotð2πQÞðb11þb22Þþb21β0þðb11−b22Þα0−b12γ0
a21β0þða11−a22Þα0 −a12γ0

:

ð14bÞ

Assuming the edge of the quadrupole is separated from
the IP by a drift of length L�, we can propagate the optical
functions in the drift from the waist to the edge of the
magnet, giving

D ¼ ð1 − ΔKEÞ; ð15aÞ

E¼β�cotð2πQÞðb11þb22Þþb21L�2−ðb11−b22ÞL�−b12
a21L�2−ða11−a22ÞL�−a12

:

ð15bÞ

This equation can be used to estimate the error in Eq. (3)
due to the second order terms of ΔK by inserting the
relevant parameter values β�, L�, Q, K, and L.
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By inserting the design parameters for LER and HER in
Eq. (15) we find an error of the order 10−6 in β̄, which
corresponds to a change in tune of less than 10−6, smaller
than the uncertainty of the tune measurement. Note that it is
possible to include the second order terms in the K
modulation measurement by using the coefficients from
Eq. (9) instead of using β̄ as done here and in [10], however
the second order correction is small.

B. K modulation

Modulating the strength of a quadrupole will give a tune
shift as shown above. The orbit at the modulated quadru-
pole needs to be sufficiently small so that no significant
orbit distortions are generated. During the experiment this
is guaranteed by monitoring the closed orbit change.
Measuring the tune shift and knowing the modulation
strength thus gives a direct measurement of the β̄ in the
modulated quadrupole. By modulating the two quadrupoles
closest to the IP and propagating the measured β function
it is possible to calculate β�. This method has been derived
in [10] and is presented below.
Propagating the optical functions from the IP through the

drift length L�, the optical functions at the edge of the last
quadrupole before the IP are given by

β0 ¼ βw þ ðL� � wÞ2
βw

; ð16aÞ

α0 ¼ �ðL� � wÞ
βw

; ð16bÞ

γ0 ¼
1

βw
: ð16cÞ

With β ¼ βw at the waist of the beam, and the waist
shifted a distance w downstream of the IP, see Fig. 3.
The signs depend on whether the magnet is upstream or
downstream of the IP. Here and in the following, the upper
sign will denote the case where the magnet is upstream, and
the lower sign is for the downstream magnet. The average β
function in the quadrupole can be expressed by Eq. (11).

Inserting the optical functions from Eq. (16) and assuming
β� ≪ L� yields

β̄ ¼ ðL� � wÞ2
βw

u0 þ
ðL� � wÞ

βw
u1 þ

1

βw
u2; ð17Þ

which can be rewritten

βw ¼ 1

β̄
½ðL� � wÞ2u0 þ ðL� � wÞu1 þ u2�: ð18Þ

Equating Eq. (18) for the magnet upstream and downstream
results in

β̄upstream
β̄downstream

¼ ðL� þ wÞ2v0 þ ðL� þ wÞv1 þ v2
ðL� − wÞ2u0 þ ðL� − wÞu1 þ u2

¼ χ; ð19Þ

where the ratio between the average β function in the
upstream and downstream quadrupole is defined as χ,
which is close to 1 as the focusing system in SuperKEKB is
symmetric around the IP. Note however that there is a slight
asymmetry in the position and length of the horizontally
focusing quadrupoles in HER, see Fig. 5. The coefficients
ui for the upstream magnet have been changed to vi to
distinguish them from those for the downstream magnet.
Further rewriting leads to a second order equation for w

ðv0 − χu0Þw2 þ ð2hv0 þ v1 þ 2χhu0 þ χu1Þw
þ ðh2v0 þ hv1 þ v2 − χh2u0 − χhu1 − χu2Þ ¼ 0; ð20Þ

where h ¼ L� is introduced here for convenience later.
Solving for w, Eq. (18) can be used to solve βw for each
magnet. Taking the average of these βw, β� can then be
found by again propagating from the waist

β� ¼ βw þ w2

βw
: ð21Þ

C. K modulation with transfer matrices

If there are quadrupole fields affecting the optical
functions in between the final focusing quadrupole and
the IP, the method in [10] cannot be used directly. This is
the case for HER in SuperKEKB (Fig. 5). However, the
method may be modified to include the effects of these
fields by propagating the optical functions past them using
a transfer matrix, assuming the fields are known. Let the
optical functions at the end of the quadrupole magnet be
given by β1, α1 and γ1. As before, the average β function in
the quadrupole is given by

β̄ ¼ β1u0 � α1u1 þ γ1u2; ð22Þ

To include the extra fields between the quadrupole and the
IP, a point is chosen that lies between the fields and the IP.

FIG. 3. The minimum of the β function is βw and it is displaced
longitudinally away from the IP a distance w. The β function
grows quadratically away from the waist. w is defined as positive
when the waist lies downstream from the IP.
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The point is separated from the IP by a drift of length h, and
the optical functions at this point are β0, α0, and γ0. If we
write the transfer matrix between this point and the edge of
the magnet as

�
C S

C0 S0

�
; ð23Þ

the average β function in the magnet can be expressed by
β0, α0, and γ0

β̄ ¼ β1u0 � α1u1 þ γ1u2

¼ u0ðC2β0 − 2CSα0 þ S2γ0Þ
� u1ð−CC0β0 þ ðCS0 þ SC0Þα0 − SS0γ0Þ
þ u2ðC02β0 − 2C0S0α0 þ S02γ0Þ

¼ β0ðC2u0 ∓ CC0u1 þ C02u2Þ
� α0ð∓ 2CSu0 þ ðCS0 þ SC0Þu1 ∓ 2C0S0u2Þ
þ γ0ðS2u0 ∓ SS0u1 þ S02u2Þ

¼ β0U0 � α0U1 þ γ0U2: ð24Þ

Note that the transfer matrix including C, C0, S, and S0 is
defined as going from the point closest to the IP and until
the magnet edge, regardless of whether the magnet is up- or
downstream of the IP. Here the coefficients U0, U1, and U2

do depend on whether the magnet is up- or downstream of
the IP, and are given by

U0 ¼ C2u0 ∓ CC0u1 þ C02u2; ð25aÞ

U1 ¼∓ 2CSu0 þ ðCS0 þ SC0Þu1 ∓ 2C0S0u2; ð25bÞ

U2 ¼ S2u0 ∓ SS0u1 þ S02u2: ð25cÞ

Propagating the optical functions from the beam waist
near the IP, a distance h away, we get

β0 ¼ βw þ ðh� wÞ2
βw

; ð26aÞ

α0 ¼ �ðh� wÞ
βw

; ð26bÞ

γ0 ¼
1

βw
: ð26cÞ

With the assumption β� ≪ h, Eqs. (24) and (26) result in

βw ¼ 1

β̄
½ðh� wÞ2U0 þ ðh� wÞU1 þU2�: ð27Þ

Rewriting and setting the equations of the two magnets
equal we get a second order equation in w

ðV0 − χU0Þw2 þ ð2hV0 þ V1 þ 2χhU0 þ χU1Þw
þ ðh2V0 þ hV1 þ V2 − χh2U0 − χhU1 − χU2Þ ¼ 0:

ð28Þ

Here Vi are the coefficients from Eq. (25) for the quadru-
pole upstream of the IP. Having determinedw, Eq. (27) then
gives βw and the average βw found for the two magnets is
used to calculate β� as before using Eq. (21).

D. Fringe fields

Equation (3) assumes modulation of a thin quadrupole at a
location with a single value of β. Sections II B and II C
assume this to correspond to the average β function in a hard
edge quadrupole. In practice, magnets also have fringe fields
at the edges which scale with the quadrupole modulation but
are not taken into account in the above sections. To estimate
the error in tune shift due to this approximation, the magnet
can be divided into many quadrupole slices, see Fig. 4. The
tune shift from modulating a single hard edge magnet can
then be compared to the combined tune shift resulting from
the modulation of all the magnet slices with the same total
integrated field strength.
Each quadrupole slice is itself a hard edge magnet and

the tune shift is given by Eq. (3) with β being the average β
function inside the slice. The average of β in slice number i
is given by Eq. (11)

β̄i ¼ u0;iβi − u1;iαi þ u2;iγi

¼ ð u0;i −u1;i u2;i Þ

0
B@

βi

αi

γi

1
CA

¼ Ai

0
B@

βi

αi

γi

1
CA: ð29Þ

FIG. 4. Illustration of several hard edge quadrupole magnets,
together modeling a quadrupole with varying field. The slices are
numbered, β0, α0, and γ0 corresponds to the beta function at the
entrance of slice 0.
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Ai is here a 1 × 3 matrix, while βi, αi and γi are the optical
functions at the edge of the slice, see Fig. 4. Denoting the
3 × 3 transfer matrix though quadrupole slice i by Ti, the
optical functions at the edge of slice iþ 1 are given by

0
B@

βiþ1

αiþ1

γiþ1

1
CA ¼ Ti

0
B@

βi

αi

γi

1
CA ¼

Yi
j¼0

ðTjÞ

0
B@

β0

α0

γ0

1
CA; ð30Þ

with β0, α0, and γ0 the optical functions at the start of the
first slice. The average β function of slice i follows using
Eq. (29)

β̄i ¼ Ai

0
B@

βi

αi

γi

1
CA ¼ Ai

Yi−1
j¼0

ðTjÞ

0
B@

β0

α0

γ0

1
CA: ð31Þ

Approximating β0ΔKL ≈
P

N−1
i¼0 β̄iΔKLi in Eq. (3), where

N is the number of slices, gives

cos ½2πðQþ ΔQÞ�

¼ cosð2πQÞ � sinð2πQÞ
2

XN−1

i¼0

ΔKLiAi

Yi−1
j¼0

ðTjÞ

0
B@

β0

α0

γ0

1
CA:

ð32Þ

Assuming all slices are modulated by the same relative
amount δk, Eq. (32) can be simplified by defining

B ¼
XN−1

i¼0

KLiAi

Yi−1
j¼0

Tj; ð33Þ

which can be found given the strength and length of all the
slices. Note that the change in integrated strength ΔKLi
here is exchanged with the total integrated strength KLi,
and that ΔKLi ¼ δkKLi, resulting in

ΔQ¼� 1

2π
cos−1

2
64cosð2πQÞ� sinð2πQÞ

2
δkB

0
B@
β0

α0

γ0

1
CA
3
75−Q:

ð34Þ

III. SIMULATIONS

A. SAD model

To simulate K modulation measurements in SuperKEKB
the computer code Strategic Accelerator Design (SAD) has
been used [19]. Lattices include detailed representations of
the interaction region (IR) that includes fringe fields from
the final focusing quadrupoles, detector solenoid, compen-
sation solenoids and corrector magnets [20]. The fields
from these elements have been simulated and divided into
1 cm slices that are interleaved throughout the IR model.
Figure 5 shows the quadrupole fields near the IP in LER
(above) and HER (below). As seen in the figure, there are
fields leaking into the electron orbit in HER from the final
focusing magnets in LER. When measuring β� in HER, it is
therefore necessary to propagate the β function past these
fields using the method described in Sec. II C.
K modulation is simulated by changing the integrated

strength of all slices in the IR corresponding to the
modulated magnet by the same relative amount. The
resulting change in tune is then calculated by SAD, and
is used to estimate β�. The calculated value can then be
compared with the value given by SAD, which takes into

FIG. 5. Quadrupole fields in the orbits through the IR of LER (above) and HER (below). The names of the magnets are indicated.
Fields from the inner quadrupoles in LER that leak into the HER orbit are pointed out with red rectangles. The focusing system is nearly
symmetric, but notice slightly different lengths and placements of horizontally focusing magnets in HER.
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account the magnet fringe fields, coupling, and the chang-
ing optical functions.

B. Simulating errors

Estimating the uncertainty of the measurement is done
by setting uncertainties on the values used to calculate β�,
shown in Table III. Calculating β� from the correct values
of the parameters gives the measured value. The uncer-
tainty is estimated by finding the spread of β� when doing
the measurement 10 000 times with the model parameters
drawn from normal distributions with standard deviations
equal to the relevant uncertainties.

C. Results from simulations

First simulations are done without any measurement
uncertainty to validate the approximations above. Figure 6
shows the deviation of simulated measurements from the
actual value for different values of β�y ranging from 3 mm to
90 μm in LER. For all the cases the deviation is less than
0.1%. As β�y decreases toward 90 μm there is a sharp
increase in the deviation. There are several assumptions

used that could contribute to the deviation of the measured
value. First, in Eq. (27) it is assumed that β� ≪ L�. Even for
β�y ¼ 3 mm, a factor 10 above nominal, this term contrib-
utes less than 0.005% and it is therefore insignificant. It is
also assumed that there are no orbit changes, and therefore
no changes in tune from sextupoles in the ring. The orbit
deviation as calculated by SAD affects the measured β�y by
less than 0.002%, which does not account for the observed
deviation.
The method further assumes that the horizontal and

vertical planes are decoupled. This is true for the lattice
used in SAD, where the coupling has been corrected, but for
the real machine there will always be some amount of
coupling. In this case the impact of the coupling can be
reduced by modulating the quadrupoles such that the tune
is shifted away from the difference coupling resonance. By
adjusting skew quadrupole fields in the ring, the coupling

TABLE III. Uncertainties used for estimating error of β�
measurements. ΔK is the uncertainty in the integrated strength
of the modulated quadrupoles, whileΔK† is the uncertainty in the
integrated strength of the quadrupole fields from LER present in
the HER orbit. The tune uncertainty is for normal turn by turn
measurements, while a gated turn by turn measurement for a pilot
bunch can be used to get a tune uncertainty of 2 × 10−5. For the
other parameters typical values have been assumed. The gated
turn by turn tune measurement could improve the accuracy, but
was not used for the data presented in this paper.

Parameter Uncertainty

ΔL� [mm] 1
Δh [mm] 1
ΔQ 2 × 10−4

ΔK [relative] 10−3

ΔK† [relative] 10−2

FIG. 6. Deviation of the calculated β�y as a function of β�y in
LER, found from simulations using SAD in the absence of
uncertainties.

FIG. 7. Deviations in the calculated β�y for different values of
coupling strength in LER. The simulations are done for β�y values
of 500 μm, 270 μm and 180 μm. The quadrupole modulations
are done such that the tune shifts away from the difference
coupling resonance. The tune separation is 0.04.

FIG. 8. Comparison of tune shifts for different β�y calculated
using Eq. (3) and taking into account the fringes by using
Eq. (34). The calculations are based on the values for the LER
magnet QC1LP, with ΔKL=KL ¼ 2 × 10−5.
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strength in the simulations has been varied and the
corresponding deviations of the calculated β�y are plotted
in Fig. 7. Increasing coupling leads to larger deviations,
as does smaller β�y. Aiming to achieve a nominal coupling
below jC−j ¼ 2 × 10−3 this gives a deviation below
0.11% [21,22]. In [10] a similar increase in deviations

FIG. 9. Uncertainty in the βw measurement in LER for
different uncertainties in the tune measurement, as well as
for different values of modulation strength ΔKL. Simulated for
nominal β�y ¼ 270 μm.

FIG. 10. Uncertainty in the w measurement in LER for
different uncertainties in the tune measurement, as well as
for different values of modulation strength ΔKL. Simulated for
nominal β�y ¼ 270 μm.

TABLE IV. Working point and β� during measurements in
HER. The measurements were done on 5th of June 2018, during
phase 2 of SuperKEKB commissioning.

Parameter Value

β�y [mm] 3.0
β�x [mm] 100
Qy 43.604
Qx 45.546

FIG. 11. Simulated and measured tune shift when modulating
the inner quadrupoles in HER. The simulations are done using the
design optics with β�y ¼ 3 mm. The uncertainty in the recorded
tune measurements are 4 × 10−4 for the modulation of the
QC1LE magnet and 2 × 10−4 for the modulation of the QC1RE
magnet. The lines have been made by fitting the average β
function and using Eq. (3). The integrated strength of the magnets
during the measurements were KL0 ¼ −1.15 m−1 for QC1LE
and KL0 ¼ −1.09 m−1 for QC1RE.
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of calculated β� is found to stem from rotations in the
modulated quadrupoles. The IR quadrupoles in
SuperKEKB include small skew field components by
design, which contribute to the observed deviations.
Finally, Eq. (22) assumes that the modulated quadrupole
magnet has a hard edge field profile. Using Eq. (34) and
Eq. (3), the tune shift from modulating the QC1LP quadru-
pole in LER is calculated using both a hard edge model of
the magnet and the sliced SAD model that include the
fringe fields. The difference between these two values is
shown as a function of β�y in Fig. 8, and resembles the
deviation in β�y in Fig. 6. However, the exact value of the
difference in tune shift is very dependent on the length of
the hard edge model, varying between 10−5 and 10−4 for an
uncertainty of 5 mm in w at β�y ¼ 90 μm.
The uncertainties in Table III are used to perform

Monte Carlo simulations for the nominal LER lattice. The
rms of the resulting βw and w distributions are shown in
Figs. 9 and 10, respectively. The large uncertainty in w arises
mainly from the uncertainty in the tune measurement and the
error in the longitudinal placement of the magnets, assumed
to be on the order of 1 mm. From Eq. (21) it is clear that an
uncertainty inw of 1 mm results in a very large uncertainty in
β� when β� is on the order of 1 mm and below. If βw ¼
0.3 mm and w ¼ 1 mm, β� ¼ð0.3þ1=0.3Þmm¼3.6mm.
Therefore, K modulation is not suited for measuring w in
SuperKEKB. However, the estimated uncertainties for βw
are promising, and can be combined with other methods
for determining w, such as measuring the luminosity while
varying the longitudinal position of the waist [23]. Note that
βw is a function of w, however this is taken into account in
the uncertainty estimates for βw.

IV. EXPERIMENTAL MEASUREMENTS IN HER

During phase 2 of the SuperKEKB commissioning
process, K modulation measurements were taken in
HER on the 5th of June 2018. One by one, all 4 quadru-
poles in the IR were modulated by �0.05% and þ0.1%.
Since we are most interested in β�y we will only look at the
results from modulation of the quadrupoles closest to the
IP, QC1LE and QC1RE. Following each modulation, three
sets of turn by turn beam position monitor (BPM) readings
were recorded, including three sets for each magnet without

FIG. 12. Histograms showing the number of BPMs measuring a
certain value of the tune. Three sets of turn by turn measurements
were recorded for each setting of the two magnets QC1LE and
QC1RE. The colors indicate the sequence of the measurements;
blue being first, followed by orange, and green last. The histo-
grams on the left column come from the reference measurements
for the magnets with ΔKL ¼ 0, while in the ones on the right
column have ΔKL=KL ¼ 0.05%. The integrated strength of the
magnets during the measurements were KL0 ¼ −1.15 m−1 for
QC1LE and KL0 ¼ −1.09 m−1 for QC1RE.

FIG. 13. Simulated and measured tune shift when modulating
the inner quadrupoles in HER. The simulations are done using
β�y ¼ 3.2 mm. The uncertainty in the recorded tune measure-
ments are 4 × 10−4 for the modulation of the QC1LE magnet and
2 × 10−4 for the modulation of the QC1RE magnet. The lines
have been made by fitting the average β function and using
Eq. (3). The integrated strength of the magnets during the
measurements were KL0 ¼ −1.15 m−1 for QC1LE and KL0 ¼
−1.09 m−1 for QC1RE.
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modulation as a reference. To ensure correct measurement
of the tune shift, the tune feedback system was turned off.
Settings during the measurements are displayed in Table IV
and include β�y ¼ 3 mm.
In Fig. 11 the change in the vertical tune is plotted as a

function of the relative change in quadrupole strength for
the two vertically focusing magnets closest to the IP.
Design optics in use during the measurements included
β�y ¼ 3 mm, and the uncertainty in the recorded tune
measurements are 4 × 10−4 for the modulation of the
QC1LE magnet and 2 × 10−4 for the modulation of the
QC1RE magnet. There was more tune jitter in the turn by
turn measurements for QC1LE, which resulted in the
higher uncertainty in the tune measurement. Figure 12
shows histograms of the tune measurements at all BPMs for
several settings of the focusing quadrupoles, with different
colors used for consecutive sets of turn by turn measure-
ments, displaying a slight jitter in the tune but no visible
tune drift. These tune uncertainties were combined with the
estimated uncertainties in Table III and simulations were
used to approximate the uncertainty in the measured values
of βw and w. Figure 11 shows a small deviation from the
simulated tune shifts using the design optics, and the
measured β function at the waist is βw ¼ 3.2 mm with
an uncertainty of 0.8%, not taking into account orbit shifts
mentioned later. The waist itself was measured to be shifted
by w ¼ −4.6 mm� 5 mm away from the IP. Figure 13
shows the measured tune shifts again, but this time the
lattice used for simulation was matched to β�y ¼ 3.2 mm,
indicating the close fit for all the measurements. It should
be noted that the uncertainty in the tune measurement is a
factor 100 smaller than the measured tune shifts, and it
would therefore be possible to do the measurements with
smaller quadrupole modulations.
Figure 14 displays the spectrum of the vertical position

measurements from one of the BPMs in HER during the K
modulation measurements. The main frequency compo-
nents correspond to the horizontal and vertical tunes, while

the relative amplitude of these frequency components in
horizontal and vertical BPMs can be used to estimate
coupling in the ring [24,25]. Coupling estimated from
this method is shown in Fig. 15. When modulating the
QC1LE magnet by ΔKL=KL ¼ −0.05% a larger value of
jC−j ¼ 0.07 was measured, as well as larger changes in the
measured orbits (see Fig. 16). Coupling starts to have an
effect on the tune shifts once the horizontal and vertical
tune separation approach the value of jC−j. Figure 17
displays both the vertical and horizontal tunes during the
measurements, and shows that the smallest separation of
the tunes is 0.04, when the magnets are modulated by

FIG. 14. The spectrum of the vertical position measurements
from one BPM in HER during the K modulation measurements.
The main frequency components of the turn by turn (TbT) data
correspond to the horizontal and vertical tunes in the ring shown
in tune units.

FIG. 15. Coupling in HER during the K modulation measure-
ments, estimated from the spectrum of turn by turn data from
all BPMs [24]. When modulating the QC1LE magnet by
ΔKL=KL ¼ −0.05% the estimated coupling was a lot larger
jC−j ¼ 0.07, this measurement also shows the largest change in
the orbit, see Fig. 16.

FIG. 16. Orbits calculated as the average of all position
measurements from turn by turn data taken during the K
modulation measurements. The different colors indicate different
modulations in the QC1LE and QC1RE magnets, left and right of
the IP, respectively. The orbits are plotted as the deviation from
the orbits found before modulating the magnets.
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ΔKL=KL ¼ −0.05%. This is a factor 20 larger than the
estimated coupling in the ring, jC−j ≈ 0.002. It should be
mentioned that for the nominal parameters presented in
Table I, the tune separation will be 0.04 in both HER and
LER, equal to the smallest tune separation during the
measurements in HER. Smaller separation than this can be
avoided by only modulating up the strength of the quadru-
pole magnets, as this increases the vertical tune while
decreasing the horizontal tune slightly.
An orbit displacement of δx in a sextupole of strengthK2

and length Ls gives a quadrupole kick and hence a tune
shift that can be approximated by

ΔQs ≈� βsK2δxLs

4π
: ð35Þ

Using this formula, the observed orbit shift in HER results
in a total tune shift of around 2 × 10−4, which is the same as
the uncertainty of the tune measurement. Including this as
an increase of the tune measurement uncertainty gives a
total uncertainty of the measured β�y of 1.5%. The feeddown
from vertical orbit at the sextupoles to coupling is com-
parable to tune shift and negligible in this case. Figure 18
shows the final measured β�y values for the different
quadrupole modulations.
For the nominal SuperKEKB both the horizontal and

vertical tunes will be closer to half integer, 0.53 and 0.57,
respectively. The relative deviation of the β function from
the design β function when including errors in the quadru-
pole gradients K, called beta beating, can be shown to
be proportional to 1= sinð2πQÞ as well as proportional to
the value of the β function at the error location [26].
Consequently, for a given quadrupole modulation the beta
beating and orbit changes increase as the fractional part of
the tune approaches 0.5. However, since the β function in
the modulated quadrupole increases for smaller β�y, the
strength of the quadrupole modulation can be decreased. K
modulation measurements should therefore be done again
for smaller β�y to assure that these effects do not interfere
with the measurement. Additionally, the orbit and tune jitter
could increase, in which case it is important to verify that
the orbit correction system can keep the tune measurements
stable enough for K modulation.

V. CONCLUSION AND FURTHER WORK

In this paper we evaluate the prospects of using K
modulation to measure β� in SuperKEKB, covering first the
needed theory and method. A new technique for finding the
tune change from a modulated quadrupole is shown,
allowing simple calculation of the second order tune shift
due toΔK. Equation (15) can be used to estimate the size of
this second order correction, and can be used also for other
accelerators. Furthermore, an extension to the standard K
modulation method permits known fields to be located

FIG. 17. Measured vertical and horizontal tunes while modu-
lating the quadrupole magnets closest to the IP in HER, QC1LE
and QC1RE. The smallest separation between the horizontal and
vertical tunes is approximately 0.04, which is 20 times larger
than the estimated coupling strength during the measurements,
jC−j ≈ 0.002, see Fig. 15. The integrated strength of the magnets
during the measurements were KL0 ¼ −1.15 m−1 for QC1LE
and KL0 ¼ −1.09 m−1 for QC1RE.

FIG. 18. Measured β�y as a function of ΔKL for the K
modulation measurements in HER. Error bars of 1.5% are
included.
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between the modulated quadrupole and the IP, generalizing
the technique. This allows the method to be used in HER,
where fields from magnets in LER are located between the
final focusing quadrupoles and the IP. Also, a method to
estimate the effects of fringe fields in the modulated
magnets is developed and used to estimate the error from
the hard edge magnet assumption.
K modulation measurements in SuperKEKB are moti-

vated by the need for accurate β� measurements for
achieving the high luminosity goal of SuperKEKB, but
also by the possibility of doing dedicated focus system
studies that will give valuable input to future linear collider
projects. From both simulations and experimental results
from HER, it is found that K modulation is suitable for
measuring βw in SuperKEKB within 1%, while the meas-
urement of the position of the beam waist, w, is not accurate
enough, varying by several mm. One possibility is therefore
to combine K modulation with luminosity measurements
while varying the position of the beam waist, a common
technique used for positioning the beam waist at the IP.
The main contributions to the uncertainty come from the
uncertainty of the tune measurements, as well as in the
uncertainty of the longitudinal placement of the modulated
quadrupoles. The measurements from HER give β�y ¼
3.2 mm� 1.5% for a design optics of β�y ¼ 3.0 mm,
indicating a 7% β� beating during phase 2 of commission-
ing. This 7% is compatible with the typical beta beating
obtained after optics corrections in SuperKEKB [27]. Orbit
shifts are found to affect the tune on the same order as the
tune uncertainty, while second order terms in ΔK are found
to contribute less than the uncertainty in the tune for K
modulation measurements in HER. The next steps are to
streamline the measurements, validate the method in LER
and test the method for optics closer to the nominal
machine parameters with smaller β�y. Verifying the method
for smaller β�y is important as effects such as beta beating,
orbit displacements, and tune jitter are affected by the larger
β functions in the final focus quadrupoles.
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