
Shared knowledge in virtual software teams
A preliminary framework

Tor Erlend Fægri
Dept. of Software Engineering,

Safety and Security
SINTEF ICT

Trondheim, Norway
Tor.E.Fegri@sintef.no

Viktoria Stray
Dept. of Informatics,
Software Engineering

University of Oslo
Oslo, Norway

stray@ifi.uio.no

Nils Brede Moe
Dept. of Software Engineering,

Safety and Security
SINTEF ICT

Trondheim, Norway
Nils.B.Moe@sintef.no

Abstract—Shared knowledge allows virtual teams to
collaborate more effectively. Shared knowledge in teams,
hereafter called team knowledge, must be established and
maintained. This is a key enabler for agile development in a
distributed context. Hence, organizations may benefit from
efforts to ensure sufficient levels of team knowledge. Such
efforts may include different measures, such as project kick-
offs, frequent visits across locations, knowledge sharing tools
and practices. However, team knowledge includes many
types of knowledge, with different impacts on the team's
work. This paper outlines a framework for conceptualizing
the breadth of team knowledge relevant for virtual software
teams. With the help of this framework, organizations can
think more strategically about how to improve team
knowledge – for example the planning of kick-offs, what to
focus on in face-to-face meetings and how the team members
work together on a day-to-day basis. The framework may
also be used to assist in planning team composition, for
example based on individuals' knowledge and the overlap
with other team members' knowledge. The framework uses
four broad categories of team knowledge: task-related, team-
related, process-related and goal-related. Beneath these four
categories the framework details and describes more
concrete knowledge types. We also provide examples from
software practice for each knowledge type.

Keywords–virtual teams, globally distributed teams, shared
team knowledge, agile, distributed agile, shared mental models

I. INTRODUCTION
Virtual teams are teams that collaborate on a task while

being dispersed geographically or organizationally. Both
dispersion factors make communication more difficult. In
such contexts effective work coordination becomes more
dependent upon the shared knowledge already held by the
individuals. We use the term team knowledge to describe
knowledge that is shared among the team members. With
team knowledge, team members can make valid
assumptions about the activities done by other team
members and thereby reduce the negative impact of
distribution. Team knowledge is especially important in
virtual teams because members in virtual teams often have
little knowledge of what people at other sites are doing day
to day which may lead to misunderstandings [13].

Many companies face challenging decisions regarding
the application of agile methods in virtual teams [24]. One
topic of concern is to enable effective collaboration and
self-organization. Self-organization is a key agile principle
[4, 12, 22]. Shared knowledge within the team is

particularly important for collaboration and self-
organization. Only by a sufficient level of shared
knowledge can teams reap the benefits of agile methods.
Shared knowledge allows the team to utilize holographic
organization principles – creating teams that can take on
difficult tasks, and adapt to emerging situations. Hence,
establishing and maintaining team knowledge is an
effective vehicle for achieving high-performance virtual
software teams.

Software teams share knowledge about many issues to
get their work done. The main contribution of this paper is
to outline a framework of team knowledge that classify and
describe classes of knowledge with particular importance
for virtual agile teams. The main classifications of the
framework is adopted from Wildman et al. [29] and
amended with more detailed attributes from relevant
research streams. We also include examples from the
software development context.

The main value of the framework is that it constitutes a
tool for structured thinking in software process
improvement work in virtual teams context. For example,
having some idea about the classes of knowledge to share
within a team can be useful because establishing and
maintaining team knowledge comes with a cost,
particularly in situations where existing knowledge must
be challenged and changed. Being able to prioritize
different knowledge types of importance to virtual teams
can be a benefit here. It could thus serve as a foundation
for knowledge management initiatives as well.
Furthermore, the framework may also be used as
foundation for quantitative investigations of team
knowledge in virtual teams.

II. APPROACH

Numerous strands of research have investigated team
knowledge. Team mental models [12, 20], transactive
memory systems [28], strategic consensus, collective
mindfulness and situation awareness [6], group learning,
group sociology of knowledge [2] are examples of research
that have contributed to our understanding of shared
knowledge in teams.

To improve our capacity to understand and respond to
the needs of virtual software teams, it makes sense to seek
support in the range of research strands addressing team
knowledge. Therefore, we decided to build on an
organizing framework that summarizes the current team
knowledge research [29]. This framework is both holistic
and inclusive – hence it befitted our purpose well.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works.

This is the author accepted version of an article published in
2016 IEEE 11th International Conference on Global Software Engineering (ICGSE)

https://doi.org/10.1109/ICGSE.2016.22

Wildman et al. [29] divided team knowledge into four
categories: task-related, team-related, process-related and
goal-related (see Fig. 1). By means of these categories, the
framework includes and systematizes key streams of
shared team knowledge conceptualizations – an important
benefit for software research which is, by being research of
a highly applied nature, encouraged to relate to current
streams in a number of adjacent research topics. For
example, team mental model research has predominantly
assumed a strictly causal I-P-O (Input-Process-Output)
model of understanding team knowledge that seems
inadequate to describe and explain the complex reality of
software teams. Rather, learning and the emergent nature
of behavior, motivation, and cognitive structures seems a
more appropriate point of origin – as is now also
recommended by contemporary team research [6, 17].
Agile software development, both in non-virtual and
virtual teams, is motivated by the capacity to embrace
uncertainty and learning opportunities. Therefore it seems
reasonable to base our understanding of team knowledge
on a framework that accepts these assumptions.

A second benefit of the classifications by Wildman et
al. is that the authors made no assumptions about causal
relationships among the shared team knowledge types.
Practitioners may therefore use this framework irrespective
of cause-effect hypothesis. E.g. it could be used to
determine weak areas in team knowledge. Being very
broad, this framework may be too extensive for some
virtual software team improvement efforts, but adopters of
the framework are free to select those categories of
knowledge they want to work with – e.g. based on a
consideration of which categories are most important in the
actual context. The absence of assumed causal
relationships among the categories makes this
straightforward. This does not mean that investigations of
causal relationships are incompatible with the framework.
Such relationships can be introduced in specific
applications of the framework.

A third benefit is that the framework may open the field
for new research opportunities within virtual software
teams. One example is the behavioral research approach
that has predominantly been addressing the team-related
knowledge category – using the transactive memory
systems ideas – but could in fact be just as interesting from
a holistic, broad perspective addressing both tasks and
processes. Team behavior, i.e. the application of team
knowledge in practice, may give new insights into those

other knowledge categories. Software process research
should be equally interested in actual behavior as in the
formal doctrine.

Motivated by our understanding of software
development, we have decided to deviate from Wildman et
al. in an important consideration. Wildman et al. noted that
it has been tradition to distinguish between static and
dynamic team knowledge. They argued that it might be
useful to treat team knowledge differently with respect to
its expected longevity. Hence, each of the four categories –
task-related, team-related, process-related and goal-related
– have a static and a dynamic sub-category in the
framework of Wildman et al. We have chosen not to carry
this distinction forward in our proposal. Although we think
the distinction may have merit in certain practical cases, it
is difficult to make this distinction on a generic level for all
virtual software teams. The main reason for this is that
virtual agile software development teams work in a highly
dynamic environment where it is difficult, up-front, to
identify any types of knowledge that should be considered
static. For example, the decision of Wildman et al. to
classify task mental models as static knowledge might be
appropriate for a manufacturing team, but would not befit a
virtual software development team. In software practice,
task knowledge is an emergent property – widely
recognized by the agile movement in the appreciation of
customer collaboration and working software before
contracts and specifications. Furthermore, once a software
team has completed a task, they move on to a new task
with a new task mental model. Other knowledge types may
lend themselves better to such classification though – for
example those pertaining to overarching goals and visions,
in addition to team norms and team membership. However,
even here, we see good reasons to treat such knowledge as
potentially emergent. Challenging team values and norms
are key activities in team coaching practice thus suggesting
that even values and norms can be altered [9].

Within the four categories task-related, team-related,
process-related and goal-related team knowledge, we have
populated the framework with more specific team
knowledge elements relevant and representative for the
corresponding category (called “relevant knowledge types”
in the tables). In this way, we extend the framework of
Wildman et al. We have also, due to our ambition to
support the agile, virtual software teams, paid special
attention to self-organization. Self-organization is key to
distributed agile development. Because self-organization
puts particular demands on shared knowledge, we have
identified particular knowledge elements from research on
self-organizing teams. We have also included a brief
description for each.

Subsequently, we have added examples from the
software development context. These examples aim to
assist in the application of the framework in a software
development situation by making it easier to translate. We
have made comments where we were unable to find
examples from software development research. This can
indicate a gap in the knowledge front.

Figure 1. Team knowledge framework (from Wildman et. al. 2012)

It is important to note that the tables are neither
exhaustive nor definitive. Our main ambition has been to
create a preliminary framework that is analytically sound –
i.e. provides a categorization that is useful for deeper
analysis. Furthermore, our process for identifying
examples in software literature is best described as ad-hoc
and exploratory. Nevertheless, some of the example
sections are thin and reflects the low availability of
software research on the particular types. We found fewer
still in the virtual software team domain.

III. A FRAMEWORK OF TEAM KNOWLEDGE FOR GLOBAL
SOFTWARE DEVELOPMENT

Knowledge from all the categories of the framework
allow team members to make assumptions about the work
of other team members, and thereby contribute to make the
team more effective in a distributed setting. What separates
the knowledge categories is what type the knowledge
belongs to, and how it may help team members make
assumptions about the others.

We will now give examples from the framework from
each of the knowledge categories.

A. Task-related knowledge
This category of knowledge concerns team members'

shared understanding about the tasks, e.g. items in a
product backlog or other divisions of the whole work to be
done. Table I introduces key knowledge types for this
category.

In this category we find two primary types of
knowledge. 1) Knowledge regarding how a task should be

accomplished, e.g., the problem-solving strategy. 2)
Knowledge about what the task entails, e.g. a profound
understanding of the criteria used to determine if the task
was successfully completed or not.

Note that task-related knowledge is distinct from
process-related knowledge in that the former will be
particular for each task, while the latter will be generic for
a range of tasks (e.g. how the team resolves coordination or
leadership issues for work in general).

B. Team-related knowledge
Team-related knowledge (see Table II) refers to the

characteristics and qualities of each of the team members
or of the team as a whole [29]. These include
characteristics such as team members´ knowledge, skills,
attitudes, strengths, weaknesses, preferences and
tendencies [18]. This category also concerns knowledge
about who is on the team and share responsibility for team
outcomes [11] who of the team members need assistance,
and who is losing focus [29]. Expertise location, the extent
to which team members know who knows what on the
team, has an important role in virtual teams [14]. Expertise
location is one dimension of a larger construct known as
team cognition [12].

Team related knowledge bears strong resemblance to
the transactive memory concept that seeks to describe and
explain how a group functions as a knowledge creating
entity (or collective) larger than the individual group
member. Research on transactive memory systems has
shown how team-related knowledge allows the team to
function effectively with three dimensions of behavioral

TABLE I. TASK RELATED KNOWLEDGE

Relevant knowledge types Description Software examples

Task strategies [11] task
performance strategies
[18], task plans [25].

Shared understanding about how a task is supposed
to be accomplished by the team so that a sufficient
level of performance can be achieved. How task
work is allocated to members. Use of team
subgroups working on parts of a task.

Collaborative programming or independent
programming [23].

Task knowledge [17, 18,
28]. Likely contingencies,
scenarios, environmental
constraints [18]. Task
component relationships
[18].

Shared understanding about the content of the task.
Shared understanding about how the parts of the
tasks interact. Shared understanding about how a
task is connected to its environment.

Shared knowledge about that state of the code
for a particular feature [7].

TABLE II. TEAM-RELATED KNOWLEDGE

Relevant knowledge types Description Software examples
Team membership [11]. Defined boundaries of the team allow

determination of who shares
responsibility for the team's work.

Internalizing team membership is associated with higher
levels of team performance in software teams [21].

Team member model [10,
18].

Team members´ knowledge, skills,
attitudes, preferences and tendencies.

Shared mental models in software development [16, 30].

Expertise location [14, 28]. The common awareness of each team
member’s specialized knowledge and
unique expertise.

Software development teams must be able to know where
expertise is located and where it is needed because this
positively affects team performance [8, 12]. Expertise
location can be improved by techniques such as Planning
Poker [9].

abilities – recognizing, trusting, and coordinating
specialized knowledge among team members – and such
dimensions have a positive impact on team performance
[14]. It is also suggested that transactive memory systems
can be formed in virtual teams, although with more effort
[14].

C. Process-related knowledge
Process-related team knowledge refers to team member

interaction and interpersonal processes in a team such as
communication, coordination and leadership [29].
Knowledge about team interactions creates expectations
and drives team member behavior [18]. Having this type
of knowledge enables virtual teams to be adaptable. Norms
are codes of conduct that are accepted by the team
members and these may enhance or reduce team
effectiveness [27].

Table III introduces key knowledge types from the
process-related knowledge category.

D. Goal-related knowledge
Goal-related knowledge concerns the goals, visions and

overall agreements pertaining to the team's work. Table IV
introduces key knowledge types in this category. Goal-
related knowledge is distinct from task-related knowledge
in the sense that goals pertain to higher-level ambitions for
the team – both superordinate or subordinate [29].
Furthermore, goal-related knowledge is distinct from team-
related knowledge in that goals pertain to external
objectives rather than the socio-collective properties of the
team.

Goal-related knowledge is very important for virtual
agile teams. Goals and visions are typically established
early on in the team's lifespan. For self-organization to
work, team members must have a profound interest and

commitment to the overall objectives of the team [22]. In
virtual teams, the social bonds that enact social contracts
amongst the members are more fragile. In consequence,
establishing and maintaining shared goals becomes more
challenging – but no less important.

In our search, we found no agile software studies that
have looked into more strategic-level knowledge. We
believe that the ability to involve software teams in
planning at different levels will be increasingly important
in the time to come as turbulence seems to be on the rise.

IV. DISCUSSION AND CONCLUSION

We have highlighted team knowledge as an important
topic in virtual teams, and described a framework for
understanding shared knowledge in such teams. We
believe that the concepts presented in this overview of
team knowledge need to be further operationalized and
studied. We briefly present some of the highlights of a
research agenda that we envisage. Research activities focus
on the three types of stakeholders that are important for
success of virtual software teams: executive management,
team leaders and team members.

Only a few of the studies of team knowledge in
software development has addressed virtual teams. We
know that achieving high performance in virtual teams is
more demanding than for collocated teams. These gaps
constitute potentially interesting research topics for further
study. One example is how can management support the
development for team knowledge in virtual teams?

Team situation awareness is studied almost entirely in
laboratory settings [29]. There is a clear lack of studies in
real-life settings. We have limited understanding about
how team situation awareness develops and functions over
time.

TABLE III. PROCESS-RELATED KNOWLEDGE

Relevant knowledge types Description Software examples
Team interaction mental
models [3, 29].

Team processes such as
communication, leadership and
coordination.

Effective global virtual teams need a rhythmic temporal
pattern of interaction [1].
Use of video in distributed agile team meetings positively
affect team communication [26].

Team norms [11]. Shared expectations of how to
behave. Norms are formed and
adopted as patterns of action are
found useful or effective.

Manipulation of norms can help teams perform software
engineering tasks better [27].

TABLE IV. GOAL-RELATED KNOWLEDGE

Relevant knowledge types Description Software examples

Expectations, goal,
mission, objectives [10,
29].

Team goals are mental representation of overall
goal or mission for the team, team expectations or
(challenging) performance objectives. Here is also
included the mental representations concerning
the achievement of these goal.

Software team outcomes [4, 5].

Overarching team goals and mission [30, 31].

Strategic consensus –
strategic vision [14, 15,
19].

Agreement about strategic goals for the
organization.

None found.

Viktoria Gulliksen Stray

We are aware that for many virtual software teams, the
interaction with people outside the team (external network)
can bring tremendous and vital capacities to the teams'
work. Closer investigation of this aspect is an interesting
and valuable amendment to the framework.

ACKNOWLEDGMENT
This work was supported by the Smiglo project, partly

funded by the Research Council of Norway under grant
235359/O30.

REFERENCES
[1] J. M. Bass, "How product owner teams scale agile methods to

large distributed enterprises," Empirical Software
Engineering, vol. 20, pp. 1525-1557, 2015.

[2] J. S. Brown and P. Duguid, "Organizational learning and
communities-of-practice: Toward a unified view of working,
learning, and innovation," Organization Science, vol. 2, pp.
40-57, 1991.

[3] J. A. Cannon-Bowers, E. Salas, and S. Converse, "Shared
mental models in expert team decision making," in Individual
and group decision making: Current issues, N. J. Castellan,
Ed., ed Hillsdale, NJ: Lawrence Erlbaum, 1993, pp. 221-246.

[4] A. Cockburn and J. Highsmith, "Agile software development:
The people factor," IEEE Computer, vol. 34, pp. 131-133,
November 2001 2001.

[5] K. Crowston and E. E. Kammerer, "Coordination and
collective mind in software requirements development," IBM
Systems Journal, vol. 37, pp. 227-245, 1998.

[6] L. A. DeChurch and J. R. Mesmer-Magnus, "The Cognitive
Underpinnings of Effective Teamwork: A Meta-Analysis,"
Journal of Applied Psychology, vol. 95, pp. 32-53, 2010.

[7] J. A. Espinosa, R. E. Kraut, S. A. Slaughter, J. F. Lerch, J. D.
Herbsleb, and A. Mockus, "Shared mental models,
familiarity, and coordination: A multi-method study of
distributed software teams," in Twenty-third International
Conference on Information Systems, Barcelona, 2002, pp.
425-433.

[8] S. Faraj and L. Sproull, "Coordinating Expertise in Software
Development Teams," Management Science, vol. 46, pp.
1554-1568, 2000.

[9] T. E. Fægri, "Adoption of team estimation in a specialist
organizational environment," in Agile Processes in Software
Engineering and Extreme Programming (11th International
Conference, XP2010). vol. LNBIP 48, A. Sillitti, A. Martin,
X. Wang, and E. Whitworth, Eds., ed Berlin Heidelberg:
Springer-Verlag, 2010, pp. 28-42.

[10] J. R. Hackman, "The psychology of self-management in
organizations," in Psychology and work: Productivity,
change, and employment, M. S. Pallack and R. O. Perloff,
Eds., ed Washington, DC: American Psycological
Association, 1986.

[11] J. R. Hackman, "The design of work teams," in Handbook of
organizational behavior, J. Lorch, Ed., ed Englewood Cliffs,
NJ: Prentice Hall, 1987, pp. 315-342.

[12] J. He, B. S. Butler, and W. R. King, "Team cognition:
Development and evolution in software project teams,"
Journal of Management Information Systems, vol. 24, pp.
261-292, Fal 2007.

[13] J. D. Herbsleb, "Global Software Engineering: The Future of
Socio-technical Coordination," presented at the 2007 Future
of Software Engineering, 2007.

[14] P. Kanawattanachai and Y. Yoo, "The impact of knowledge
coordination on virtual team performance over time," MIS
Quarterly, vol. 31, pp. 783-898, 2007.

[15] F. W. Kellermanns, J. Walter, C. Lechner, and S. W. Floyd,
"The lack of consensus about strategic consensus: Advancing
theory and research," Journal of Management, vol. 31, pp.
719-737, 2005.

[16] L. L. Levesque, J. M. Wilson, and D. R. Wholey, "Cognitive
divergence and shared mental models in software
development project teams," Journal of Organizational
Behavior, vol. 22, pp. 135-144, 2001.

[17] J. Mathieu, M. T. Maynard, T. Rapp, and L. Gilson, "Team
effectiveness 1997-2007: A review of recent advancements

and a glimpse into the future," Journal of Management, vol.
34, pp. 410-476, 2008.

[18] J. E. Mathieu, T. S. Heffner, G. F. Goodwin, E. Salas, and J.
A. Cannon-Bowers, "The influence of shared mental models
on team process and performance," Journal of Applied
Psychology, vol. 85, pp. 273-283, Apr 2000.

[19] J. E. Mathieu, M. T. Maynard, S. R. Taylor, L. L. Gilson, and
T. M. Ruddy, "An examination of the effects of
organizational district and team contexts on team processes
and performance: A meso-mediational model," Journal of
Organizational Behavior, vol. 28, pp. 891-910, 2007.

[20] S. Mohammed, L. Ferzandi, and K. Hamilton, "Metaphor no
more: A 15-year review of the team mental model construct,"
Journal of Management, vol. 36, pp. 876-910, 2010.

[21] C. Monaghan, B. Bizumic, K. Reynolds, M. Smithson, L.
Johns-Boast, and D. van Rooy, "Performance of student
software development teams: The influence of personality
and identifying as team members," European Journal of
Engineering Education, 2015.

[22] S. Nerur, A. Cannon, V. Balijepally, and P. Bond, "Towards
an understanding of the conceptual underpinnings of agile
development methodologies," in Agile Software
Development: Current Research and Future Directions, T.
Dingsøyr, T. Dybå, and N. B. Moe, Eds., ed Berlin
Heidelberg: Springer-Verlag, 2010, pp. 15-29.

[23] N. Ramasubbu, C. F. Kemerer, and J. Hong, "Structural
complexity and programmer team strategy: An experimental
test," IEEE Transactions on Software Engineering, vol. 38,
pp. 1054-1068, 2012.

[24] D. Smite, N. B. Moe, and P. J. Ågerfalk, "Fundamentals of
agile distributed software development," in Agility across
time and space: Implementing agile methods in global
software projects, D. Smite, N. B. Moe, and P. J. Ågerfalk,
Eds., ed Berlin Heidelberg: Springer-Verlag, 2010, pp. 3-7.

[25] R. J. Stout, J. A. Cannon-Bowers, E. Salas, and D. M.
Milanovich, "Planning, shared mental models, and
coordinated performance: An empirical link is established,"
Human Factors, vol. 41, pp. 61-71, 1999.

[26] V. Stray, D. I. K. Sjøberg, and T. Dybå, "The daily stand-up
meeting: A grounded theory study," Journal of Systems and
Software, vol. 114, pp. 101-124, 2016.

[27] A. Teh, E. Baniassad, D. van Rooy, and C. Boughton, "Social
Psychology and Software Teams: Establishing Task-Effective
Group Norms," IEEE Software, vol. 29, pp. 53-58, 2012.

[28] D. M. Wegner, "Transactive memory: A contemporary
analysis of the group mind," in Theories of Group Behavior,
B. Mullen and G. Goethals, Eds., ed: Springer New York,
1987, pp. 185-208.

[29] J. L. Wildman, A. L. Thayer, D. Pavlas, E. Salas, and W. R.
Howse, "Team knowledge research: Emerging trends and
critical needs," Human Factors, vol. 54, pp. 84-111, 2012.

[30] H. D. Yang, H. R. Kang, and R. M. Mason, "An exploratory
study on meta skills in software development teams:
antecedent cooperation skills and personality for shared
mental models," European Journal of Information Systems,
vol. 17, pp. 47-61, Feb 2008.

[31] X. Yu and S. Petter, "Understanding agile software
development practices using shared mental models theory,"
Information and Software Technology, 2014.

