
Vol.:(0123456789)

SN Computer Science (2020) 1:296
https://doi.org/10.1007/s42979-020-00304-x

SN Computer Science

ORIGINAL RESEARCH

Real‑Time Processing of High‑Resolution Video and 3D Model‑Based
Tracking for Remote Towers

Oliver J. D. Barrowclough1  · Sverre Briseid1 · Georg Muntingh1 · Torbjørn Viksand1

Received: 5 May 2020 / Accepted: 14 August 2020 / Published online: 8 September 2020
© The Author(s) 2020

Abstract
During the past decade, a new approach to providing air traffic services to airports from a remote location has been estab-
lished, known as remote or digital tower. High quality video data is a core component in remote tower operations as it inher-
ently contains a huge amount of information on which a controller can base decisions. The total resolution of a typical remote
tower setup often exceeds 25 million RGB pixels and is captured at 30 frames per second or more. It is thus a challenge to
efficiently process all the data in such a way as to provide relevant real-time enhancements to the controller. In this paper
we describe the development of number of improvements and discuss how they can be implemented efficiently on a single
workstation by decoupling processes, implementing attention mechanisms and utilizing hardware for parallel computing.

Keywords  Remote tower · Object tracking · Machine learning · Video processing · 3d Modelling

Introduction

The remote tower concept, proposed in the early part of this
century, aims to provide air traffic services (ATS) to air-
ports from a remote location by streaming sensor data over
a network [21, 29]. High-resolution video that replicates
the out-the-window view of a conventional tower is a core
feature of the remote tower concept and is supplemented by
a pan-tilt-zoom (PTZ) camera that mimics the function of
binoculars in a conventional tower [8]. Other components in
remote tower typically include voice communication, mete-
orological data, sound reproduction and radar data, where
available. The motivation behind the concept is both to cut
costs associated with tower maintenance and personnel,
and to improve safety. Today there is a focus on validating
the multiple remote tower concept, in which an air traffic

controller (ATCO) is responsible for more than one airport
simultaneously [16, 22]. This movement of the concept
towards more complex scenarios demands new technologies
that support an ATCO’s situational awareness in order to
ensure that their cognitive capacities are not exceeded. Such
technologies may include providing visual enhancements or
even fully automating parts of the ATCO’s responsibilities.
This requires processing of large amounts of data, includ-
ing high-resolution video data, in real-time. In this work we
consider up to 14 statically positioned cameras, each with
resolution 1080x1920 aligned in portrait mode and stacked
horizontally, for a total resolution of 15120x1920. Despite
the ever-increasing capacity of modern computers, their
computational power is still insufficient to allow for naive
implementations when dealing with such large amounts
of data. There are, however, a number of solutions, both
hardware and software based, that make such processing
attainable.

Our contribution in this paper is to describe the imple-
mentation of several features that enhance remote tower
based on raw video data. In particular, novelties of this paper
include:

–	 Introduction of a method for cost-effective surface track-
ing of objects that does not rely on object movements or
active surveillance hardware, such as radar.

 *	 Oliver J. D. Barrowclough
	 oliver.barrowclough@sintef.no

	 Sverre Briseid
	 sverre.briseid@sintef.no

	 Georg Muntingh
	 georg.muntingh@sintef.no

	 Torbjørn Viksand
	 torbjorn.viksand@sintef.no

1	 SINTEF Digital, Forskningsveien 1, 0373 Oslo, Norway

http://orcid.org/0000-0002-0936-3460
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00304-x&domain=pdf

	 SN Computer Science (2020) 1:296296  Page 2 of 10

SN Computer Science

–	 Combination of state-of-the-art object detection algo-
rithms (YOLO) with attention mechanisms to handle
high-throughput and extremely high-resolution video
data.

–	 Consolidation of each (per frame) detection into (cross
frame) tracks using combinatorial optimization.

–	 Design of the hardware and software components in
order to balance the trade-off between accuracy and real-
time performance.

–	 Development of an automatic real-time video exposure
and white balance correction for a camera array that does
not require overlap between adjacent cameras.

–	 Development of a software architecture in which the
various components utilize parallel processes on a single
workstation and communicate in such a way that failure
of a non-vital component (e.g. tracking) does not affect
the vital ones (i.e., video rendering).

The organization of this paper is as follows. In Sect. 2 we
outline the background with respect to video processing and
tracking technologies. In Sect. 3 we detail our approach to
providing real-time tracking and exposure correction to very
high-resolution video and describe the system as a whole. In
Sect. 4 we provide both quantitative and qualitative results to
evaluate our approach. Finally, we provide a summary and
some concluding remarks in Sect. 5.

Background

Literature Review

The literature on the development of the remote tower con-
cept appears to be relatively sparse. The concept seems to
have gained traction during the early part of this century
with initial proof-of-concept being performed in the US by
NASA [21] and by DLR in Europe [8, 10, 29]. This was
followed by a number of research projects that brought the
concept forward to the first operational tower in Örnskölds-
vik, Sweden in 2014 by LFV and Saab. An overview of the
development of the remote tower concept and technologies
can be found in [9].

In the more general context of video processing and
tracking for surveillance systems, there exist a number of
relevant sources. An early approach to real-time vehicle
tracking using conventional computer vision techniques was
developed by Coifman et al. [4]. Ozkurt & Camci apply
video processing for estimating traffic density using neural
networks, but stop short of tracking [19]. Biswas et al. pre-
sent an approach to intelligent traffic monitoring by combing
several sensor data sources [2], though the hardware is lim-
ited to microcontrollers. A plethora of modern approaches
visual object tracking were presented during the Seventh

Visual Object Tracking VOT2019 Challenge [11], but these
approaches target tracking of generic objects. A more gen-
eral overview of relevant methods and applications can be
found in [6, 7]. Common to the approaches above is that
they mainly focus on single-camera setups, where the total
resolution is low compared to our scenario.

The closest work we have found to our research is the
masters thesis of Mathiesen [18]. This research was per-
formed in parallel with ours, and considers a similar data-
set and is trained specifically on airport data. Nevertheless,
that work omits reference to attention mechanisms and does
not look into exposure correction in the context of image
stitching.

In the following subsections we provide some more spe-
cific background on the topics of image/video stitching and
tracking.

Video Processing

Live streamed video is a core component of remote tower
systems, typically using light spectrum, but sometimes also
infrared imaging for support in low visibility conditions.
Given that the cameras are often placed some distance from
the runway, high-resolution of the streamed imagery is con-
sidered an essential feature. Remote tower data is most often
transferred on high bandwidth networks meaning that, in
many cases, high frame rates are available in addition to
high resolution. Essentially, this means that a huge amount
of information is being continually updated at a fast pace.

Another feature of remote tower implementations is that
they often use multiple cameras to cover angles of up to 360
degrees. The exposure of each of these cameras is typically
controlled individually in order to ensure that they present
optimal contrast of the scene to the ATCO. For example, if
the sun is shining directly towards one camera, the exposure
profile required should be completely different to the profile
of the camera pointing in the opposite direction. Neverthe-
less, this local correction of contrast often leads to visible
‘seams’ between the images when presented side-by-side
(see Fig. 1). It is therefore of interest to apply local filters
that smoothly adjust the contrast to avoid such seams appear-
ing as prominently (stitching).

The aim of a stitching algorithm is to produce a visually
plausible mosaic, in the sense that it is as similar as possi-
ble to the input images, but in which the seam between the
stitched images is invisible [15].

There exist many methods for stitching panorama images
and thus reducing the visible seam if the exposures do not
match up. One example of such methods that has shown
good results is Laplacian pyramid blending [3] using a
feathered blend. However, common to many of these meth-
ods in a panorama setting is that they operate on adjacent
images with a region of overlap. In our scenario, we do

SN Computer Science (2020) 1:296	 Page 3 of 10  296

SN Computer Science

not have such an overlap as the cameras are intended to be
perfectly aligned. In [20] the authors describe stitching of
non-overlapping images. They use a pyramid blending with
a Savitzky–Golay filter to smooth the transition across the
seam. The input images are unrelated and the result is a
blurred area across the seam, which is visually pleasing but
not what we aim for. Another method is gradient domain
blending [15], where the method performs the operations in
the gradient domain. The authors discuss two main image
stitching methods. The optimal seam algorithm involves
searching for a specific curve in the overlap region, thus not
applicable in our scenario. The second method is relevant for
our setup, using a minimization over the seam artifacts by
smoothing the transition between the images. It is, however,
too compute-intensive to be run for every frame with our
setup of up to 14 Full HD cameras.

Tracking

Tracking an object in a video scene is based on repeated
detection and localization of the object on successive frames
and obtaining a continuous association between detections
through time. This association is made easier if a classifica-
tion of the object is available.

In recent years, machine learning algorithms have made
great strides in performance, both with respect to compu-
tational efficiency and accuracy of the results. This has
resulted in some tasks that were previously considered to be
insurmountable, now exhibiting superhuman performance.
In particular, this is true for:

–	 detection—deciding whether an image contains an
object;

–	 classification—determining the class of the dominating
object in an image (in our case aircraft, vehicle, or per-
son);

–	 localization—estimating the location of an object (in
our case as a tight bounding box);

–	 tracking—locating a moving object over time.

In the context of remote tower, these tasks are of particular
interest as they reflect some of the responsibilities of the
ATCO.

In this paper we make extensive use of object detection
as the basis for our tracking algorithm. Object detection
is a wide field of research and there exist a large number
of approaches dating back several decades. Traditional
approaches for real-time object tracking include methods
such as mean shift [5]. The interest in object detection
has exploded recently, driven by developments in deep
learning and convolutional neural networks (CNNs) [1,
17, 23, 24, 26]. In principle, our tracking method is agnos-
tic to the choice of object detection method, and inherits
the properties of the chosen method in terms of efficiency
and accuracy. Thus, we opt for the method that provides
a good balance between these requirements, with a large
weight on efficiency, due to the high-resolution of the data.
There exist a number of metrics for comparing approaches
to object detection such as average precision (AP), mean
average precision (mAP) and many variations of these.
Despite, criticism of how fair these metrics actually are
[24], they provide a sufficient basis for deciding which
approach to use for our work. Figures 1 and 3 of [24] show
a recent comparison of several methods for object detec-
tion using the AP and COCO mAP-50 metrics respectively,
plotted against inference time. Due to its vastly superior
performance with respect to inference time and its com-
petitive performance with respect to AP/COCO mAP-50,
we select the version of YOLO (You Only Look Once)
presented in [24] as our method of choice.

YOLO frames the problem of detection and localization
of objects in a scene as a regression problem that can be
solved with a single evaluation of a neural network. This
approach provides both better performance and is faster
to evaluate than most of its predecessors. In addition to
detecting and localizing objects, YOLO also provides a
classification of the object and an estimated probability
that the classification is correct.

In order to obtain a complete 3D surface tracking solu-
tion, we combine the video tracking with depth informa-
tion obtained from calibrated 3D models of the airport
terrain. Calibration involves determining both the intrin-
sic and extrinsic parameters of the camera. There exists a
great deal of literature on calibration of cameras in a gen-
eral setting, see e.g., [25, 30]. In our setting, the cameras
are static, several parameters are known and the lenses

Fig. 1   Original (up) and exposure-corrected (down) images from the
remote tower at Sundsvall-Timrå airport. Images courtesy LVF and
Saab. This figure is not included in the article’s Creative Commons
licence

	 SN Computer Science (2020) 1:296296  Page 4 of 10

SN Computer Science

have negligible distortion. There is, however, a require-
ment for high accuracy, particularly with respect to the
camera orientation.

Methodology

Video Processing

White Balance and Exposure Correction

For a smooth transition between camera frames, narrow
bands on each side of a seam should have close to iden-
tical colour spectra. Our fundamental assumption is the
converse: If we are able to accurately match the colour
spectra of adjacent narrow bands, then the transition will
appear natural. We determined this assumption to be rea-
sonable, as we expect the landscape to be approximately
identical in these regions. This local constancy prior holds
as long as the video streams are well aligned geometrically
and temporally. The video processing is performed for the
synchronized frames.

To obtain a smooth transition, we estimate a shared
spectrum at the seams based on averaging the intensity
distributions in narrow bands along the seam (see Fig. 3).
To flawlessly map from the measured spectra to the shared
spectra would require a highly nonlinear and high-dimen-
sional map. However, this would take too much time to
compute, as well as being too slow to apply in real-time.
Moreover, the measured spectra are only approximations
of the underlying spectrum of the landscape, so a sim-
pler mapping correctly matching the essential features of
these distributions would be more appropriate and prevent
overfitting.

GPUs are well known for their ability to swiftly apply
linear operations. To keep our algorithm as efficient as
possible, we consider an approach that only depends
on adjacent video streams. Considering the number of
cameras in our setup, such a local approach yields a sig-
nificant reduction in complexity. A further reduction is
achieved by matching the spectra using a linear affine
map fc(x) = acx + bc for each individual colour channel
c = r, g, b . These maps were applied from the middle of the
adjacent images towards the common border (see Fig. 3).
A gradual transition was obtained using convex combina-
tions, from applying the identity map to the center of the
image to the map fc on the border.

It turned out these maps were not expressive enough to
accurately transform all dominant features in the spectra.
For instance, in certain cases we obtained a map yield-
ing a seamless transition in the sky but a poor transition
on the ground (and vice versa). To overcome this issue,
we decided to partition the stream vertically in blocks

of identical size. Another issue, manifesting itself as a
local flickering, appeared when an object moved from one
stream to the next. In this case the pixels of this object
suddenly outshine the pixels of the background landscape,
dominating the colour spectrum and violating our funda-
mental assumption. To resolve this issue we implemented
two supplemental methods. The first method detects the
movement using the thresholded absolute differences
between frames (see Fig. 5), removing the corresponding
pixels from consideration in the measured spectra when
defining our exposure correction map. This object removal
approach is viable for objects that do not dominate the
domain of the local exposure correction map.

Should a moving object cover most or the whole block,
there will be few or no pixels left for defining our map. For
these cases we use an exponential smoothing approach,
which reduces the contribution of the moving object by
blending the newly computed exposure function with the
exposure function from the previous frame

AI‑Based Video Tracking

Detection

In this work we use YOLO for detection, localization and
classification [23, 24]. YOLO is a convolutional neural net-
work that extracts and uses the same features for classifi-
cation and localization, in the form of multiple bounding
box predictions. This makes the method both extremely fast
and accurate, due to better generalization achieved by this
multitask learning. The third version of YOLO (YOLOv3)
is essentially an extension of previous versions, where 53
convolutional layers are used (applying successive 3×3 and
1 × 1 filters), and are organised in 23 successive residual
blocks. The final residual block is followed by an average
pooling before a fully connected layer and a softmax output.
We refer to [24] for full details of the architecture.

Each detection consists of an object category (aircraft,
vehicle, or person), axis-aligned bounding box, as well as a
probability signifying the confidence of the detection. The
three object classes were consistently colour-coded in their
appearance as bounding boxes and close-ups in the video
streams and as markers on the map (see Fig. 2). To avoid
false positives, only detections whose probability exceeds a
threshold toldetect = 0.65 are processed.

In some cases, multiple detections returned by the YOLO
architecture could correspond to the same object. Such
superfluous detections are eliminated using greedy non-
maximum suppression [28] as follows: for each category,
pick the detection with highest probability, and suppress

Eblend ∶= (1 − �) ⋅ Eprev + � ⋅ Enew, � = 0.05.

SN Computer Science (2020) 1:296	 Page 5 of 10  296

SN Computer Science

overlapping detections within this category by setting their
probabilities to zero. This process is then repeated for the
remaining detections, until only detections with zero prob-
ability remain.

Overlapping of bounding boxes B,B′ is quantified in
terms of their Intersection over Union (IoU), defined as the
quotient of the areas of their intersection and union, i.e.,

It measures similarity of the boxes, taking value 0 for dis-
joint boxes, value 1 for identical boxes, and otherwise val-
ues in between. Overlapping detections are then suppressed
whenever their IoU exceeds a threshold tolNMS = 0.45 . How-
ever, YOLO cannot be applied directly to our situation, as
it applies to square input images of fixed size. The image
obtained by concatenating n video streams is not square; it
has size (n ⋅ 1080) × 1920 . Moreover, our high-end consumer

IoU(B,B�) ∶=
area(B ∩ B�)

area(B ∪ B�)
.

grade GPU (GTX 1080 Ti, with 11Gb) runs out of mem-
ory, even when attempting to run YOLO on a 1600 × 1600
subimage.

While memory is not an issue for running YOLO on an
image of size 960 × 960 , the entire visual range can only
be scanned once every couple of seconds in this manner.
For the high spatial and temporal resolution of our setup,
it is therefore important to develop effective attention
mechanisms, i.e., strategies for deciding where to look.

Attention Mechanisms

We consider the following three mechanisms:

1.	 Sliding window approach. After concatenating the
frames of all cameras in a single image, slide a fixed-
sized window across this image and run a detection in
each window. As an option, it is possible to use overlap-
ping windows to avoid unfortunate cropping of objects.
Another option is to (in addition) resize the image to
detect objects at various scales. This strategy is compu-
tationally expensive, and therefore only run on start-up
to get a good overview of the initial situation.

2.	 Difference approach. Moving objects can be detected by
detecting significant local changes in the video streams.
Technically, this is achieved by thresholding the abso-
lute difference of two consecutive frames, as shown in
Figure 5. Sliding a window across the resulting binary
image, one runs a detection whenever the number of
on-pixels (representing a significant change) exceeds a
given threshold.

3.	 Expectation approach. Once we have an inventory of
tracked objects with their locations and movements, we
can predict its expected position in a future frame, and
run a detection there.

Fig. 2   Tracked objects with close-up views and their position in maps
overlays. Camera views courtesy LFV, maps © OpenStreetMap CC
BY-SA, orthophotos © Lantmäteriet. This figure is not included in
the article’s Creative Commons licence

Fig. 3   The exposure correction function is defined using a narrow band along the seam of adjacent images (red) and is applied to half the image
(green)

	 SN Computer Science (2020) 1:296296  Page 6 of 10

SN Computer Science

These mechanisms are combined in a high-level scheduler
to effectively track objects, subject to the computational
resource constraints.

Tracking Algorithm

Upon start-up of the tracker, one first applies the sliding win-
dow approach to yield an initial list of detections. During the
remainder of the tracking process, the difference and expec-
tation approaches are used for deciding where to run detec-
tions. Besides being used within each YOLO detection, non-
maximum suppression is used here to remove superfluous
detections by the various attention mechanisms. To avoid the
creation of duplicate objects (and an ensuing cascade effect),
a low suppression tolerance tolNMS = 0.3 is used here.

The problem of optimally assigning a set of m detections
D = {di}i to n existing objects O = {oi}i can be expressed
as an assignment problem. For this, one first defines a cost
function C ∶ D × O ⟶ ℝ , in which a higher cost reflects a
less desirable match. The values of this function are assem-
bled in a cost matrix

For the linear sum assignment problem, the goal is to find a
one-to-one assignment f ∶ D ⟶ O , for which the total cost

� =

⎡
⎢⎢⎣

C(d1, o1) ⋯ C(d1, on)

⋮ ⋱ ⋮

C(dm, o1) ⋯ C(dm, on)

⎤
⎥⎥⎦
∈ ℝ

m,n.

is minimal. This problem can be solved rapidly (in cubic
running time) using the Hungarian algorithm [12]. Such an
assignment problem is solved for every category separately.

Let Bd and Bo be the bounding boxes of detection d and
object o measured at frame numbers fd and fo . To impose a
penalty for dissimilarity, we consider a cost function com-
plementary to the IoU, defined by

This function imposes a higher cost for matching a detec-
tion d with an object o last observed in a distant frame, by
discounting their IoU by a factor a for every frame that has
since passed.

After finding the optimal assignment f, each detection d
is added to the history of the object o = f (d) if

i.e., if the discounted IoU exceeds a given tolerance. If this
is not the case, as well as for the unassigned detections, it is
checked whether

i.e., whether the detection wasn’t just outmatched, but not
relevant for any of the existing objects. If this is the case, it
is added as a new object. This rather strict tolerance avoids
the duplication of objects due to inaccurate detections.

n∑
i=1

C(di, f (di))

C(d, o) ∶= 1 − IoU(Bd,Bo) ⋅ a
fd−fo , a = 0.99.

1 − C(d, o) > tolIoU ∶= 0.05,

1 −min
i=1

C(d, oi) < tol�
IoU

∶= 0.001

Fig. 4   The video stream (left),
3D model (right), and blend
(middle) in the camera calibra-
tion application. The slight
mismatch on the horizon is
due to missing data at large
distances. Imagery courtesy
LFV. This figure is not included
in the article’s Creative Com-
mons licence

Fig. 5   In a given image region
(left), changes are detected by
taking the absolute difference
of consecutive frames (middle)
and thresholding (right). This
figure is not included in the
article’s Creative Commons
licence

SN Computer Science (2020) 1:296	 Page 7 of 10  296

SN Computer Science

Calibration in 3D Space

Given that the cameras are static, a number of parameters
such as position could be easily determined, e.g., by refer-
ring to map data, orthophotos. The tilt and lens distortion
was negligible. Aspect ratio and resolution are embedded
in the image data. Thus the main challenge is determining
horizontal orientation and field of view of the cameras. To
aid this process, we implemented an interactive application
that allows both navigation in the 3D model and blending the
video dynamically in order to match features manually, see
Fig. 4. After calibration, the depth of each pixel is computed
by simply rendering the scene with the depth buffer active.
The resulting depths can then be used to position events in
3D space.

System

The video streams enter the system as H.264 compressed
video streams [27] in 1920 × 1080 resolution. In our case, 13
such streams had to be decoded and displayed in real-time.
In order to achieve the required performance, we offload the
decoding to the GPU using Nvidia NVDEC, which on our
system with a GeForce GTX 1070 GPU was able to decode
up to 14 such streams in real-time.

With the decoding being done on the GPU, and the video
frames residing in GPU memory after decoding, rendering
in real-time and at full resolution is easily achieved. The
frames are only moved into RAM, a relatively slow opera-
tion, a few times per second in order to calculate the white

balance and exposure correction on the CPU, and when the
object recognition-module requests a new frame.

With the object tracking written as a separate Python
application, ZeroMQ [14] is used for inter-process com-
munication. The object detection also runs on a GPU, and
since it is essential not to degrade the performance of the
live video view, a separate GPU (GeForce GTX 1080 Ti) is
used for this task. This also has the benefit that if the object
tracking code were to experience a crash or a slow-down, it
will not inhibit the operator. She will still get a live video
stream while the object recognition module recovers. For a
full block diagram of the application, see Fig. 6.

Results

Exposure Correction

The exposure correction predominantly yields a mosaic
with natural transitions, as visualized for sunny weather
conditions in Fig. 1. This is also the case for video, in the
sense that also temporal changes generally seem natural.
In the presence of moving objects, the method generates
natural results most of the time. However, the method can
struggle when moving objects cross the image seams,
sometimes resulting in a local flickering. Typically, the
problem is most pronounced right before and after a full
crossing of the seam, i.e., when the object is fully present
in the boundary band of one of the images but not in the
other. Table 1 shows the results of the proposed expo-
sure correction methods with 16 and 64 blocks vertically,

Hardware

Video streaming application (C++) Object recognition (Python)

Video

frames

Object

metadata

Video decode thread

NVcodec (NVIDIA)

Video stream #1

Video stream #2

...
Video stream #N

HDD CPU

ZeroMQ

Tracking:

assigning

detections to

objects

Communication:

object positions,

classification,

probability,

bounding boxes,

etc.

Detection:

class, bounding

box,

probability

GPU1 GPU2

Main thread

Display GUI, real time videos from N streams and

recognized objects

Communication

thread, sends

video frames

Video rendering

thread

Video stream

Exposure

correction

thread

Main thread

Call detection shared library

Physical network

interface

Fig. 6   Application block diagram and mapping of the software processes to different hardware components

	 SN Computer Science (2020) 1:296296  Page 8 of 10

SN Computer Science

when applied to concatenated video streams with a moving
object right after a full crossing of the seam. The standard
exposure correction introduces a noticeable discoloura-
tion in the block next to the car, both for large and small
blocks. The object removal approach shows natural results
if the remaining number of pixels in the block is relatively
high (left case). However, if the moving object fills most of
the block (right case), too few pixels remain for computing
a natural exposure correction. The exponential smoothing
approach generally shows natural results. It does, however,
add a slight delay to the update of the exposure correc-
tion. For this reason we prefer using the object removal
approach when applicable.

Running the exposure correction on 14 HD cameras at
30 FPS simultaneously introduced only a minor overhead
on the GPU (GTX 1070). For a quantitative evaluation of
the performance of our exposure correction algorithm, we
use a cost function based on the method described in [15].
Consider adjacent images I− (left) and I+ (right) of size
M × N with columns I−

−1
, I−

0
, I+

0
, I+

1
 from left to right of the

seam. A naive measure of continuity is to directly compare
the columns at the seam, i.e., 1

N

∑N

i=1
‖I−

0,i
− I+

0,i
‖ , but this

measure is sensitive to geometric misalignment and asym-
metrical details. Instead, the trend at row i can be captured
by measuring whether the gradients between the final (resp.

initial) image column (r, g, b) pixels continues across the
seam, i.e., whether

Hence the total discrepancy of the trend is

Table 2 shows the average value of (1) for two scenes
with 6 cameras and a duration of 60 seconds. The reference
value in the left columns was evaluated at the middle of the
input streams. The exposure corrected result is a significant
improvement over the initial uncorrected seam, but is still
significantly higher than the reference value. This deviation
can partly be explained by a slight geometric misalignment
at the seam.

Camera Calibration

Manually tuning several parameters (position, view direc-
tion, field of view, etc.) for aligning the 3D model to the
video streams is a demanding process. It typically involves
a field trip, expensive measuring equipment, and it can take
several person-days for obtaining an accurate result. On the
other hand, the camera calibration application we developed
provides a virtual environment in which the calibration can
be performed, requiring only video/image data and a digital
surface model.

Conclusion

In this paper, we have developed and tested a number of
techniques based on video processing, 3D modelling and
object tracking that apply to high-resolution video arising
from remote towers. It was shown that the methods can
be implemented on a single workstation with commodity
hardware and still retain real-time performance by efficiently
exploiting hardware resources and by reducing unnecessary
computations.

d±
i
∶= ‖(I±

±1,i
− I±

0,i
) − (I±

0,i
− I∓

0,i
)‖ ≈ 0.

(1)1

N

N∑
i=1

d+
i
+ d−

i

2
.

Table 1   Exposure correction methods with various block sizes. The
original concatenated image is shown twice for comparison with the
correction methods. This table is not included in the article’s Crea-
tive Commons licence

Table 2   Average values of the cost function 1

Image interior Image seam Image seam
Uncorrected Corrected

Sunny 8.62 49.82 19.75
Cloudy 6.37 61.19 16.11

SN Computer Science (2020) 1:296	 Page 9 of 10  296

SN Computer Science

There remain a number of limitations of the approach
which should be resolved in future work. One limitation
is that this work has focused on developing a real-time
system for tracking rather than optimizing the reliability
of the tracking capability. In future work we would like to
compare how the method performs in relation to existing
approaches to tracking in terms of accuracy, precision and
detection failure. Another limitation is that the bounding
boxes of static objects tend to exhibit an unstable ‘twitch-
ing’ behaviour, which would be distracting for an ATCO
in an operational setting. This instability may be down to
the nature of convolutional neural networks, and could
potentially be resolved with post-processing. Additionally,
the tracking functionality has so far only been tested in
relatively high visibility conditions during daytime. More
testing is needed to see how reliable the tracking is in
low visibility and night-time scenarios. One approach to
improving performance in this case could be to train the
network specifically on airport data gathered under various
lighting and weather conditions. The attention mechanisms
considered in this paper are based on detecting movements
and expected locations of existing tracked objects. In the
future, we could also consider where ATCOs concentrate
their attention, by looking at heat maps from tracked eye
movements [16] to attain better performance. Testing
using infrared sensors is also subject to future work. A
limitation of the exposure correction maps is that they
currently act on each colour channel separately. The qual-
ity of the corrections can be expected to improve when
using linear maps combining the three channels, at a neg-
ligible computational overhead. Moreover, currently the
exposure correction map is defined separately for each
vertical block. The transition between these maps could
be improved by either using convex combinations of the
adjacent maps or by adding boundary conditions. Finally,
more tuning is needed for automatically selecting which
of the proposed methods to use to best avoid flickering
artifacts.

In a wider context, there are concerns about the use of
neural networks in safety critical operations, due both to
their ‘black-box’ nature [18] and their susceptibility to
adversarial examples [13]. Whether the results of this paper
can be brought forward to an industrial implementation may
depend on further developments on the explainability of
neural networks and methods to defend against adversarial
attacks.

Acknowledgements  The authors would like to thank Saab and Luft-
fartsverket Sweden (LFV) for their assistance in providing access to
the remote tower video data from Sundsvall, Sweden. We also express
our gratitude to the four ATCOs from the COOPANS partnership for
their valuable feedback.

Funding  Open Access funding provided by SINTEF AS. This project
has received funding from the SESAR Joint Undertaking under the
European Union’s Horizon 2020 research and innovation programme
under grant agreement No 730195.

Compliance with ethical standards 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Preprint  A preprint of this manuscript is available from https​://arxiv​
.org/abs/1910.03517​.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Bertinetto L, Valmadre J, Henriques JF, Vedaldi A, Torr PH.
Fully-convolutional Siamese networks for object tracking. In:
European conference on computer vision, pp. 850–865. Springer;
2016.

	 2.	 Biswas SP, Roy P, Patra N, Mukherjee A, Dey N. Intelligent traffic
monitoring system. In: Proceedings of the second international
conference on computer and communication technologies, pp.
535–545. Springer; 2016.

	 3.	 Burt PJ, Adelson EH. A multiresolution spline with applications
to image mosaics. ACM Trans Graph (TOG). 1983;2(4):217–36.

	 4.	 Coifman B, Beymer D, McLauchlan P, Malik J. A real-time com-
puter vision system for vehicle tracking and traffic surveillance.
Transport Res Part C Emerg Technol. 1998;6(4):271–88.

	 5.	 Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid
objects using mean shift. In: Proceedings IEEE conference on
computer vision and pattern recognition. CVPR 2000 (Cat. No.
PR00662), vol. 2, pp. 142–149. IEEE; 2000.

	 6.	 Dey N, Ashour A, Acharjee S. Applied video processing in sur-
veillance and monitoring systems. USA: IGI Global; 2016.

	 7.	 Dey N, Ashour A, Patra PK. Feature detectors and motion detec-
tion in video processing. USA: IGI Global; 2016.

	 8.	 Eier D, Huber H, Kampichler W. Advanced ground surveillance
for remote tower. In: 2008 Integrated communications, navigation
and surveillance conference, pp. 1–9. IEEE; 2008.

	 9.	 Fürstenau N. Virtual and remote control tower. Switzerland:
Springer; 2016.

	10.	 Fürstenau N, Rudolph M, Schmidt M, Werther B. Wettbewerb der
visionen 2001–2004. DLR: Tech. rep; 2004.

	11.	 Kristan M, Matas J, Leonardis A, Felsberg M, Pflugfelder R,
Kamarainen JK, Cehovin Zajc L, Drbohlav O, Lukezic A, Berg

https://arxiv.org/abs/1910.03517
https://arxiv.org/abs/1910.03517
http://creativecommons.org/licenses/by/4.0/

	 SN Computer Science (2020) 1:296296  Page 10 of 10

SN Computer Science

A, et al. The seventh visual object tracking VOT2019 challenge
results. In: Proceedings of the IEEE international conference on
computer vision workshops; 2019.

	12.	 Kuhn HW. The Hungarian Method for the assignment problem.
Naval Res Logist Q. 1955;2:83–97.

	13.	 Kurakin A, Goodfellow I, Bengio S. Adversarial examples in the
physical world. arXiv preprint arXiv​:1607.02533​; 2016.

	14.	 Lauener J, Sliwinski W. How to design and implement a modern
communication middleware based on ZeroMQ. In: Proceedings,
16th international conference on accelerator and large experimen-
tal physics control systems (ICALEPCS 2017); 2018.

	15.	 Levin A, Zomet A, Peleg S, Weiss Y. Seamless image stitching in
the gradient domain. In: Eight European conference on computer
vision (ECCV 2004), pp. 377–389; 2004.

	16.	 Li WC, Kearney P, Braithwaite G, Lin JJ. How much is too much
on monitoring tasks? Visual scan patterns of single air traffic
controller performing multiple remote tower operations. Int J Ind
Ergon. 2018;67:135–44.

	17.	 Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense
object detection. In: Proceedings of the IEEE international confer-
ence on computer vision, pp. 2980–2988; 2017.

	18.	 Mathiesen J. Low-latency detection and tracking of aircraft in very
high-resolution video feeds. : Master’s thesis, Linköping Univer-
sity; 2018.

	19.	 Ozkurt C, Camci F. Automatic traffic density estimation and
vehicle classification for traffic surveillance systems using neural
networks. Math Comput Appl. 2009;14(3):187–96.

	20.	 Pandey A, Pati UC. A novel technique for non-overlapping image
mosaicing based on pyramid method. In: Proceedings of annual
IEEE India conference (INDICON), pp. 1–6; 2013.

	21.	 Papasin R, Gawdiak Y, Maluf DA, Leidich C, Tran PB. Airport
remote tower sensor systems. NASA Ames Research Center:
Tech. Rep. SAE-2001-01-2651; 2001.

	22.	 Papenfuss A, Friedrich M. Head up only—a design concept to
enable multiple remote tower operations. In: 2016 IEEE/AIAA

35th digital avionics systems conference (DASC), pp. 1–10. IEEE;
2016.

	23.	 Redmon J, Divvala S, Girshick R, Farhadi A. You only look once:
Unified, real-time object detection. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 779–
788; 2016.

	24.	 Redmon J, Farhadi A. YOLOv3: an incremental improvement.
arXiv preprint; 2018. arXiv​:1804.02767​.

	25.	 Remondino F, Fraser C. Digital camera calibration methods: con-
siderations and comparisons. Int Arch Photogramm Remote Sens.
2006;36(5):266–72.

	26.	 Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time
object detection with region proposal networks. In: Advances in
neural information processing systems, pp. 91–99; 2015.

	27.	 Richardson IE. The H.264 advanced video compression standard.
2nd ed. UK: Wiley Publishing; 2010.

	28.	 Rothe R, Guillaumin M, Gool LV. Non-maximum suppression
for object detection by passing messages between windows. In:
Cremers D, Reid I, Saito H, Yang MH, editors. Asian conference
on computer vision (ACCV). Cham: Springer; 2014. p. 290–306.

	29.	 Schmidt M, Rudolph M, Werther B, Fürstenau N. Remote airport
tower operation with augmented vision video panorama hmi. In:
Proceedings 2nd international conference on research in air traf-
fic management (ICRAT 2006), pp. 221–230. DS Public, doo,
Belgrade; 2006.

	30.	 Zhang Z. A flexible new technique for camera calibration. IEEE
Trans Pattern Anal Mach Intell. 2000;22(11):1330–4.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1607.02533
https://arXiv.org/abs/1804.02767

	Real-Time Processing of High-Resolution Video and 3D Model-Based Tracking for Remote Towers
	Abstract
	Introduction
	Background
	Literature Review
	Video Processing
	Tracking

	Methodology
	Video Processing
	White Balance and Exposure Correction

	AI-Based Video Tracking
	Detection
	Attention Mechanisms
	Tracking Algorithm
	Calibration in 3D Space

	System

	Results
	Exposure Correction
	Camera Calibration

	Conclusion
	Acknowledgements
	References

