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Abstract
During the past decade, a new approach to providing air traffic services to airports from a remote location has been estab-
lished, known as remote or digital tower. High quality video data is a core component in remote tower operations as it inher-
ently contains a huge amount of information on which a controller can base decisions. The total resolution of a typical remote 
tower setup often exceeds 25 million RGB pixels and is captured at 30 frames per second or more. It is thus a challenge to 
efficiently process all the data in such a way as to provide relevant real-time enhancements to the controller. In this paper 
we describe the development of number of improvements and discuss how they can be implemented efficiently on a single 
workstation by decoupling processes, implementing attention mechanisms and utilizing hardware for parallel computing.
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Introduction

The remote tower concept, proposed in the early part of this 
century, aims to provide air traffic services (ATS) to air-
ports from a remote location by streaming sensor data over 
a network [21, 29]. High-resolution video that replicates 
the out-the-window view of a conventional tower is a core 
feature of the remote tower concept and is supplemented by 
a pan-tilt-zoom (PTZ) camera that mimics the function of 
binoculars in a conventional tower [8]. Other components in 
remote tower typically include voice communication, mete-
orological data, sound reproduction and radar data, where 
available. The motivation behind the concept is both to cut 
costs associated with tower maintenance and personnel, 
and to improve safety. Today there is a focus on validating 
the multiple remote tower concept, in which an air traffic 

controller (ATCO) is responsible for more than one airport 
simultaneously [16, 22]. This movement of the concept 
towards more complex scenarios demands new technologies 
that support an ATCO’s situational awareness in order to 
ensure that their cognitive capacities are not exceeded. Such 
technologies may include providing visual enhancements or 
even fully automating parts of the ATCO’s responsibilities. 
This requires processing of large amounts of data, includ-
ing high-resolution video data, in real-time. In this work we 
consider up to 14 statically positioned cameras, each with 
resolution 1080x1920 aligned in portrait mode and stacked 
horizontally, for a total resolution of 15120x1920. Despite 
the ever-increasing capacity of modern computers, their 
computational power is still insufficient to allow for naive 
implementations when dealing with such large amounts 
of data. There are, however, a number of solutions, both 
hardware and software based, that make such processing 
attainable.

Our contribution in this paper is to describe the imple-
mentation of several features that enhance remote tower 
based on raw video data. In particular, novelties of this paper 
include:

–	 Introduction of a method for cost-effective surface track-
ing of objects that does not rely on object movements or 
active surveillance hardware, such as radar.
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–	 Combination of state-of-the-art object detection algo-
rithms (YOLO) with attention mechanisms to handle 
high-throughput and extremely high-resolution video 
data.

–	 Consolidation of each (per frame) detection into (cross 
frame) tracks using combinatorial optimization.

–	 Design of the hardware and software components in 
order to balance the trade-off between accuracy and real-
time performance.

–	 Development of an automatic real-time video exposure 
and white balance correction for a camera array that does 
not require overlap between adjacent cameras.

–	 Development of a software architecture in which the 
various components utilize parallel processes on a single 
workstation and communicate in such a way that failure 
of a non-vital component (e.g. tracking) does not affect 
the vital ones (i.e., video rendering).

The organization of this paper is as follows. In Sect. 2 we 
outline the background with respect to video processing and 
tracking technologies. In Sect. 3 we detail our approach to 
providing real-time tracking and exposure correction to very 
high-resolution video and describe the system as a whole. In 
Sect. 4 we provide both quantitative and qualitative results to 
evaluate our approach. Finally, we provide a summary and 
some concluding remarks in Sect. 5.

Background

Literature Review

The literature on the development of the remote tower con-
cept appears to be relatively sparse. The concept seems to 
have gained traction during the early part of this century 
with initial proof-of-concept being performed in the US by 
NASA [21] and by DLR in Europe [8, 10, 29]. This was 
followed by a number of research projects that brought the 
concept forward to the first operational tower in Örnskölds-
vik, Sweden in 2014 by LFV and Saab. An overview of the 
development of the remote tower concept and technologies 
can be found in [9].

In the more general context of video processing and 
tracking for surveillance systems, there exist a number of 
relevant sources. An early approach to real-time vehicle 
tracking using conventional computer vision techniques was 
developed by Coifman et al. [4]. Ozkurt & Camci apply 
video processing for estimating traffic density using neural 
networks, but stop short of tracking [19]. Biswas et al. pre-
sent an approach to intelligent traffic monitoring by combing 
several sensor data sources [2], though the hardware is lim-
ited to microcontrollers. A plethora of modern approaches 
visual object tracking were presented during the Seventh 

Visual Object Tracking VOT2019 Challenge [11], but these 
approaches target tracking of generic objects. A more gen-
eral overview of relevant methods and applications can be 
found in [6, 7]. Common to the approaches above is that 
they mainly focus on single-camera setups, where the total 
resolution is low compared to our scenario.

The closest work we have found to our research is the 
masters thesis of Mathiesen [18]. This research was per-
formed in parallel with ours, and considers a similar data-
set and is trained specifically on airport data. Nevertheless, 
that work omits reference to attention mechanisms and does 
not look into exposure correction in the context of image 
stitching.

In the following subsections we provide some more spe-
cific background on the topics of image/video stitching and 
tracking.

Video Processing

Live streamed video is a core component of remote tower 
systems, typically using light spectrum, but sometimes also 
infrared imaging for support in low visibility conditions. 
Given that the cameras are often placed some distance from 
the runway, high-resolution of the streamed imagery is con-
sidered an essential feature. Remote tower data is most often 
transferred on high bandwidth networks meaning that, in 
many cases, high frame rates are available in addition to 
high resolution. Essentially, this means that a huge amount 
of information is being continually updated at a fast pace.

Another feature of remote tower implementations is that 
they often use multiple cameras to cover angles of up to 360 
degrees. The exposure of each of these cameras is typically 
controlled individually in order to ensure that they present 
optimal contrast of the scene to the ATCO. For example, if 
the sun is shining directly towards one camera, the exposure 
profile required should be completely different to the profile 
of the camera pointing in the opposite direction. Neverthe-
less, this local correction of contrast often leads to visible 
‘seams’ between the images when presented side-by-side 
(see Fig. 1). It is therefore of interest to apply local filters 
that smoothly adjust the contrast to avoid such seams appear-
ing as prominently (stitching).

The aim of a stitching algorithm is to produce a visually 
plausible mosaic, in the sense that it is as similar as possi-
ble to the input images, but in which the seam between the 
stitched images is invisible [15].

There exist many methods for stitching panorama images 
and thus reducing the visible seam if the exposures do not 
match up. One example of such methods that has shown 
good results is Laplacian pyramid blending [3] using a 
feathered blend. However, common to many of these meth-
ods in a panorama setting is that they operate on adjacent 
images with a region of overlap. In our scenario, we do 
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not have such an overlap as the cameras are intended to be 
perfectly aligned. In [20] the authors describe stitching of 
non-overlapping images. They use a pyramid blending with 
a Savitzky–Golay filter to smooth the transition across the 
seam. The input images are unrelated and the result is a 
blurred area across the seam, which is visually pleasing but 
not what we aim for. Another method is gradient domain 
blending [15], where the method performs the operations in 
the gradient domain. The authors discuss two main image 
stitching methods. The optimal seam algorithm involves 
searching for a specific curve in the overlap region, thus not 
applicable in our scenario. The second method is relevant for 
our setup, using a minimization over the seam artifacts by 
smoothing the transition between the images. It is, however, 
too compute-intensive to be run for every frame with our 
setup of up to 14 Full HD cameras.

Tracking

Tracking an object in a video scene is based on repeated 
detection and localization of the object on successive frames 
and obtaining a continuous association between detections 
through time. This association is made easier if a classifica-
tion of the object is available.

In recent years, machine learning algorithms have made 
great strides in performance, both with respect to compu-
tational efficiency and accuracy of the results. This has 
resulted in some tasks that were previously considered to be 
insurmountable, now exhibiting superhuman performance. 
In particular, this is true for:

–	 detection—deciding whether an image contains an 
object;

–	 classification—determining the class of the dominating 
object in an image (in our case aircraft, vehicle, or per-
son);

–	 localization—estimating the location of an object (in 
our case as a tight bounding box);

–	 tracking—locating a moving object over time.

In the context of remote tower, these tasks are of particular 
interest as they reflect some of the responsibilities of the 
ATCO.

In this paper we make extensive use of object detection 
as the basis for our tracking algorithm. Object detection 
is a wide field of research and there exist a large number 
of approaches dating back several decades. Traditional 
approaches for real-time object tracking include methods 
such as mean shift [5]. The interest in object detection 
has exploded recently, driven by developments in deep 
learning and convolutional neural networks (CNNs) [1, 
17, 23, 24, 26]. In principle, our tracking method is agnos-
tic to the choice of object detection method, and inherits 
the properties of the chosen method in terms of efficiency 
and accuracy. Thus, we opt for the method that provides 
a good balance between these requirements, with a large 
weight on efficiency, due to the high-resolution of the data. 
There exist a number of metrics for comparing approaches 
to object detection such as average precision (AP), mean 
average precision (mAP) and many variations of these. 
Despite, criticism of how fair these metrics actually are 
[24], they provide a sufficient basis for deciding which 
approach to use for our work. Figures 1 and 3 of [24] show 
a recent comparison of several methods for object detec-
tion using the AP and COCO mAP-50 metrics respectively, 
plotted against inference time. Due to its vastly superior 
performance with respect to inference time and its com-
petitive performance with respect to AP/COCO mAP-50, 
we select the version of YOLO (You Only Look Once) 
presented in [24] as our method of choice.

YOLO frames the problem of detection and localization 
of objects in a scene as a regression problem that can be 
solved with a single evaluation of a neural network. This 
approach provides both better performance and is faster 
to evaluate than most of its predecessors. In addition to 
detecting and localizing objects, YOLO also provides a 
classification of the object and an estimated probability 
that the classification is correct.

In order to obtain a complete 3D surface tracking solu-
tion, we combine the video tracking with depth informa-
tion obtained from calibrated 3D models of the airport 
terrain. Calibration involves determining both the intrin-
sic and extrinsic parameters of the camera. There exists a 
great deal of literature on calibration of cameras in a gen-
eral setting, see e.g., [25, 30]. In our setting, the cameras 
are static, several parameters are known and the lenses 

Fig. 1   Original (up) and exposure-corrected (down) images from the 
remote tower at Sundsvall-Timrå  airport. Images courtesy LVF and 
Saab. This figure is not included in the article’s Creative Commons 
licence
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have negligible distortion. There is, however, a require-
ment for high accuracy, particularly with respect to the 
camera orientation.

Methodology

Video Processing

White Balance and Exposure Correction

For a smooth transition between camera frames, narrow 
bands on each side of a seam should have close to iden-
tical colour spectra. Our fundamental assumption is the 
converse: If we are able to accurately match the colour 
spectra of adjacent narrow bands, then the transition will 
appear natural. We determined this assumption to be rea-
sonable, as we expect the landscape to be approximately 
identical in these regions. This local constancy prior holds 
as long as the video streams are well aligned geometrically 
and temporally. The video processing is performed for the 
synchronized frames.

To obtain a smooth transition, we estimate a shared 
spectrum at the seams based on averaging the intensity 
distributions in narrow bands along the seam (see Fig. 3). 
To flawlessly map from the measured spectra to the shared 
spectra would require a highly nonlinear and high-dimen-
sional map. However, this would take too much time to 
compute, as well as being too slow to apply in real-time. 
Moreover, the measured spectra are only approximations 
of the underlying spectrum of the landscape, so a sim-
pler mapping correctly matching the essential features of 
these distributions would be more appropriate and prevent 
overfitting.

GPUs are well known for their ability to swiftly apply 
linear operations. To keep our algorithm as efficient as 
possible, we consider an approach that only depends 
on adjacent video streams. Considering the number of 
cameras in our setup, such a local approach yields a sig-
nificant reduction in complexity. A further reduction is 
achieved by matching the spectra using a linear affine 
map fc(x) = acx + bc for each individual colour channel 
c = r, g, b . These maps were applied from the middle of the 
adjacent images towards the common border (see Fig. 3). 
A gradual transition was obtained using convex combina-
tions, from applying the identity map to the center of the 
image to the map fc on the border.

It turned out these maps were not expressive enough to 
accurately transform all dominant features in the spectra. 
For instance, in certain cases we obtained a map yield-
ing a seamless transition in the sky but a poor transition 
on the ground (and vice versa). To overcome this issue, 
we decided to partition the stream vertically in blocks 

of identical size. Another issue, manifesting itself as a 
local flickering, appeared when an object moved from one 
stream to the next. In this case the pixels of this object 
suddenly outshine the pixels of the background landscape, 
dominating the colour spectrum and violating our funda-
mental assumption. To resolve this issue we implemented 
two supplemental methods. The first method detects the 
movement using the thresholded absolute differences 
between frames (see Fig. 5), removing the corresponding 
pixels from consideration in the measured spectra when 
defining our exposure correction map. This object removal 
approach is viable for objects that do not dominate the 
domain of the local exposure correction map.

Should a moving object cover most or the whole block, 
there will be few or no pixels left for defining our map. For 
these cases we use an exponential smoothing approach, 
which reduces the contribution of the moving object by 
blending the newly computed exposure function with the 
exposure function from the previous frame

AI‑Based Video Tracking

Detection

In this work we use YOLO for detection, localization and 
classification [23, 24]. YOLO is a convolutional neural net-
work that extracts and uses the same features for classifi-
cation and localization, in the form of multiple bounding 
box predictions. This makes the method both extremely fast 
and accurate, due to better generalization achieved by this 
multitask learning. The third version of YOLO (YOLOv3) 
is essentially an extension of previous versions, where 53 
convolutional layers are used (applying successive 3×3 and 
1 × 1 filters), and are organised in 23 successive residual 
blocks. The final residual block is followed by an average 
pooling before a fully connected layer and a softmax output. 
We refer to [24] for full details of the architecture.

Each detection consists of an object category (aircraft, 
vehicle, or person), axis-aligned bounding box, as well as a 
probability signifying the confidence of the detection. The 
three object classes were consistently colour-coded in their 
appearance as bounding boxes and close-ups in the video 
streams and as markers on the map (see Fig. 2). To avoid 
false positives, only detections whose probability exceeds a 
threshold toldetect = 0.65 are processed.

In some cases, multiple detections returned by the YOLO 
architecture could correspond to the same object. Such 
superfluous detections are eliminated using greedy non-
maximum suppression [28] as follows: for each category, 
pick the detection with highest probability, and suppress 

Eblend ∶= (1 − �) ⋅ Eprev + � ⋅ Enew, � = 0.05.
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overlapping detections within this category by setting their 
probabilities to zero. This process is then repeated for the 
remaining detections, until only detections with zero prob-
ability remain.

Overlapping of bounding boxes B,B′ is quantified in 
terms of their Intersection over Union (IoU), defined as the 
quotient of the areas of their intersection and union, i.e.,

It measures similarity of the boxes, taking value 0 for dis-
joint boxes, value 1 for identical boxes, and otherwise val-
ues in between. Overlapping detections are then suppressed 
whenever their IoU exceeds a threshold tolNMS = 0.45 . How-
ever, YOLO cannot be applied directly to our situation, as 
it applies to square input images of fixed size. The image 
obtained by concatenating n video streams is not square; it 
has size (n ⋅ 1080) × 1920 . Moreover, our high-end consumer 

IoU(B,B�) ∶=
area(B ∩ B�)

area(B ∪ B�)
.

grade GPU (GTX 1080 Ti, with 11Gb) runs out of mem-
ory, even when attempting to run YOLO on a 1600 × 1600 
subimage.

While memory is not an issue for running YOLO on an 
image of size 960 × 960 , the entire visual range can only 
be scanned once every couple of seconds in this manner. 
For the high spatial and temporal resolution of our setup, 
it is therefore important to develop effective attention 
mechanisms, i.e., strategies for deciding where to look.

Attention Mechanisms

We consider the following three mechanisms: 

1.	 Sliding window approach. After concatenating the 
frames of all cameras in a single image, slide a fixed-
sized window across this image and run a detection in 
each window. As an option, it is possible to use overlap-
ping windows to avoid unfortunate cropping of objects. 
Another option is to (in addition) resize the image to 
detect objects at various scales. This strategy is compu-
tationally expensive, and therefore only run on start-up 
to get a good overview of the initial situation.

2.	 Difference approach. Moving objects can be detected by 
detecting significant local changes in the video streams. 
Technically, this is achieved by thresholding the abso-
lute difference of two consecutive frames, as shown in 
Figure 5. Sliding a window across the resulting binary 
image, one runs a detection whenever the number of 
on-pixels (representing a significant change) exceeds a 
given threshold.

3.	 Expectation approach. Once we have an inventory of 
tracked objects with their locations and movements, we 
can predict its expected position in a future frame, and 
run a detection there.

Fig. 2   Tracked objects with close-up views and their position in maps 
overlays. Camera views courtesy LFV, maps ©  OpenStreetMap CC 
BY-SA, orthophotos ©   Lantmäteriet. This figure is not included in 
the article’s Creative Commons licence

Fig. 3   The exposure correction function is defined using a narrow band along the seam of adjacent images (red) and is applied to half the image 
(green)
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These mechanisms are combined in a high-level scheduler 
to effectively track objects, subject to the computational 
resource constraints.

Tracking Algorithm

Upon start-up of the tracker, one first applies the sliding win-
dow approach to yield an initial list of detections. During the 
remainder of the tracking process, the difference and expec-
tation approaches are used for deciding where to run detec-
tions. Besides being used within each YOLO detection, non-
maximum suppression is used here to remove superfluous 
detections by the various attention mechanisms. To avoid the 
creation of duplicate objects (and an ensuing cascade effect), 
a low suppression tolerance tolNMS = 0.3 is used here.

The problem of optimally assigning a set of m detections 
D = {di}i to n existing objects O = {oi}i can be expressed 
as an assignment problem. For this, one first defines a cost 
function C ∶ D × O ⟶ ℝ , in which a higher cost reflects a 
less desirable match. The values of this function are assem-
bled in a cost matrix

For the linear sum assignment problem, the goal is to find a 
one-to-one assignment f ∶ D ⟶ O , for which the total cost

� =

⎡
⎢⎢⎣

C(d1, o1) ⋯ C(d1, on)

⋮ ⋱ ⋮

C(dm, o1) ⋯ C(dm, on)

⎤
⎥⎥⎦
∈ ℝ

m,n.

is minimal. This problem can be solved rapidly (in cubic 
running time) using the Hungarian algorithm [12]. Such an 
assignment problem is solved for every category separately.

Let Bd and Bo be the bounding boxes of detection d and 
object o measured at frame numbers fd and fo . To impose a 
penalty for dissimilarity, we consider a cost function com-
plementary to the IoU, defined by

This function imposes a higher cost for matching a detec-
tion d with an object o last observed in a distant frame, by 
discounting their IoU by a factor a for every frame that has 
since passed.

After finding the optimal assignment f, each detection d 
is added to the history of the object o = f (d) if

i.e., if the discounted IoU exceeds a given tolerance. If this 
is not the case, as well as for the unassigned detections, it is 
checked whether

i.e., whether the detection wasn’t just outmatched, but not 
relevant for any of the existing objects. If this is the case, it 
is added as a new object. This rather strict tolerance avoids 
the duplication of objects due to inaccurate detections.

n∑
i=1

C(di, f (di))

C(d, o) ∶= 1 − IoU(Bd,Bo) ⋅ a
fd−fo , a = 0.99.

1 − C(d, o) > tolIoU ∶= 0.05,

1 −min
i=1

C(d, oi) < tol�
IoU

∶= 0.001

Fig. 4   The video stream (left), 
3D model (right), and blend 
(middle) in the camera calibra-
tion application. The slight 
mismatch on the horizon is 
due to missing data at large 
distances. Imagery courtesy 
LFV. This figure is not included 
in the article’s Creative Com-
mons licence

Fig. 5   In a given image region 
(left), changes are detected by 
taking the absolute difference 
of consecutive frames (middle) 
and thresholding (right). This 
figure is not included in the 
article’s Creative Commons 
licence
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Calibration in 3D Space

Given that the cameras are static, a number of parameters 
such as position could be easily determined, e.g., by refer-
ring to map data, orthophotos. The tilt and lens distortion 
was negligible. Aspect ratio and resolution are embedded 
in the image data. Thus the main challenge is determining 
horizontal orientation and field of view of the cameras. To 
aid this process, we implemented an interactive application 
that allows both navigation in the 3D model and blending the 
video dynamically in order to match features manually, see 
Fig. 4. After calibration, the depth of each pixel is computed 
by simply rendering the scene with the depth buffer active. 
The resulting depths can then be used to position events in 
3D space.

System

The video streams enter the system as H.264 compressed 
video streams [27] in 1920 × 1080 resolution. In our case, 13 
such streams had to be decoded and displayed in real-time. 
In order to achieve the required performance, we offload the 
decoding to the GPU using Nvidia NVDEC, which on our 
system with a GeForce GTX 1070 GPU was able to decode 
up to 14 such streams in real-time.

With the decoding being done on the GPU, and the video 
frames residing in GPU memory after decoding, rendering 
in real-time and at full resolution is easily achieved. The 
frames are only moved into RAM, a relatively slow opera-
tion, a few times per second in order to calculate the white 

balance and exposure correction on the CPU, and when the 
object recognition-module requests a new frame.

With the object tracking written as a separate Python 
application, ZeroMQ [14] is used for inter-process com-
munication. The object detection also runs on a GPU, and 
since it is essential not to degrade the performance of the 
live video view, a separate GPU (GeForce GTX 1080 Ti) is 
used for this task. This also has the benefit that if the object 
tracking code were to experience a crash or a slow-down, it 
will not inhibit the operator. She will still get a live video 
stream while the object recognition module recovers. For a 
full block diagram of the application, see Fig.  6.

Results

Exposure Correction

The exposure correction predominantly yields a mosaic 
with natural transitions, as visualized for sunny weather 
conditions in Fig. 1. This is also the case for video, in the 
sense that also temporal changes generally seem natural. 
In the presence of moving objects, the method generates 
natural results most of the time. However, the method can 
struggle when moving objects cross the image seams, 
sometimes resulting in a local flickering. Typically, the 
problem is most pronounced right before and after a full 
crossing of the seam, i.e., when the object is fully present 
in the boundary band of one of the images but not in the 
other. Table 1 shows the results of the proposed expo-
sure correction methods with 16 and 64 blocks vertically, 

Hardware

Video streaming application (C++) Object recognition (Python)

Video 

frames

Object 

metadata

Video decode thread

NVcodec (NVIDIA)

Video stream #1

Video stream #2

...
Video stream #N

HDD CPU

ZeroMQ

Tracking:

assigning

detections to

objects

Communication:

object positions,

classification,

probability,

bounding boxes,

etc.

Detection: 

class, bounding

box,

probability

GPU1 GPU2

Main thread

Display GUI, real time videos from N streams and

recognized objects

Communication

thread, sends

video frames

Video rendering

thread

Video stream

Exposure

correction

thread

Main thread

Call detection shared library

Physical network

interface

Fig. 6   Application block diagram and mapping of the software processes to different hardware components
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when applied to concatenated video streams with a moving 
object right after a full crossing of the seam. The standard 
exposure correction introduces a noticeable discoloura-
tion in the block next to the car, both for large and small 
blocks. The object removal approach shows natural results 
if the remaining number of pixels in the block is relatively 
high (left case). However, if the moving object fills most of 
the block (right case), too few pixels remain for computing 
a natural exposure correction. The exponential smoothing 
approach generally shows natural results. It does, however, 
add a slight delay to the update of the exposure correc-
tion. For this reason we prefer using the object removal 
approach when applicable.

Running the exposure correction on 14 HD cameras at 
30 FPS simultaneously introduced only a minor overhead 
on the GPU (GTX 1070). For a quantitative evaluation of 
the performance of our exposure correction algorithm, we 
use a cost function based on the method described in [15]. 
Consider adjacent images I− (left) and I+ (right) of size 
M × N with columns I−

−1
, I−

0
, I+

0
, I+

1
 from left to right of the 

seam. A naive measure of continuity is to directly compare 
the columns at the seam, i.e., 1

N

∑N

i=1
‖I−

0,i
− I+

0,i
‖ , but this 

measure is sensitive to geometric misalignment and asym-
metrical details. Instead, the trend at row i can be captured 
by measuring whether the gradients between the final (resp. 

initial) image column (r, g, b) pixels continues across the 
seam, i.e., whether

Hence the total discrepancy of the trend is

Table 2 shows the average value of (1) for two scenes 
with 6 cameras and a duration of 60 seconds. The reference 
value in the left columns was evaluated at the middle of the 
input streams. The exposure corrected result is a significant 
improvement over the initial uncorrected seam, but is still 
significantly higher than the reference value. This deviation 
can partly be explained by a slight geometric misalignment 
at the seam.

Camera Calibration

Manually tuning several parameters (position, view direc-
tion, field of view, etc.) for aligning the 3D model to the 
video streams is a demanding process. It typically involves 
a field trip, expensive measuring equipment, and it can take 
several person-days for obtaining an accurate result. On the 
other hand, the camera calibration application we developed 
provides a virtual environment in which the calibration can 
be performed, requiring only video/image data and a digital 
surface model.

Conclusion

In this paper, we have developed and tested a number of 
techniques based on video processing, 3D modelling and 
object tracking that apply to high-resolution video arising 
from remote towers. It was shown that the methods can 
be implemented on a single workstation with commodity 
hardware and still retain real-time performance by efficiently 
exploiting hardware resources and by reducing unnecessary 
computations.

d±
i
∶= ‖(I±

±1,i
− I±

0,i
) − (I±

0,i
− I∓

0,i
)‖ ≈ 0.
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i
+ d−
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2
.

Table 1   Exposure correction methods with various block sizes. The 
original concatenated image is shown twice for comparison with the 
correction methods. This table   is not included in the article’s Crea-
tive Commons licence

Table 2   Average values of the cost function 1

Image interior Image seam Image seam
Uncorrected Corrected

Sunny 8.62 49.82 19.75
Cloudy 6.37 61.19 16.11
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There remain a number of limitations of the approach 
which should be resolved in future work. One limitation 
is that this work has focused on developing a real-time 
system for tracking rather than optimizing the reliability 
of the tracking capability. In future work we would like to 
compare how the method performs in relation to existing 
approaches to tracking in terms of accuracy, precision and 
detection failure. Another limitation is that the bounding 
boxes of static objects tend to exhibit an unstable ‘twitch-
ing’ behaviour, which would be distracting for an ATCO 
in an operational setting. This instability may be down to 
the nature of convolutional neural networks, and could 
potentially be resolved with post-processing. Additionally, 
the tracking functionality has so far only been tested in 
relatively high visibility conditions during daytime. More 
testing is needed to see how reliable the tracking is in 
low visibility and night-time scenarios. One approach to 
improving performance in this case could be to train the 
network specifically on airport data gathered under various 
lighting and weather conditions. The attention mechanisms 
considered in this paper are based on detecting movements 
and expected locations of existing tracked objects. In the 
future, we could also consider where ATCOs concentrate 
their attention, by looking at heat maps from tracked eye 
movements [16] to attain better performance. Testing 
using infrared sensors is also subject to future work. A 
limitation of the exposure correction maps is that they 
currently act on each colour channel separately. The qual-
ity of the corrections can be expected to improve when 
using linear maps combining the three channels, at a neg-
ligible computational overhead. Moreover, currently the 
exposure correction map is defined separately for each 
vertical block. The transition between these maps could 
be improved by either using convex combinations of the 
adjacent maps or by adding boundary conditions. Finally, 
more tuning is needed for automatically selecting which 
of the proposed methods to use to best avoid flickering 
artifacts.

In a wider context, there are concerns about the use of 
neural networks in safety critical operations, due both to 
their ‘black-box’ nature [18] and their susceptibility to 
adversarial examples [13]. Whether the results of this paper 
can be brought forward to an industrial implementation may 
depend on further developments on the explainability of 
neural networks and methods to defend against adversarial 
attacks.
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