
A general-purpose distributed pattern mining system

Asma Belhadi1 & Youcef Djenouri2,3 & Jerry Chun-Wei Lin4
& Alberto Cano5

# The Author(s) 2020

Abstract
This paper explores five pattern mining problems and proposes a new distributed framework called DT-DPM: Decomposition
Transaction for Distributed Pattern Mining. DT-DPM addresses the limitations of the existing pattern mining problems by
reducing the enumeration search space. Thus, it derives the relevant patterns by studying the different correlation among the
transactions. It first decomposes the set of transactions into several clusters of different sizes, and then explores heterogeneous
architectures, including MapReduce, single CPU, and multi CPU, based on the densities of each subset of transactions. To
evaluate the DT-DPM framework, extensive experiments were carried out by solving five pattern mining problems (FIM:
Frequent Itemset Mining, WIM: Weighted Itemset Mining, UIM: Uncertain Itemset Mining, HUIM: High Utility Itemset
Mining, and SPM: Sequential Pattern Mining). Experimental results reveal that by using DT-DPM, the scalability of the pattern
mining algorithms was improved on large databases. Results also reveal that DT-DPM outperforms the baseline parallel pattern
mining algorithms on big databases.

Keywords Patternmining . Decomposition . Distributed computing . Heterogeneous architecture

1 Introduction

Pattern mining is a data mining task that aims at studying the
correlations within data and discovering relevant patterns
from large databases. In practice, different database represen-
tation could be observed (from Boolean databases to sequence
databases). The problem of pattern mining is to find an effi-
cient approach to extract the relevant patterns in a database. It

is used in many applications and domains such as ontology
matching [1], process mining [2], decision making [3], and
constraint programming [4]. The pattern mining is also called
with “Big data” applications such as in frequent genes extrac-
tions from DNA in Bio-informatics [5], relevant hashtags
from twitter streams in social network analysis [6], analysis
of sensorial data from IoT devices in smart city applications
[7]. This work mainly focuses on mining the information from
big transactional databases.

1.1 Motivation

Solutions to pattern mining problems [8–12] are high time
consuming when dealing with large and very large databases
for pattern mining problems such as FIM and WIM, and they
are totally inefficient when solving more complex problems
such as UIM, HUIM, and SPM. To improve the runtime per-
formance of the pattern mining approaches, many optimiza-
tion and high performance computing techniques have been
proposed [13–18]. However, these strategies are inefficient
when dealing with big databases, where only few number of
relevant patterns are useful and displayed to the end user. We
contemplate that these algorithms are inefficient because they
consider the whole database in the mining process. In our
previous work [19], we proposed a new algorithm for pattern
mining algorithm, where the aim is to study the correlation

* Asma Belhadi
abelhadi@usthb.dz

Youcef Djenouri
youcef.djenouri@sintef.no

Jerry Chun-Wei Lin
jerrylin@ieee.org

Alberto Cano
acano@vcu.edu

1 Department of Computer Science, USTHB, Algiers, Algeria
2 Department of Computer Science, NTNU, Trondheim, Norway
3 SINTEF Digital, Forskningsveien 1, 0314 Oslo, Norway
4 Department of Computing, Mathematics and Physics, Western

Norway University of Applied Sciences (HVL), Bergen, Norway
5 Department of Computer Science, Virginia Commonwealth

University, Richmond, VA, USA

https://doi.org/10.1007/s10489-020-01664-w

Published online: 18 March 2020

Applied Intelligence (2020) 50:2647–2662

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-020-01664-w&domain=pdf
mailto:abelhadi@usthb.dz


between the input data to split the whole problem into many
smaller sub-problems, but as being as independent as possible.
We proposed a k-means algorithm to assign the transactions
into different clusters. We also developed an efficient strategy
to accurately explore the clusters of transactions. This ap-
proach gives good results compared to the baseline serial
methods. However, it still suffers from the runtime and accu-
racy performance when dealing with big databases. This is
due to the separator items between clusters, where the mining
process of these items should be carried out by exploring the
transactions of all clusters. This issue degrades the overall
performance of such an approach. Motivated by the prelimi-
nary results reported in [19], we propose a new parallel frame-
work, which addresses the following issues, i) minimizing the
number of separator items, ii) improving the runtime and ac-
curacy on big databases.

1.2 Contributions

In this research work, we propose a generic intelligent pattern
mining algorithm for dealing pattern mining problems on big
databases. It is a comprehensive extension of our previous
work [19]. With this in mind, the main contributions of this
work are as follows:

1. Propose a new framework called DT-DPM for improving
pattern mining algorithms in a distributed environment.

2. Develop a decomposition approach to cluster the transac-
tions set into smaller similar groups.

3. Extend the MapReduce computing framework to deal
with the pattern mining algorithms by exploiting the dif-
ferent dependencies between the transactions of the
clusters.

4. Five cases studies (FIM, WIM, UIM, HUIM, and SPM)
have been analyzed on well-known pattern mining data-
bases by considering five best pattern mining algorithms
in terms of time complexity as baseline algorithms for the
DT-DPM framework. Experimental results reveal that by
using DT-DPM, the scalability of the pattern mining al-
gorithms was improved on large databases. Results also
reveal that DT-DPM outperforms the baseline parallel pat-
tern mining algorithms on big databases.

1.3 Outline

The remainder of the paper is organized as follows: Section 2
introduces the basic concepts of pattern mining problems.
Section 3 reviews existing pattern mining algorithms followed
by a detailed explanation of our DT-DPM framework in
Section 4. The performance evaluation is presented in
Section 5 whereas Section 6 draws the conclusions.

2 Pattern mining problems

In this section, we first present a general formulation of pattern
mining and then we present a few pattern mining problems
according to the general formulation.

Definition 1 (pattern) Let us consider I = {1, 2,…, n} as a set
of items where n is the number of items, and T = {t1, t2, dots,
tm} as a set of transactions where m is the number of transac-
tions. We define the function a, where for the item i in the
transaction tj, the corresponding pattern reads p=σ(i, j).

Definition 2 (pattern mining) A pattern mining problem finds
the set of all relevant patterns L, such as

L ¼ p j Interestingness T ; I ; pð Þ≥γf g ð1Þ
where the Interestigness(T, I, p) is the measure to evaluate a
pattern p among the set of transactions T and the set of items I,
where γ is the mining threshold.

From these two definitions, we present the existing pattern
mining problems.

Definition 3 (Boolean database)We define a Boolean database
by setting the function σ (see Def. 2) as

σ i; jð Þ ¼ 1 if i∈t j
0 otherwise

�
ð2Þ

Definition 4 (frequent itemset mining (FIM))We define a FIM
problem as an extension of the pattern mining problem (see
Def. 2) by

L ¼ p j Support T ; I ; pð Þ≥γf g ð3Þ

with Support T ; I ; pð Þ ¼ pj jT ;I
jT j where T is the set of transactions

in a Boolean database defined by Def. 1, γ is a minimum
support threshold, and |p|T, I is the number of transactions in
T containing the pattern p.

Definition 5 (weighted database) We define a weighted data-
base by setting the function σ (see Def. 2) as

σ i; jð Þ ¼ wij if i∈t j
0 otherwise

�
ð4Þ

Note that wij is the weight of the item i in the transaction tj.

Definition 6 (weighted itemset mining (WIM)) We define a
WIM problem as an extension of the pattern mining problem
(see Def. 2) by

L ¼ p j WS T ; I ; pð Þ≥γf g ð5Þ

2648 A. Belhadi et al.



with WS T ; I ; pð Þ ¼ ∑jT j
j¼1W t j; I ; p

� �
where T is the set of

transactions in the weighted database defined by Def. 3,
W(tj, I, p) is the minimum weight of the items of the pattern
p in the transaction tj, and γ is a minimum weighted support
threshold.

Definition 7 (uncertain database) We define an uncertain da-
tabase by setting the function σ (see Def. 2) as

σ i; jð Þ ¼ Probij if i∈t j
0 otherwise

�
ð6Þ

Note that Probij is the uncertainty value of i in the transac-
tion tj.

Definition 8 (uncertain itemset mining (UIM)) We define a
UIM problem as an extension of the pattern mining problem
(see Def. 2) by

L ¼ p j US T ; I ; pð Þ≥γf g ð7Þ

with US T ; I ; pð Þ ¼ ∑jT j
j¼1∏i∈pProbij where T is the set of

transactions in the uncertain database defined by Def. 5 and
γ is the minimum uncertain support threshold.

Definition 9 (utility database)We define an utility database by
setting the function σ (see Def. 2) as

σ i; jð Þ ¼ iuij if i∈t j
0 otherwise

�
ð8Þ

Note that iuij is the internal utility value of i in the transac-
tion tj, we also define external utility of each item i by eu(i).

Definition 10 (high utility itemset mining (HUIM))We define a
HUIM problem as an extension of the pattern mining problem
(see Def. 2) by

L ¼ p j U T ; I ; pð Þ≥γf g;with U T ; I ; pð Þ

¼ ∑
jT j

j¼1
∑
i∈p

iuij � eu ið Þ ð9Þ

where T is the set of transactions in the utility database defined
by Def. 7 and γ is the minimum utility threshold.

Definition 11 (sequence database)We assume a total order on
items ≺, such as 1 ≺ 2 ≺ 3… ≺ n. A sequence is an ordered list
of itemsets s = {I1, I2,…, I∣s∣}. Each itemset Ii is defined by
setting the function σ (see Def. 2) as σ(i, j) = i, if i ∈ tj

Definition 12 (sequential pattern mining (SPM)) We define a
SPM problem as an extension of the pattern mining problem
(see Def. 2) by

L ¼ p j Support T ; I ; pð Þ≥γf g ð10Þ
where T is the set of transactions in the sequence database
defined by Def. 9 and γ is the minimum support threshold.

3 Related work

Pattern mining has been largely studied in the last three de-
cades [8–11, 20, 21]. There are many variants of pattern min-
ing problem such as FIM, WIM, HUIM, UIM and SPM.

FIM It aims at extracting all frequent itemsets that exceed the
minimum support threshold. Apriori [22] and FP-Growth [23]
are the most popular algorithms. Apriori applies a generate
and test strategy to explore the itemset space. The candidate
itemsets are generated incrementally and recursively. To gen-
erate k-sized itemsets as candidates, the algorithm calculates
and combines the frequent (k-1)-sized itemsets. This process is
repeated until no candidate itemsets are obtained in an itera-
tion. However, FP-Growth adopts a divide and conquer strat-
egy and compresses the transactional database in the volatile
memory using an efficient tree structure. It then applies recur-
sively the mining process to find the frequent itemsets. The
main limitation of the traditional FIM algorithms is the data-
base format where only binary items can be mined. A typical
application of this problem is the market basket analysis,
which a given item (product) may be present or absent in the
given transaction (customer).

WIM To address the FIM limitation,WIM is introduced, where
weights are associated to each item to indicate their relative
importance in the given transaction [24]. The goal is to extract
itemsets exceeding minimumweight threshold. The firstWIM
algorithm is calledWFIM:Weighted Frequent Itemset Mining
[25]. It defines a weight range and a minimum weight con-
straint into the FP-Growth algorithm. Both weight and support
measures are considered to prunethe search space. Yun [26]
proposed WIP: Weighted Interesting Pattern. It introduces an
infinity measure that determines the correlation between the
items of the same pattern. The integration of the WIM in both
Apriori and FP-Growth is studied in [27]. The results showed
that FP-Growth outperforms Apriori for mining weighted pat-
terns. Le et al. [28] proposed a frequent subgraph algorithm on
a weighted large graph. A novel strategy is developed which
aims to compute the weight of all candidate subgraphs. An
efficient pruning strategy aims at reducing both the processing
time and the memory usage. Lee et al. [29] mine the frequent
weighted itemsets by employing a novel type of prefix tree
structures. This allows to retrieve the relevant patterns more
accurately without saving the list of identification number of
the different transactions.

2649A general-purpose distributed pattern mining system



UIM An extension of WIM, called UIM, explores uncertain
transactional databases, where two models (expected-support
and probabilistic itemsets) are defined to mine uncertain pat-
terns. Li et al. [30] proposed the PFIMoS: Probabilistic
Frequent Itemset Mining over Streams algorithm. It derives
the probabilistic frequent itemsets in an incremental way by
determining the upper and the lower bounds of the mining
threshold. Lee et al. [31] introduced the U-WFI:
Uncertainmining of Weighted Frequent Itemsets algorithm.
It allows to discover from a given uncertain database relevant
uncertain frequent itemsets with high probability values by
focusing on item weights. Liaqat et al. [32] show the use of
uncertain frequent patterns in the image retrieval process. It
incorporates the fuzzy ontology and uncertain frequent pattern
mining for finding the relevant images regarding the user que-
ry. Lee et al. [33] suggest novel data structures to guarantee the
correctness of the mining outputs without any false positives.
It allows to retrieve a complete set of uncertain relevant pat-
terns in an reasonable amount of time.

HUIM High Utility Itemset Mining is an extension of WIM
where both internal and external utilities of the items are in-
volved. The aim is to find all high utility patterns from trans-
actional database that exceed the minimum utility threshold.
The utility of a pattern is the sum of the utility of all its items,
where the utility of an item is defined by the product by its
internal and external utility values. Chan et al. [34] proposed
the first HUIM algorithm. It applies the Apriori-based algo-
rithm to discover top k high utility patterns. This algorithm
suffers from the runtime performance, because the search
space is not well pruned using the closure downward property.
Thus, the utility measure is neither monotone nor anti-
monotone.To address this limitation the TWU: Transaction
Weighted Utility property is defined to prune the high utility
pattern space [35, 36]. It is an upper-boundmonotonemeasure
to reduce the search space. More efficient HUIM algorithms
based on TWU have been recently proposed such as EFIM:
EFficient high-utility Itemset Mining [37], and d2HUP: Direct
Discovery for High Utility Patterns [38]. The particularity of
such approaches is that they use more efficient data structures
to determine the TWU and the utility values. Singh et al. [39]
address the problem of the minimum utility threshold tuning
and derived the top k high utility patterns. It uses transaction
merging and data projection techniques to reduce the data
scanning cost. It also develops an intelligent strategy designed
for top k high utility patterns to prune the enumeration search
tree. Gan et al. [40] proposed a correlated high utility pattern
miner algorithm. It considers the positive correlation, the prof-
itable value concepts, and several strategies to prune the
search space. Lee et al. [41] developed an efficient incremen-
tal approach for identifying high utility patterns. It adopts an
accurate data structure to mine high utility patterns in an in-
cremental way.

SPM Sequential Pattern Mining is an extension of FIM to
discover a set of ordered patterns in a sequence database
[42–44]. Salvemini et al. [42] find the completeset of the se-
quence patterns by reducing the candidates generation runtime
by employing an efficient lexicographic tree structure.
Fumarola et al. [43] discover closed sequential patterns using
two main steps, i) Finding the closedof sequence patterns of
size 1, and ii) Generating new sequences from the sequence
patterns of size 1, already deduced in the first step. Van et al.
[44] introduced the pattern-growth algorithm in solving the
sequential pattern mining problem with itemset constraints.
It proposed an incremental strategy to prune the enumeration
search tree which allows to reduce the number of visited
nodes. Aisal et al. [45] proposed a novel convoy pattern min-
ing approach which can operateon a variety of operational
data stores. It suggested a new heuristic to prune the objects
which have no chance of forming a convoy. Wu et al. [46]
solved the contrast sequential pattern mining problem, which
is an extension of SPM, discovered all relevant patterns that
figure out in one sequence data and not in the others. These
patterns are highly used in some specified application such as
analysing anomalous customers in the business intelligence or
medical diagnosis in the smart healthcare [47–49].

High performance computing Regarding high performance
computing, many algorithms have been developed for
boosting the FIM performance [15, 50–54]. However, few
algorithms have been proposed for the other pattern mining
problem [16–18, 55]. In [52], some challenges in big data
analytics are discussed, such as mining evolving data streams
and the need to handle many exabytes of data across various
application areas such as social network analysis. The
BigFIM: Big Frequent Itemset Mining [56] algorithm is pre-
sented, which combines principles from both Apriori and
Eclat. BigFIM is implemented using the MapReduce para-
digm. The mappers are determined using Eclat algorithm,
whereas, the reducers are computed using the Apriori algo-
rithm. [57] develops two strategies for parallelizing both can-
didate itemsets generation and support counting on a GPU
(Graphic Processing Unit). In the candidate generation, each
thread is assigned two frequent (k-1)-sized itemsets, it com-
pares them to make sure that they share the common (k-2)
prefix and then generates a k-sized candidate itemset. In the
evaluation, each thread is assigned one candidate itemset and
counts its support by scanning the transactions simultaneous-
ly. The evaluation of frequent itemsets is improved in [58] by
proposing mapping and sum reduction techniques to merge all
counts ofthe given itemsets. It is also improved in [59] by
developing three strategies for minimizing the impact of the
graphical processor unit thread divergence. In [60], a multi-
level layer data structure is proposed to enhance the support
counting of the frequent itemsets. It divides vertical data into
several layers, where each layer is an index table of the next

2650 A. Belhadi et al.



layer. This strategy can completely represent the original ver-
tical structure. In a vertical structure, each item corresponds to
a fixed-length binary vector. However, in this strategy, the
length of each vector varies, which depends on the number
of transactions included in the corresponding item. A Hadoop
implementation based onMapReduce programming approach
called FiDoop: Frequent itemset based on Decomposition is
proposed in [61] for the frequent itemsets mining problem. It
incorporates the concept of FIU-tree (Frequent Itemset
Ultrametric tree) rather than traditional FP-tree of FP-
Growth algorithm, for the purpose of improving the storage
of the candidate itemsets. An improved version called
FiDoop-DP is proposed in [15]. It develops an efficient strat-
egy to partition data sets among the mappers. This allows
better exploration of cluster hardware architecture by avoiding
jobs redundancy. Andrzejewski et al. [62] introduce the con-
cept of incremental co-location patterns, i.e., update the set of
knowledge about the spatial features after inserting new spa-
tial data to the original one. The authors develop a new parallel
algorithm which combines effective update strategy and multi
GPU co-location pattern mining [63] by designing an efficient
enumeration tree on GPU. Since the proposed approach is
memory-aware, i.e., the data is divided into several package
to fit to GPU memories, it only achieves an speedup of six.
Jiang et al. [64] adopt a parallel FP-Growth for mining world
ocean atlas data. The whole data is partitioned among multiple
CPU threads, where each thread explores 300,000 data points
and derives correlation and regularities of oxygen, tempera-
ture, phosphate, nitrate, and silicate in the ocean. The experi-
mental results reveal that the suggested adaptation only
reachesan speedup of 1.2. Vanhalli et al. [65] developed a
parallel row enumerated algorithm for mining frequent colos-
sal closed patterns from high dimensional data. It first prunes
the whole data by removing irrelevant items and transactions
using rowset cardinality table, which determines the closeness
of each subset of transactions. In addition, it uses a hybrid
parallel bottom-up bitset based approach to enumerate the
colossal frequent closed patterns. This approach is fast,
howeverit suffers from the accuracy issue, which may ignore
some relevant patterns due to the preprocessing phase. It also
requires additional parameter to be fixed, represented by a
cardinality threshold. Yu et al. [66] propose the parallel ver-
sion of PrefixSpan on Spark: PrefixSpan-S. It optimizes the
overhead by first loading the data from the Hadoop distributed
file system into the RDDs: Resilient Distributed Datasets, and
then reading the data from RDDs, and save the potential re-
sults back into the RDDs. This approach reaches a good per-
formance with a wise choice of the minimum support thresh-
old. However, it is very sensitive to the data distribution.
Kuang et al. [67] proposed the parallel implementation of
FP-Growth algorithm in Hadoop by removing the data redun-
dancy between the different data partitions, which allows to
handle the transactions in a single pass. Sumalatha et al. [68]

introduces the concept of distributed temporal high utility se-
quential patterns, and propose an intelligent strategy by creat-
ing a time interval utility data structure for evaluating the
candidate patterns. The authors also defined two utility upper
bounds, remaining utility, and co-occurrence utility to prune
the search space.

To improve the runtime performance of the pattern mining
approaches, several strategies have been proposed using
metaheuristics, specifically exploiting evolutionary and/or
swarm intelligence approaches [13, 14, 69, 70]. However,
these optimizations are inefficient when dealing with large
and big transactional databases where only few number of
interesting patterns are discovered. To deal with this challeng-
ing issue, the next section presents a new framework, which
investigates both decomposition techniques and distributed
computing in solving pattern mining algorithms.

4 DT-DPM: decomposition transaction
for distributed pattern mining

This section presents the DT-DPM (Decomposition Transaction
for Distributed Pattern Mining) framework, that integrates the
DBSCAN: Density-Based Spatial Clustering of Applications
with Noise algorithm and distributed computing represented
by MapReduce, CPU multi-cores and Single CPU for solving
pattern mining problems. As seen in Fig. 1, the DT-DPM
framework uses heterogeneous distributed computing and de-
composition techniques for solving pattern mining problems.
Detailed explanation of the DT-DPM framework, step by step,
is given in the following.

4.1 DBSCAN

The aim of this step is to divide a database into a collection of
homogeneous groups using decomposition techniques, where
each group shares entries highly correlated, i.e., the database
entries of each group share maximum number of items com-
pared to the entries of the other groups.

Definition 13A databaseD is decomposed into several groups
G = {Gi}, where each group Gi is subset of rows inD such as
Gi ∪Gj =∅. We define, I Gið Þ, the set of items of the groupGi

by

I Gið Þ ¼ ⋃I D j
� �

=D j∈Gi
� � ð11Þ

Proposition 1 Suppose that the groups in G share any items
which means

∀ Gi;Gj
� �

∈G2; ∨i≠ j; I Gið Þ∩I Gj
� � ¼ ∅ ð12Þ

2651A general-purpose distributed pattern mining system



We have the following proposition

L ¼ ⋃
k

i¼1
Li

� �
ð13Þ

Note that Pi is the set of the relevant patterns of the group
Gi.

From the above proposition, one may argue that if the
whole transactions in the database are decomposed in such a
way, the independent groups will be derived. It means that,
any group of transactions share items with any other group,
and therefore, the groups could be solved separately.
Unfortunately, such case is difficult to realize, as many depen-
dencies may be observed between rows. The aim of the de-
composition techniques is to minimize the separator items
between the groups such as

G* ¼ Garg min j⋃ I Gið Þ∩I Gj
� �� �j ð14Þ

The aim of the decomposition step is to minimize the
shared items between the different clusters, these shared items
are called Separator Items. More formally, this decomposition
generates a labeled non-directed graph weighted noted G = <
C, S> where C is the set of nodes formed by the clusters of G
and S is the set of the separator items. Each element sij in S
contains two components: i) sijl , is the label of the element sij, it
is represented by the set of items shared by the clusters Ci and
Cj. ii)sijw is the weight of the element sij, it is represented by the
number of items shared by the cluster Ci and Cj. As a result, k

disjoint partitions P = {P1, P2,…, Pk}, where Pi∩ Pj =∅,
∀(i, j) ∈ [1,…, k]2 and ⋃ki¼1Pi ¼ T . The partitions are con-
structed by minimizing the following function

∑
k

i¼1
∑
k

j¼1
∑
jPij

l¼1
2G

l
i−1

� 	
− ∑

jP jj

l¼1
2G

l
j−1

� 	 ! !
ð15Þ

Solving this equation by exact solver requires high
computational time. One way to solve this issue is to
use clustering algorithms [71]. The adaptation of the
DBSCAN [72] clustering algorithms has been investi-
gated in this research. Before this, some definitions are
given as follows.

Definition 14 (transaction-based similarity) We define
Transaction-based similarity by an adopted Jaccard similarity
[73] as

JD DiD j
� � ¼ ∑x∈ Di∩D jð ÞSim Di;D j; x

� �
jDij þ jD jj þ ∑x∈ Di∩D jð ÞSim Di;D j; x

� � ð16Þ

Sim Di;D j; x
� � ¼ 1 if xi ¼ x j

0 otherwise

�
ð17Þ

Note that xi is the value of the variable x in the row dataDi.

Definition 15 (centroids)We define the centroids of the group

of rows data Gi, noted Gi by

Fig. 1 DT-DPM framework

2652 A. Belhadi et al.



Gi ¼ ⋃max
xl

xil
� �jxl∈X Gið Þ

� �
ð18Þ

where max
xl

xil
� �

is the most value of the variable xl in the group

Gi.

Definition 16 (clause neighborhoods)We define the neighbor-
hoods of a row data Di for a given threshold ϵ, notedNDi by

NDi ¼ D jjJ D DiD j
� �

≥ϵ∨ j≠i
� � ð19Þ

Definition 17 (core data) A row data Di is called core data if
there is at least the minimum number of rows data σD such as
jN Di j≥σD

Algorithm 1 presents the pseudo-code of the decomposi-
tion for the rows data. The process starts by checking the ϵ-
neighborhood of each transaction. The core transactions are
determined and then iteratively collects density-reachable
transactions from these core transactions directly, which may
involve merging a few density-reachable clusters. The process
terminates when no new transactions can be added to any
cluster. The output of the decomposition step is a labeled
non-directed graph weighted noted O = <G, S> where G is
the set of nodes formed by the groups of the rows data and S is
the set of the separator items. Each element sij in S contains

two components: i) sijl , is the label of the element sij, it is

represented by the set of variables by the groups Gi and Gj.
ii)sijw is the weight of the element sij, it is represented by the
number of variables shared by the group Gi and Gj.

4.2 Mining process

After applying the DBSCAN algorithm on the whole data, the
next step is to solve each resulted cluster independently using

heterogeneous machines such as supercomputers, CPU cores,
and single CPU core. The question that should be answered
now is, which cluster should be assigned to which machine?
We know that supercomputers are most powerful than CPU
cores and single CPU. Obviously, clusters with high workload
are assigned to supercomputer, the remaining clusters are
assigned to CPU cores, and the noise data are assigned to a
single CPU. This raises the following proposition,

Proposition 2 Consider a function Cost(A, m, n), that com-
putes the complexity cost of the given pattern mining algo-
rithmA. Consider the output of the DBSCAN algorithmO =
<G, S>, the mining process by A of the clusters could be
performed in parallel by using heterogeneous machines ac-
cording to the density of each cluster Gi represented by
jGij; I Gið Þð Þ, and with a complexity cost threshold μcost as

1. If Cost (A, ∣Gi∣, I Gið Þ ) ≥ μcost then send Gi to
MapReduce framework.

2653A general-purpose distributed pattern mining system



2. If Cost (A, ∣Gi∣, I Gið Þ ) < μcost then send Gi to CPU
cores.

Map and reduce Each mapper Mi first recuperates the
assigned cluster Gi. It then processes the transactions of the
clusterGi, and applies the mining process for each transaction.
Gradually, it creates a set of candidate patterns Ci. When Mi

scans all transactions of the clusterGi, it sends Ci to the reduc-
er Ri. The reducer Ri scans the candidate patterns Ci, and
computes the local support of each pattern belong to Ci. This
allows to create the local hash table LHMRi .

CPU cores The CPU cores solve clusters having complexity
cost less than μcost, where each CPU core deal with one cluster
of transactions, where it applies sequentially the given pattern
mining algorithm A on the assigned cluster. The result is
stored in the local hash table called LHCPUi .

Single CPU The noise transactions resulted by applying
DBSCAN are solved separately in a single CPU. The gener-
ated noises are merged into a small transactions, where the
sequential process is applied on it. Again, as result, a local
hash table called LHnoise is stored

Merging The merging step is then performed to determine the
global support of all patterns and extract all relevant patterns
from the global hash table GH. This step considers the set of
separator items S as wellas the clusters in the mining process.
This allows to discover all relevant patterns from the whole
transactions. The possible candidate patterns are then gener-
ated from the separator items. For each generated pattern, the
aggregation function (see Definition 2) is then used to deter-
mine the interestingness of this pattern in the whole transac-
tional database. Note that, the interestingness depends on the
problem. For instance, if we are interested to deal with a fre-
quent itemset mining problem, the interestingness function
should be the support measure. The relevant patterns of the
separator items are then concatenated with the local hash ta-
bles LH to derive the global relevant patterns of the whole
transactional database, noted GH.

Definition 18 Let us define an aggregation function of the
pattern p in the clusters of the transactions C by

A pð Þ ¼ ∑
k

i¼1
Interestingness Gi; I Gið Þ; pð Þ ð20Þ

DT-DPM improves the sequential version of the pattern
mining algorithms by exploiting heterogeneous machines
while generating and evaluating the candidate patterns. The
load balancing is automatically conducted since the transac-
tions are assigned to the workers using decomposition step.

Workers including (mappers, CPU cores, and single CPU) can
process transactions independently and stored the results into
the local hash tables. The merging step is finally performed on
the local hash tables and extract and extract the set of all
frequent patterns by dealing with the separator items using
the aggregation function.

5 Performance evaluation

Extensive experiments were carried out to evaluate the DT-
DPM framework. Five case studies were investigated by con-
sidering the FIM, WIM, UIM, HUIM, and SPM problems.
DT-DPM is integrated on the SPMF data mining library
[74]. It offersmore than 150 pattern mining algorithms. DT-
DPM java source code is integrated on the five best pattern
mining algorithms in terms of time complexity [8]: i) frequent
itemset mining: PrePost+ [75], ii) weighteditemset mining:
WFIM [27], iii) uncertain high utility itemset mining: U-
Apriori [76], iv) high utility itemset mining: EFIM [37], and
v) sequential pattern mining: FAST [42]. All experiments
were run on a computer with an Intel core i7 processor running
Windows 10 and 16 GB of RAM.

5.1 Dataset description

Experiments were run on well-known pattern mining large
and big databases. Table 1 presents the characteristics of the
large databases used in the experiments. Moreover, three very
large databases have been used to evaluate the patternmining
approaches:

1. Webdocs1 It is created from a set of links among html
documents available on the Web. It contains 1,692,082
transactions with 526,765 different items. The maximum
number of items per transactions of this database is
70,000 with 1.48 GB as database size [77].

2. Twitter2 It is dataset related to user tweets. It contains
41.7 million user profiles, 1.47 billion social relations,
4,262 trending topics, and 106 million tweets [78].

3. NewYorkTimes3 It consists of over 1.8 million newspa-
per articles published among twenty years.

In addition, an IBM Synthetic Data Generator for Itemsets
and Sequences4 is used to generate big databases of different
number of items and different number of transactions.

1 http://fimi.ua.ac.be/data/webdocs
2 http://an.kaist.ac.kr/traces/WWW2010.html
3 http://corpus.nytimes.com/
4 https://github.com/zakimjz/IBMGenerator

2654 A. Belhadi et al.

http://fimi.ua.ac.be/data/webdocs
http://an.kaist.ac.kr/traces/WWW2010.html
http://corpus.nytimes.com/
https://github.com/zakimjz/IBMGenerator


5.2 Decomposition performance

The first experiment aims at evaluating the clustering step.
Several tests have been performed on the k-means algorithm
to fix the number of clusters k. Figures 2 and 3 present both the
quality of obtained clusters measures by the percentage of
separator items and the runtime performance in seconds using
the twelve databases mentioned above. By varying with the
number of clusters from 2 to 20, the percentage of the separa-
tor items is reduced. Thus, when tk is set to 2, the percentage
of the separator items exceeds 50%, while this percentage
does not reach 1% when setting the number of clusters is set
to 20 for almost databases. Moreover, by increasing the num-
ber of clusters, the runtimeincreases linearly, where it does not
reach 2.50 seconds for all databases. As a result, we fix the
number of clusters to 20 for the remaining of the experimen-
tation. Given such results we can conclude that the pre-
processing step does not influence on the overall performance
of the DT-DPM framework, in particular for very large and big
databases.

Figure 3 presents the runtime performance of the pattern
mining algorithms with and without the DT-DPM framework
for both strategies (approximate and exact) using different da-
tabases and with different mining thresholds. Experimental
results reveal that by reducing the mining threshold and in-
creasing the complexity of the problem solved, the pattern
mining algorithms benefits from the DT-DPM framework.
Therefore, for a small value of mining threshold and for more
complex problem like UIM, HUIM or SPM, the approximate-
based and exact-based strategies outperform the original pat-
tern mining algorithms. For instance, when the minimum util-
ity threshold is set to 1600 K, the runtime of original EFIM and
EFIM using the DT-DPM framework is 1 s on Connect data-
base. However, when setting the minimum utility to 1000 K,
the runtime of original EFIM exceeds 8,000 seconds, and the
runtime of EFIM with DT-DPM framework does not reach

1,500 seconds. These results are obtained thanks to many fac-
tors: i) the decomposition method applied in the DT-DPM
framework by minimizing the number of separator items, ii)
solving sub-problems with small number of transactions and
small number of items, instead of dealing the whole transac-
tional database with the whole distinct items, and iii) the ability
of the pattern mining algorithms to be integrated with the DT-
DPM framework.

5.3 Speedup of DT-DPM

Table 2 presents the speedup of the pattern mining algorithms
with and without using the DT-DPM framework on the large
databases. The results reveal that by increasing the number of
mappers and the increasing the complexity of the problem
solved, the speedup of the pattern mining algorithms benefits
from the DT-DPM framework. Thus, for a large number of
mappers, and for a more complex problem like UIM, HUIM
or SPM, the mining process with DT-DPM outperform the

�

�
�

�

�

�
� �

�
�

�
�

�

�

�

�

�

� �

�

�
�

�

�

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

0

10

20

30

40

50

60

70

80

90

100

Database

%
 S

ep
ar

at
or

 It
em

s

�

kmeans
DBSCAN
Intuitive

Fig. 2 Percentage(%) of separator items of the decomposition using
different clustering algorithms on the following databases: D1: pumsb,
D2: mushroom, D3: connect, D4: chess, D5: accident, D6: korasak, D7:
foodmart, D8: chainstore, D9: leviathan, D10: sign, D11: snack, andD12:
FIFA

Table 1 Large databases
Problem Data set Data set ∣D∣ ∣I∣ Avg. Size/

Type Name Avg. Seq. Size

Dense Accident 340,183 468 33.8

Dense Chess 3196 75 37.0

Dense Connect 67,557 129 43.0

FIM, WIM, Dense Mushroom 8124 119 23.0

UIM, HUIM Dense Pumsb 49,046 2113 74.0

Very Sparse Korasak 990,000 41,270 8.1

Sparse Foodmart 4141 1559 4.4

Very Sparse Chainstore 1,112,949 46,086 7.2

Book Leviathan 5834 9025 33.81

SPM Language Sign 730 267 51.99

Protein Snack 163 20 60

Web Stream FIFA 20,450 2990 34.74

2655A general-purpose distributed pattern mining system



original pattern mining algorithms. For instance, when the
number of mappers set to 2, the speedup of the original
PrePost+ and PrePost using the DT-DPM framework is less
than 5 in the pumsb database. However, by setting the number
of mappers to 32, the speedup of the original EFIM does not
reach 8630, and the speedup of the EFIM with DT-DPM
framework exceeds 800 on Connect database. These results
are achieved thanks to the following factors, i) The decompo-
sition method applied to the DT-DPM framework by

minimizing the number of theseparator items, and ii)
Solving the sub-problems with small number of transactions
and small number of items using the Mapreduce architecture.

5.4 DT-DPM Vs state-of-the-art algorithms

Figures 4 presents the speedup of DT-DPM against the base-
line pattern mining algorithms (FiDoop-DP [15] for FIM,
PAWI: Parallel Weighted Itemsets [16] for WIM,

�

�

� �

�

�

D1 D2 D3 D4 D5 D6

0

10

20

30

40

50

60

70

80

90

100

Database

ru
nt

im
e(

se
c)

�

PrePost+
PrePost+(kmeans)

� �
� �

�

� �

�

D1 D2 D3 D4 D5 D6 D7 D8

0

50

100

150

200

250

Database

ru
nt

im
e(

se
c)

�

WFIM
WFIM(kmeans)

WIMFIM

�
�

� �

�

�
�

�

D1 D2 D3 D4 D5 D6 D7 D8

0

50

100

150

200

250

300

Database

ru
nt

im
e(

se
c)

�

U−Apriori
U−Apriori(kmeans)

� � � � �
�

�

�

D1 D2 D3 D4 D5 D6 D7 D8

0

300

600

900

1200

1500

1800

Database

ru
nt

im
e(

se
c)

�

EFIM
EFIM(kmeans)

HUIMUIM

�

�
� �

D1 D2 D3 D4

0

50

100

150

200

250

300

350

Database

ru
nt

im
e(

se
c)

�

FAST
FAST(kmeans)

SPM
Fig. 3 Runtime (seconds) of pattern mining algorithmwithout andwith decomposition step on the following databases: D1: pumsb, D2: mushroom, D3:
connect, D4: chess, D5: accident, D6: korasak, D7: foodmart, D8: chainstore, D9: leviathan, D10: sign, D11:snack, and D12: FIFA

2656 A. Belhadi et al.



MRGrowth: MapReduce for FP-Growth [17] for UIM, PHI-
Miner: Parallel High utility Itemset Miner [55] for HUIM, and
MG-FSM: Mind the Gap for Frequent Seauence Mining [18]
for SPM) using the big databases, and setting the mining
threshold to10% for Webdocs, 5% for Twitter and 2% for
NewYorkTimes database. The results reveal that by increasing
the percentage of transactions from 5% to 100% and increas-
ing the complexity of the problem solved, DT-DPM
outperformed the baseline pattern mining algorithms and ben-
efits from the intelligent partition of the transactional database
and the intelligent mapping of the different clusters into the

mapper nodes. For instance, the speedup of our framework is
701 on Webdocs whereas the speedup of FiDoop-DP is 521.
On the other hand, for mining the speedup of our framework
on NewYorkTimes is 1325 whereas the speedup of MG-FSM
does not exceed 900.

5.5 Results on big databases

Figures 5 present the runtime of DT-DPM and both baseline
MapReduce based models using big databases for solving
both Itemset and Sequential Pattern Mining problems. The

Table 2 Speedup of pattern mining algorithms with and without using DT-DPM framework using different mappers (2, 4, 8, 16, 32)

Problem Database Without DT-DPM With DT-DPM

Mappers 2 4 8 16 32 2 4 8 16 32

pumsb 2 3 7 11 34 5 9 15 19 35

mushroom 3 8 10 13 36 6 11 19 22 39

FIM: connect 5 10 12 15 39 10 15 19 26 45

PrePost+ chess 9 12 14 16 41 13 18 23 29 52

accident 12 16 20 22 45 19 23 29 36 66

korasak 2 2 5 9 11 3 4 6 10 14

pumsb 4 8 11 14 37 9 12 19 22 41

mushroom 7 10 12 15 39 11 15 23 28 49

connect 11 14 18 21 45 19 23 29 35 57

WIM: chess 13 18 23 29 49 23 31 39 44 62

WFIM accident 29 35 52 59 68 35 47 63 74 88

korasak 2 4 6 8 13 5 8 10 13 19

foodmart 3 5 9 11 14 6 9 12 15 22

chainstore 33 39 55 66 75 36 51 66 79 95

pumsb 3 9 12 16 39 11 13 18 23 43

mushroom 5 8 10 14 33 7 8 15 23 42

connect 15 17 21 25 48 23 29 36 45 59

UIM: chess 16 19 25 33 52 18 26 31 46 72

WFIM accident 30 39 55 66 75 42 52 69 79 90

korasak 3 7 10 12 18 6 12 19 25 32

foodmart 4 7 12 16 20 9 14 21 29 38

chainstore 41 55 67 81 99 57 66 81 98 117

pumsb 51 76 91 105 133 69 91 111 142 163

mushroom 32 49 60 71 82 36 55 71 89 101

connect 161 245 367 415 629 254 338 459 510 801

HUIM: chess 44 59 80 85 91 49 60 88 96 104

EFIM accident 79 127 163 198 300 121 201 293 368 411

korasak 23 35 44 60 68 28 47 52 73 86

foodmart 8 15 27 33 43 15 32 44 53 63

chainstore 48 72 88 94 100 58 84 106 127 135

leviathan 19 36 52 82 103 32 44 69 99 125

SPM: sign 41 78 93 105 119 55 86 118 133 151

FAST snack 39 70 90 99 108 50 78 110 145 173

FIFA 60 92 117 136 175 90 109 142 178 213

The values in bold represent the best values obtained during the the experiment

2657A general-purpose distributed pattern mining system



FIM(Webdocs)

5 10 20 50 80 100

% Transactions

0

100

200

300

400

500

600

700

800

900

sp
ee

du
p

DT-DPM
FiDoop-DP

WIM(Twitter)

5 10 20 50 80 100

% Transactions

0

200

400

600

800

1000

1200

sp
ee

du
p

DT-DPM
PAWI

FIM Problem (Webdocs) WIM Problem (Twitter)

UIM(Twitter)

5 10 20 50 80 100

% Transactions

0

200

400

600

800

1000

1200

1400

sp
ee

du
p

DT-DPM
MRGrowth

HUIM(Twitter)

5 10 20 50 80 100

% Transactions

0

200

400

600

800

1000

1200

1400

sp
ee

du
p

DT-DPM
PHI-Miner

UIM Problem (Twitter) HUIM Problem (Twitter)

SPM(NewYorkTimes)

5 10 20 50 80 100

% Transactions

0

200

400

600

800

1000

1200

1400

1600

sp
ee

du
p

DT-DPM
MG-FSM

SPM Problem (NewYorkTimes)

Fig. 4 Speedup of DT-DPM and the state-of-the-art parallel pattern mining algorithms using big databases

2658 A. Belhadi et al.



0 10 20 30 40 50 60 70 80 90 100

# Items X 10,000

0

50

100

150

200

250

300

350

400

450

R
un

tim
e(

se
c)

# Transactions=1M
DT-DPM
FiDoop-DP
NG-PFP

0 10 20 30 40 50 60 70 80 90 100

# Items X 10,000

0

50

100

150

200

250

300

350

400

450

R
un

tim
e(

se
c)

# Transactions=2M
DT-DPM
FiDoop-DP
NG-PFP

0 10 20 30 40 50 60 70 80 90 100

# Items X 10,000

0

50

100

150

200

250

300

350

400

450

500

550

R
un

tim
e(

se
c)

# Transactions=5M
DT-DPM
FiDoop-DP
NG-PFP

0 10 20 30 40 50 60 70 80 90 100

# Items X 10,000

0

50

100

150

200

250

300

350

400

450

500

550

R
un

tim
e(

se
c)

# Transactions=10M
DT-DPM
FiDoop-DP
NG-PFP

IBM Synthetic Data Generator for Itemsets

0 10 20 30 40 50 60 70 80 90 100

# Items X 10,000

0

50

100

150

200

250

R
un

tim
e(

se
c)

# Transactions=1M
DT-DPM
PrefixSpan-S

0 10 20 30 40 50 60 70 80 90 100

# Items X 10,000

0

50

100

150

200

250

300

350

R
un

tim
e(

se
c)

# Transactions=2M
DT-DPM
PrefixSpan-S

0 10 20 30 40 50 60 70 80 90 100

# Items X 10,000

0

50

100

150

200

250

300

350

R
un

tim
e(

se
c)

# Transactions=5M
DT-DPM
PrefixSpan-S

0 10 20 30 40 50 60 70 80 90 100

# Items X 10,000

0

50

100

150

200

250

300

350

400

R
un

tim
e(

se
c)

# Transactions=10M
DT-DPM
PrefixSpan-S

IBM Synthetic Data Generator for Sequences
Fig. 5 Comparison of the Runtime of the DT-DPM and the baseline parallel-based pattern mining algorithms using big databases

2659A general-purpose distributed pattern mining system



baseline methods used is FiDoop-DP [15], and NG-PFP:
NonGroup Parallel Frequent Pattern mining [67] for itemset
mining, and PrefixSpan-S [66] for sequence mining. The re-
sults reveal that our model outperforms the baseline
MapReduce based models in terms of computational time
for both itemset and sequence mining. These results have been
carried out whatever the number of items, and the number of
transactions.Moreover, when the number of items varied from
10,000 to 1 million, and the number of transactions from 1
millionto 10 million, the ratio of runtimes between our model
and the baseline models is increased. All these results are
obtained thanks to, i) the k-means algorithm which minimizes
the number of shared items, and ii) the efficient hybrid parallel
processing of MapReduce, and the Multi CPU cores, which
takes into account the information extracted during the de-
composition step.

6 Conclusion

A novel distributed pattern mining framework called DT-
DPM is proposed in this paper. DT-DPM aims to derive rele-
vant patterns on big databases by studying the correlations
within the transactional database and exploring heterogeneous
architectures. The set of transactions are first grouped using a
clustering approach, where transactions close to each other are
assigned to the same cluster. For each cluster of transactions,
the pattern mining algorithm is launched in order to discover
the relevant patterns. DT-DPM solves the issue of cluster’s
size by incorporating heterogeneous computing such as single
CPU, CPU cores, and MapReduce. Thus, the noise transac-
tions are assigned to the single CPU core, the micro clusters
are assigned to CPU cores, and dense clusters are assigned to
the MapReduce reduce architecture. Experimental evaluation
of DT-DPMwas integrated on the SPMF tool, where five case
studies have been shown (FIM, WIM, UIM, HUIM and
SPM). The results reveal that by using DT-DPM, the scalabil-
ity performance of pattern mining algorithms have been im-
proved on large databases. Moreover, DT-DPM outperforms
the baseline pattern mining algorithms on big databases.
Motivated by the promising results shown in this paper, we
plan to boost the performance ofDT-DPM and apply it on big
data mining applications such as twitter analysis, smart build-
ing applications, and other large-scale applications.

Funding Information Open Access funding provided by NTNU
Norwegian University of Science and Technology (incl St. Olavs
Hospital - Trondheim University Hospital).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included

in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. H. Belhadi, K. Akli-Astouati, Y. Djenouri, and J. C.-W. Lin Data
mining-based approach for ontology matching problem. Appl
Intell, pp. 1–18

2. Djenouri Y, Belhadi A, Fournier-Viger P (2018) Extracting useful
knowledge from event logs: a frequent itemset mining approach.
Knowl-Based Syst 139:132–148

3. Djenouri Y, Belhadi A, Belkebir R (2018) Bees swarm optimization
guided by data mining techniques for document information re-
trieval. Expert Syst Appl 94:126–136

4. Djenouri Y, Djamel D, Djenoouri Z (2017) Data-mining-based de-
composition for solving MAXSAT problem: towards a new ap-
proach. IEEE Intell Syst, vol. In press, pp. 1–15

5. He Z, Zhang S, Gu F, Wu J (2019) Mining conditional discrimina-
tive sequential patterns. Inf Sci 478:524–539

6. Choi H-J, Park CH (2019) Emerging topic detection in twitter
stream based on high utility pattern mining. Expert Syst Appl
115:27–36

7. Djenouri D, Laidi R, Djenouri Y, Balasingham I (2019) Machine
learning for smart building applications: Review and taxonomy.
ACM Comput Surv (CSUR) 52(2):24

8. Fournier-Viger P, Lin JC-W, Vo B, Chi TT, Zhang J, Le HB (2017)
A survey of itemset mining. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery (4):7, e1207

9. Aggarwal CC, Han J (2014) Frequent pattern mining. Springer
10. Goethals B (2003) Survey on frequent pattern mining. Univ Hels

19:840–852
11. Mabroukeh NR, Ezeife CI (2010) A taxonomy of sequential pattern

mining algorithms. ACM Comput Surv (CSUR) 43(1):3
12. Hsieh Y-H, Chen C-C, Shuai H-H, Chen M-S (2018) Highly par-

allel sequential pattern mining on a heterogeneous platform. in
IEEE International Conference on Data Mining, pp. 1037–1042

13. Zhang L, Fu G, Cheng F, Qiu J, Su Y (2018) A multi-objective
evolutionary approach for mining frequent and high utility itemsets.
Appl Soft Comput 62:974–986

14. Djenouri Y, Comuzzi M (2017) Combining apriori heuristic and
bio-inspired algorithms for solving the frequent itemsets mining
problem. Inf Sci 420:1–15

15. Xun Y, Zhang J, Qin X, Zhao X (2017) FiDoop-DP: data
partitioning in frequent itemset mining on hadoop clusters. IEEE
Transactions on Parallel and Distributed Systems 28(1):101–114

16. Baralis E, Cagliero L, Garza P, Grimaudo L (2015) Pawi: Parallel
weighted itemset mining by means of mapreduce, in IEEE
International Congress on Big Data, pp. 25–32

17. Leung CK-S, Hayduk Y (2013) Mining frequent patterns from
uncertain data with mapreduce for big data analytics, in
International Conference on Database Systems for Advanced
Applications, pp. 440–455

18. Miliaraki I, Berberich K, Gemulla R, Zoupanos S (2013) Mind the
gap: Large-scale frequent sequence mining, in ACM SIGMOD
International Conference on Management of Data, pp. 797–808

19. Djenouri Y, Lin JC-W, Nørvåg K, Ramampiaro H (2019) Highly
efficient pattern mining based on transaction decomposition, in

2660 A. Belhadi et al.

http://creativecommons.org/licenses/by/4.0/


IEEE International Conference on Data Engineering, pp. 1646–
1649

20. Fournier-Viger P, Zhang Y, Lin JC-W, Fujita H, Koh YS (2019)
Mining local and peak high utility itemsets. Inf Sci 481:344–367

21. Yun U, Kim D, Yoon E, Fujita H (2018) Damped window based
high average utility pattern mining over data streams. Knowl-Based
Syst 144:188–205

22. Agrawal R, Imieliński T, Swami A (1993) Mining association rules
between sets of items in large databases. ACM SIGMOD Rec
22(2):207–216

23. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candi-
date generation. ACM SIGMOD Rec 29(2):1–12

24. Zhao X, Zhang X, Wang P, Chen S, Sun Z (2018) A weighted
frequent itemset mining algorithm for intelligent decision in smart
systems. IEEE Access 6:29 271–29 282

25. Yun U, Leggett JJ (2005)WFIM: weighted frequent itemset mining
with a weight range and a minimum weight. in SIAM International
Conference on Data Mining, pp. 636–640

26. YunU (2007) Efficient mining of weighted interesting patterns with
a strong weight and/or support affinity. Inf Sci 177(17):3477–3499

27. Yun U (2009) On pushing weight constraints deeply into frequent
itemset mining. Intelligent Data Analysis 13(2):359–383

28. Le N-T, Vo B, Nguyen LB, Fujita H, Le B (2019) Mining weighted
subgraphs in a single large graph. Inf Sci 514:149–165

29. Lee G, Yun U, Ryu KH (2017) Mining frequent weighted itemsets
without storing transaction ids and generating candidates.
International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 25(01):111–144

30. Li H, Zhang N, Zhu J,Wang Y, Cao H (2018) Probabilistic frequent
itemset mining over uncertain data streams. Expert Syst Appl 112:
274–287

31. Lee G, Yun U, Ryang H (2015) An uncertainty-based approach:
frequent itemset mining from uncertain data with different item
importance. Knowl-Based Syst 90:239–256

32. Liaqat M, Khan S, Younis MS, Majid M, Rajpoot K (2019)
Applying uncertain frequent pattern mining to improve ranking of
retrieved images. Appl Intell 49(8):2982–3001

33. Lee G, YunU (2017) A new efficient approach for mining uncertain
frequent patterns using minimum data structure without false posi-
tives. Futur Gener Comput Syst 68:89–110

34. Chan R, YangQ, and ShenY-D (2003)Mining high utility itemsets,
in IEEE International Conference on Data mining, pp. 19–26

35. Liu Y, Liao W-k, and Choudhary A (2005) A two-phase algorithm for
fast discovery of high utility itemsets, in Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pp. 689–695

36. Lin C-W, Hong T-P, Lu W-H (2011) An effective tree structure for
mining high utility itemsets. Expert Syst Appl 38(6):7419–7424

37. Zida S, Fournier-Viger P, Lin JC-W, Wu C-W, Tseng VS (2017)
EFIM: a fast andmemory efficient algorithm for high-utility itemset
mining. Knowl Inf Syst 51(2):595–625

38. Liu J,Wang K, and Fung BC (2012) Direct discovery of high utility
itemsets without candidate generation, in IEEE International
Conference on Data Mining, pp. 984–989

39. Singh K, Singh SS, Kumar A, Biswas B (2019) TKEH: an efficient
algorithm for mining top-k high utility itemsets. Appl Intell 49(3):
1078–1097

40. Gan W, Lin JC-W, Chao H-C, Fujita H, Philip SY (2019)
Correlated utility-based pattern mining. Inf Sci 504:470–486

41. Lee J, Yun U, Lee G, Yoon E (2018) Efficient incremental high
utility pattern mining based on pre-large concept. Eng Appl Artif
Intell 72:111–123

42. Salvemini E, Fumarola F, Malerba D, and Han J (2011) Fast se-
quence mining based on sparse id-lists, in International Symposium
on Methodologies for Intelligent Systems, pp. 316–325

43. Fumarola F, Lanotte PF, Ceci M, Malerba D (2016) CloFAST:
closed sequential pattern mining using sparse and vertical id-lists.
Knowl Inf Syst 48(2):429–463

44. Van T, Vo B, Le B (2018) Mining sequential patterns with itemset
constraints. Knowl Inf Syst 57(2):311–330

45. Orakzai F, Calders T, Pedersen TB (2019) k/2-hop: fast mining of
convoy patterns with effective pruning. Proceedings of the VLDB
Endowment 12(9):948–960

46. Wu R, Li Q, Chen X (2019) Mining contrast sequential pattern
based on subsequence time distribution variation with discreteness
constraints. Appl Intell 49(12):4348–4360

47. Djenouri Y, Belhadi A, Lin J, Cano A (2019) Adapted k nearest
neighbors for detecting anomalies on spatio-temporal traffic flow.
IEEE Access 7:10 015–10 027

48. Belhadi A, Djenouri Y, Lin JC-W, Djenouri D, and Cano A (2020)
A GPU-based two phase algorithm for identifying taxi frauds, IEEE
Access, vol. In Press, pp. 1–14

49. Belhadi A, Djenouri Y, Lin JC-W, Zhang CC, Cano A (2020)
Exploring pattern mining algorithms for hashtag retrieval problem.
IEEE Access 8:10 569–10 583

50. Han E-H, Karypis G, Kumar V (2000) Scalable parallel data mining
for association rules. IEEE Trans Knowl Data Eng 12(3):337–352

51. Zaki MJ (1999) Parallel and distributed association mining: a sur-
vey. IEEE Concurr 7(4):14–25

52. Wu X, Zhu X,Wu G-Q, DingW (2014) Data mining with big data.
IEEE Trans Knowl Data Eng 26(1):97–107

53. Cano A (2018) A survey on graphic processing unit computing for
large-scale data mining. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 8(1):e1232

54. Djenouri Y, Djenouri D, Belhadi A, CanoA (2019) ExploitingGPU
and cluster parallelism in single scan frequent Itemset mining. Inf
Sci 496:363–377

55. Chen Y, An A (2016) Approximate parallel high utility itemset
mining. Big data research 6:26–42

56. Moens S, Aksehirli E, and Goethals B (2013) Frequent itemset
mining for big data, in IEEE International Conference on Big
Data, pp. 111–118

57. Jian L, Wang C, Liu Y, Liang S, Yi W, Shi Y (2013) Parallel data
mining techniques on graphics processing unit with compute uni-
fied device architecture (CUDA). J Supercomput 64(3):942–967

58. Djenouri Y, Bendjoudi A, Mehdi M, Nouali-Taboudjemat N,
Habbas Z (2015) GPU-based bees swarm optimization for associ-
ation rules mining. J Supercomput 71(4):1318–1344

59. Djenouri Y, Bendjoudi A, Habbas Z, Mehdi M, Djenouri D (2017)
Reducing thread divergence in gpu-based bees swarm optimization
applied to association rule mining. Concurrency and Computation:
Practice and Experience 29(9)

60. Li Y, Xu J, Yuan Y-H, and Chen L (2017) A new closed frequent
itemset mining algorithm based on GPU and improved vertical
structure. Concurrency and Computation: Practice and
Experience, vol. 29, no. 6

61. Xun Y, Zhang J, Qin X (2016) FiDoop: parallel mining of frequent
itemsets using mapreduce. IEEE Transactions on Systems, Man,
and Cybernetics: systems 46(3):313–325

62. AndrzejewskiW, Boinski P (2019) Parallel approach to incremental
co-location pattern mining. Inf Sci 496:485–505

63. Andrzejewski W, Boinski P (2018) Efficient spatial co-location
pattern mining on multiple GPUs. Expert Syst Appl 93:465–483

64. Jiang Y, Zhao M, Hu C, He L, Bai H, Wang J (2019) A parallel FP-
growth algorithm onWorld Ocean Atlas data with multi-core CPU.
J Supercomput 75(2):732–745

65. Vanahalli MK, Patil N (2019) An efficient parallel row enumerated
algorithm for mining frequent colossal closed itemsets from high
dimensional datasets. Inf Sci 496:343–362

66. Yu X, Li Q, Liu J (2019) Scalable and parallel sequential pattern
mining using spark. World Wide Web 22(1):295–324

2661A general-purpose distributed pattern mining system



67. Kuang Z-j, Zhou H, Zhou J-p, Yang K et al (2019) A non-group
parallel frequent pattern mining algorithm based on conditional
patterns. Frontiers of Information Technology & Electronic
Engineering 20(9):1234–1245

68. Sumalatha S, Subramanyam R (2020) Distributed mining of high
utility time interval sequential patterns using mapreduce approach.
Expert Syst Appl 141:112967

69. Djenouri Y, Djenouri D, Belhadi A, Fournier-Viger P, Lin JC-W,
Bendjoudi A (2019) Exploiting GPU parallelism in improving bees
swarm optimization for mining big transactional databases. Inf Sci
496:326–342

70. Djenouri Y, Djenouri D, Belhadi A, Lin JC-W, Bendjoudi A, and
Fournier-Viger P (2019) A novel parallel framework for
metaheuristic-based frequent itemset mining, in IEEE Congress
on Evolutionary Computation, pp. 1439–1445

71. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review.
ACM Comput Surv (CSUR) 31(3):264–323

72. Ester M, Kriegel H-P, Sander J, Xu X et al. (1996) A density-based
algorithm for discovering clusters in large spatial databases with
noise, in International Conference on Knowledge Discovery and
Data Mining, vol. 96, pp. 226–231

73. Seifoddini H, Djassemi M (1991) The production data-based sim-
ilarity coefficient versus jaccard’s similarity coefficient. Comput
Ind Eng 21(1–4):263–266

74. Fournier-Viger P, Gomariz A, Gueniche T, Soltani A, Wu C-W,
Tseng VS (2014) SPMF: a Java open-source pattern mining library.
J Mach Learn Res 15(1):3389–3393

75. Deng Z-H, Lv S-L (2015) PrePost+: An efficient N-lists-based al-
gorithm for mining frequent itemsets via children–parent equiva-
lence pruning. Expert Syst Appl 42(13):5424–5432

76. Chui C-K, Kao B, and Hung E (2007) Mining frequent itemsets
from uncertain data,” in Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 47–58

77. Lucchese C, Orlando S, Perego R, and Silvestri F (2004)WebDocs:
a real-life huge transactional dataset, in Frequent Itemset Mining
Implementations, vol. 126

78. Kwak H, Lee C, Park H, and S. Moon (2010) What is Twitter, a
social network or a news media? in International Conference on
World Wide Web, pp. 591–600

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

2662 A. Belhadi et al.


	A general-purpose distributed pattern mining system
	Abstract
	Introduction
	Motivation
	Contributions
	Outline

	Pattern mining problems
	Related work
	DT-DPM: decomposition transaction for distributed pattern mining
	DBSCAN
	Mining process

	Performance evaluation
	Dataset description
	Decomposition performance
	Speedup of DT-DPM
	DT-DPM Vs state-of-the-art algorithms
	Results on big databases

	Conclusion
	References


