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A B S T R A C T   

The paper explores knowledge recombination by analysing how knowledge networks in established technolog
ical fields influenced the formation of the emerging field of green shipping in the period 2007–2018. Previous 
research has demonstrated that embeddedness, proximity, and status are important mechanisms for the evolu
tion of single technological fields. We investigate if these mechanisms also apply across technological fields. By 
employing dynamic social network analysis models, we find that actors transferred knowledge across techno
logical fields through (re)combination mechanisms, which affected the emergence of the new technological field, 
but in different ways. While embeddedness and proximity played an important role, status was less important.   

1. Introduction 

The idea of innovation as a process of tapping into and combining 
existing knowledge is central in the geography of innovation literature. 
In general, knowledge in emerging technological fields is generated to 
solve a specific ‘problem’ (Dosi and Nelson, 2013). Knowledge from 
established technological fields is (re)combined in the development of 
possible ‘solutions’, thereby creating the emerging technological field 
(Antonelli et al., 2020; König et al., 2011). These ‘solutions’ are often 
supported by policy tools (e.g. subsidized R&D), motivated either by 
traditional market-failure arguments relating to underinvestment in 
R&D, or by the need to stimulate knowledge creation in particular 
technological fields that may help to address grand societal challenges 
(Grillitsch et al., 2019; Laranja et al., 2008; Weber and Rohracher, 
2012). 

A wide range of theoretical and empirical research has underlined 
the crucial role of knowledge networks for the evolution of industries 
and technological fields (Balland, 2012; Glückler, 2007; Salavisa et al., 
2012; Ter Wal, 2013). Much of the recent literature incorporates the 
geographical dimension, and is confined to the evolution of knowledge 
networks in single technological fields (Balland et al., 2013; Bauer et al., 
2018; Broekel and Boschma, 2012; Giuliani, 2013; Ter Wal, 2013, 
2014). Similarly, collaboration in emerging technological fields does not 

develop in isolation, but it is likely influenced by prior collaboration 
between organizations in established technological fields. However, 
there is scant evidence for which mechanisms influence the knowledge 
transfer across technological fields, and particularly what role knowl
edge networks in established technological fields play in the formation 
of knowledge networks in new technological fields. 

The present work is an exploratory paper that empirically addresses 
this exact gap in the literature. Our first objective is to analyse how 
knowledge evolves and (re)combines across technological fields and 
over time to contribute to the knowledge network of a new technological 
field. Our second objective is to examine whether and how the mecha
nisms identified as central to knowledge network evolution within single 
fields, also influence evolution across technological fields. Specifically, 
we examine the role of embeddedness, proximity and status (Balland 
et al., 2016) for knowledge network evolution processes within and 
across fields. 

Empirically, we explore the spatial and temporal dynamics of 
knowledge networks underpinning environmental innovation in the 
emerging technological field of ‘green shipping’. By ‘green shipping’, we 
refer to fuels and energy solutions that can reduce or replace the usage of 
fossil fuels in maritime transport. We employ R&D data from the last two 
European framework programmes. In order to capture the (re)combi
natory knowledge development, we analyse projects that have 
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supported the emerging field of ‘green shipping’, as well as established 
fields of alternative fuels that have previously been developed and 
applied in other sectors and that are now used to reduce emissions from 
shipping. 

The remainder of this paper is organized in four sections. In the 
following section we review the literature on the evolution of knowledge 
networks and their role in technological fields, and develop our hy
potheses. In section 3 we present our research design and data, and in 
section 4 we present and analyse our findings. Our conclusions and 
discussion of limitations and future research are presented in section 5. 

2. Literature review 

The generation and diffusion of knowledge is a key element of the 
evolution of technologies (Iammarino and McCann, 2006; Verspagen, 
2007). Emerging technologies require new knowledge, which is created 
from novel (re)combinations of existing knowledge elements (Boschma 
et al., 2012; Grillitsch et al., 2018). Knowledge in emerging technolog
ical fields tends to be sparsely distributed, with no easily identifiable 
communities and with a variety of possible combinations and alterna
tives in knowledge resources (Etzkowitz and Klofsten, 2005; Tanner, 
2016). 

Within evolutionary economic geography, the ways in which econ
omies evolve over time has been premised first and foremost on the 
argument that innovation and new knowledge tends to develop mainly 
on the basis of the existing knowledge base (Boschma and Frenken, 
2006; Cheng, 2012). The argument of related variety and/or diversifi
cation has been underpinned by various studies in which different 
proxies or indicators have been used (e.g. patents, skills, industry clas
sification) for the knowledge structure and how that has developed over 
time (Boschma, 2017). For the emergence of new technological fields, 
knowledge relatedness is necessary; either relatedness defined in terms 
of similarity, when the same knowledge is used in different technolog
ical fields, or in terms of complementarity, when different knowledge 
(re)combine to form new technological fields (Boschma, 2017; Broekel 
and Brachert, 2015). 

Thus, this evolutionary characteristic of knowledge development 
also underpins the path-dependent manner in which economic trajec
tories unfold over time. However, and as argued by Martin and Sunley 
(2010), this does not by default imply path dependence in a constraining 
sense, in which economies become locked-in to industrial paths. Path 
dependence in these terms implies evolution, rather than continuity, 
inertia and consequently lock-in situations (Martin, 2010). Instead, the 
basis for new development paths (path creation) or the renewal or 
reorientation of established industries can be provided either by new 
knowledge that develops on the basis of established knowledge or by 
new combinations of already established knowledge. This shift in 
knowledge path is needed in particular to support a transition from 
unsustainable to sustainable technologies, for instance in the areas of 
energy or transport. Due to the path dependence governing the tech
nological change, (re)combination of knowledge of established “green” 
technological fields can make this technological shift easier to accom
plish (Santoalha and Boschma, 2021; van den Berge et al., 2020). 

Knowledge networks constitute channels and conduits for the 
knowledge transfer across organizations and geographical borders, 
enhancing knowledge diffusion and contributing to the evolution of 
technologies (Owen-Smith and Powell, 2004). The literature on 
knowledge networks focuses extensively on identifying mechanisms 
behind their evolution, taking into consideration different kinds of 
network properties, namely nodal, relational and structural properties 
(Balland et al., 2019; Cassi and Plunket, 2015; Tödtling et al., 2009). As 
explained in detail in sections 2.1-2.3, the main mechanisms identified 
include the embeddedness of an actor in either the social or structural 
context of the network, the proximity of two actors, and the actor’s 
status (popularity), which refers to the relative position of an actor in
side the network (Balland et al., 2016; Giuliani, 2013). While recent 

studies explore these mechanisms in a dynamic way (Balland et al., 
2016; Bauer et al., 2018; Ter Wal, 2014), they are limited to the evo
lution of the knowledge network of a single technological field, sector or 
industry. Therefore, the literature to date has not captured the important 
role of knowledge (re)combination discussed above, although the 
specified mechanisms provide potentially relevant starting points for 
doing so. 

To identify the different technologies, we use the concept of tech
nological fields, which is often used but rarely defined in the literature. 
Here we follow Peine (2009) and define a technological field as a 
“recognized area of technologies in which a specific set of components is 
repeatedly configured into systems.” The concept is thus quite open in 
that a technological field can be broad or narrow in technological var
iants and application domains (Markard et al., 2015). A timely question, 
therefore, is if the same mechanisms – embeddedness, proximity, and 
status – apply to the creation of new knowledge networks and thereby 
underpin the emergence and evolution of technological fields? In the 
following we develop three sets of hypotheses to investigate these 
mechanisms’ function in the (re)combination of knowledge for the 
emergence of new technological fields. 

2.1. Embeddedness 

According to Granovetter (1985) embeddedness can be defined as 
the mechanism whereby the behaviour of economic agents is regulated 
by their ongoing social relations. Embeddedness has positive effects on 
the parties in these relationships, fostering knowledge creation and 
diffusion. Gulati (1998) differentiates between two types of embedd
edness: relational (social) and structural. Social embeddedness concerns 
the characteristics of the relationships on which the agents base their 
behaviour. In early literature, social embeddedness is expressed through 
the notion of strong ties (Granovetter, 1973; Krackhardt et al., 2003; 
Rost, 2011). Strong ties refer to repeated collaborations and interactions 
on the basis of inter-organizational trust, thus enabling knowledge 
transfer (Ahuja et al., 2012; Tsouri, 2019). The long-term creation of 
strong ties, apart from the benefits of enhancing trust and therefore 
knowledge transfer, may result in a densely connected network, which 
does not allow new external knowledge to be introduced (Fritsch and 
Kauffeld-Monz, 2010). To avoid this type of knowledge lock-in, actors 
obtain new knowledge through relationships with actors outside the 
densely connected part of the network. The characteristics of this rela
tional network structure are referred to as structural embeddedness. 
Structural embeddedness formalizes the notions of weak ties (Gran
ovetter, 1973) and structural holes (Burt, 2009); whereas weak ties are a 
relational element of actors loosely connected to the dense network core, 
structural holes refer to network ties as means of linking actors of 
separate network parts (Burt, 2009; Fritsch and Kauffeld-Monz, 2010; 
Wen et al., 2021). Therefore, the value of structural embeddedness 
stems from the ability of actors to have access to novel information and 
to enjoy efficiency and brokerage advantages, especially when 
exchanging knowledge. 

The two types of embeddedness, social and structural, do not 
contradict each other. Instead, they are seen as complementary and are 
thus useful to agents for different purposes (Burt, 2000). Recent litera
ture quantifies both types of embeddedness in order to describe 
knowledge diffusion and how it affects the evolution of knowledge 
networks of technological fields or sectors (Balland et al., 2016; Bauer 
et al., 2018; Broekel and Boschma, 2012; Rost, 2011; Ter Wal, 2014; 
Tsouri, 2019). It is widely accepted that both types of embeddedness 
affect the formation of new ties or the strength of the ties in the 
knowledge network, thus suggesting path-dependent evolutionary tra
jectories of technological fields. 

Therefore, we examine the effect of both social and structural 
embeddedness on knowledge network evolution across technological 
fields. For social embeddedness, we assume that existing relationships of 
actors in the knowledge network of established technological fields are 
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transferred to the knowledge network of the emerging technological 
field, due to scarcity of resources and the trust created by the previous 
collaborations. For structural embeddedness, we assume that two actors 
collaborating with a third party in an established technological field 
might collaborate with each other in the emerging technological field, 
tapping into and recombining existing knowledge. These assumptions 
lead to the following set of hypotheses: 

H1a. Social embeddedness in established technological fields’ 
knowledge networks positively affects the formation of ties in the 
emerging technological field’s knowledge network. 

H1b. Structural embeddedness in established technological fields’ 
knowledge networks positively affects the formation of ties in the 
emerging technological field’s knowledge network. 

2.2. Proximity 

Proximity refers to the relational property of connected actors as 
being close in terms of having similar characteristics. Proximity mech
anisms of different types reduce uncertainty and thereby enable 
knowledge transfer and network formation, as well as innovation (Bal
land et al., 2016; Broekel and Boschma, 2012; Hansen, 2015; Tsouri, 
2019). 

To date, the literature has mainly highlighted the persisting impor
tant role of geographical proximity for knowledge network formation 
and for knowledge creation and diffusion. Proximity, although usually 
referring to geographical proximity, may also refer to different di
mensions of similarity between the actors in a knowledge network 
(Boschma, 2005). According to Boschma (2005), actors can be proxi
mate in five different ways: geographically, cognitively, socially, insti
tutionally, and organizationally. Geographical proximity refers to the 
collocation of actors that can create spontaneous exchange of knowl
edge. Cognitive proximity is the overlapping of two actors in terms of 
their knowledge bases, whereas social proximity describes the 
micro-level embeddedness of actors (e.g. friendship, kinship, experi
ence). Institutional proximity refers to cases when actors share common 
institutional and cultural contexts, thus providing stable conditions for 
knowledge transfer. Finally, organizational proximity refers to the 
extent of sharing of organizational arrangements, involving the degree 
of autonomy and control of the organizational arrangements. 

Previous research has focused on the role of geographical proximity 
for the establishment of inter-organizational collaborations, and the 
relations between geographical and non-geographical proximity di
mensions (Garcia et al., 2018; Hansen, 2014, 2015). While proximity 
literature considers the possibility for substitution of non-spatial di
mensions for geographical proximity (Broekel and Mueller, 2018; Fitjar 
et al., 2016; Hansen, 2015; Kuttim, 2016), it gives little attention to the 
possibilities for substitution between the different non-spatial proximity 
dimensions. Indeed, Werker et al. (2019) suggest that other non-spatial 
dimensions of proximity may facilitate collaboration between cogni
tively distant partners. 

Particularly, in the process of developing emerging technological 
fields, which are still characterized by considerable uncertainty 
regarding future development paths, actors may use their networks to 
learn from other organizations and to access complementary skills. This 
involves collaboration in order to assess the relevance of (and poten
tially acquire) knowledge held by actors from other technological fields, 
or to engage directly in joint projects that provide complementary 
knowledge. Hence, we expect that institutional and organizational types 
of proximity will affect the formation of the knowledge network of the 
emerging technological field. Accordingly, we have formulated the 
following hypotheses: 

H2a. Institutional proximity of actors positively affects the formation 
of ties in the emerging technological field’s knowledge network. 

H2b. Organizational proximity of actors positively affects the 

formation of ties in the emerging technological field’s knowledge 
network. 

2.3. Status (popularity) 

Similarly to embeddedness and proximity, the status (popularity) of 
an actor is an important driver for knowledge transfer and evolution of 
technological fields (Luo et al., 2009). The status (popularity) of an actor 
in social networks constitutes an attractive attribute driving preferential 
attachment. This is a dynamic process, during which new actors entering 
the network prefer to connect with already well-connected actors 
(Barabási and Albert, 1999). This process results in the strengthening of 
the relative position of certain actors compared with the rest of the ac
tors, augmenting their network status and making them more central 
(Autant-Bernard et al., 2014). 

Popular actors are important for knowledge transfer and the evolu
tion of technologies because they can act as intermediaries (Martin, 
2013; Tsouri and Pegoretti, 2020). They accumulate knowledge over 
time due to their privileged position in the knowledge network and 
consequently their role becomes central to the evolution of a technology 
(Autant-Bernard et al., 2014). Actors with high network status benefit 
from direct or indirect collaboration with a variety of actors and they 
provide a range of opportunities to foster knowledge creation and 
diffusion processes. Their actions impact the structure and dynamics of 
the knowledge network, ultimately shaping the dynamics and pace of 
evolution of the particular technological fields (Balland et al., 2016; Ter 
Wal, 2014). 

Empirical studies addressing actors’ status within the knowledge 
network have typically been limited to the evolution of a single tech
nological field and/or a specific network type (Balland et al., 2016; 
Bauer et al., 2018; Broekel and Graf, 2012). However, as popular actors 
have the propensity to tap into and diffuse knowledge, they may play a 
crucial role for novel knowledge (re)combinations, thereby creating 
bridges between different knowledge networks (Cassi et al., 2008; 
Kauffeld-Monz and Fritsch, 2013). Therefore, we examine whether ac
tors with high network status in established technological fields play an 
important role in the development of the emerging technological field 
and its knowledge network. This leads us to the following hypothesis: 

H3. The status (popularity) of actors in established technological fields 
affects positively the formation of ties in the emerging technological 
field’s knowledge network. 

3. Case, data and methods 

3.1. The case of green shipping 

International shipping is a large and rapidly growing source of 
greenhouse gas emissions, and these emissions are expected to increase 
in the years ahead (i.e., due to increasing global trade) unless new en
ergy solutions are successfully developed and implemented. However, it 
is reasonable to say that the alternatives to fossil fuels are in early phases 
of development and therefore green shipping can be considered an 
emerging technological field. There are multiple obstacles to more 
sustainable shipping (Bach et al., 2020), which is generally considered a 
hard-to-abate sector, similar to heavy onshore transport and aviation 
(Pettit et al., 2018). However, promising developments are occurring in 
terms of new technology adoption, notably in shipping segments such as 
coastal ferry services. 

The proposed technological solutions that can contribute to the 
“greening” of shipping are many and include for instance changes in 
design, materials and technologies that can allow for more efficient 
operations. The main challenge for shipping is however to switch from 
fossil fuels to alternative energy solutions with lower or zero carbon 
emissions (ABS, 2021). These alternative energy solutions include bio
fuels, hydrogen, fuel cells and battery electric storage systems (DNV, GL, 
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n.d.), which we focus upon in this paper.1 These alternatives and/or 
supplements to fossil fuels were under development in other application 
domains (e.g. road transport, power, heating) prior to their application 
in shipping, which is essential given the purpose of the paper to examine 
the recombination of knowledge from established technological fields 
into an emerging technological field. For example, hydrogen has been 
applied in microgeneration in Japan and forklifts in the US, while bat
tery electric storage, such as lithium batteries, found early niches in 
military and consumer electronics sectors in the 70s, before starting to 
diffuse into for example automobiles (Dijk et al., 2013; Scrosati, 2011; 
Staffell et al., 2019). 

These technological fields offer related and complementary knowl
edge components to the emerging technological field of green shipping. 
The European Commission is currently supporting the aforementioned 
main types of alternative fuels and propulsion technologies, for example 
by subsidizing R&D projects in order to improve their efficiency and 
remove market entry barriers (EC, n.d.). For this reason, green shipping 
is a suitable example for studying how different knowledge components 
of established technological fields recombine to develop the knowledge 

network of the emerging technological field. 
Fig. 1 is a schematic representation of the emerging technological 

field of green shipping within the traditional field of shipping. The 
established technological fields of biofuels,2 electricity storage and 
battery, and hydrogen and fuel cells constitute related technological 
fields that are also associated with other application domains (e.g., land 
based transport, power, heating). These interact with, and are applied 
in, shipping and thereby contribute to the development of the green 
shipping technological field. These interdependencies result in different 
technological trajectories, either complementary or competing, within 
the emerging technological field (green shipping). Regarding the actor 
level, section 4 examines the effect of the knowledge transfer between 
actors in the established technological fields of green energy solutions 
on the knowledge transfer in the entire field of green shipping. 

3.2. Data 

To test our hypotheses and explore the mechanisms that govern the 
evolution of the knowledge network of emerging technological fields, 
we used data on R&D projects funded by the European Commission 
(CORDIS dataset). We used the R&D projects under the last two EU 
research framework programs – FP7 and Horizon2020 – that spanned 
the twelve-year period from 2007 to 2018. The framework programs 
followed a scheme based on thematic areas. However, the relevant 
technological fields spanned several of these categories, so we started by 
identifying relevant projects through keyword searches (‘propulsion’, 
‘marine’, ‘vessel’, ‘engine’, ‘ship’, ‘boat’ and combinations between 
them) and content analysis. We identified all projects on shipping with 
alternative (green) fuels and/or energy carriers (hereafter referred to as 
green fuels) and labelled the category ‘green shipping’. We also identi
fied all R&D projects related to the established technological fields of 
biodiesel, bioethanol, biogas, synthetic natural gas (SNG), electricity 
storage and battery, hydrogen fuel and fuel cells. We include projects in 
these fields irrespective of application sector, i.e., also outside the 
application sector (shipping) of our study. To isolate all projects that 
covered one of the above-mentioned technological categories, we per
formed keyword searches in the project abstracts (‘biogas’, ‘biodiesel’, 
‘bioethanol’, ‘electricity storage’, ‘electric storage’ ‘battery’, ‘fuel cell’ 
‘hydrogen’, ‘synthetic natural gas’, ‘SNG’). Then we performed content 
analysis of the selected abstracts. 

We identified 1136 EU-funded R&D projects (i.e., in the period 
2007–2018), in which a total of 3719 actors participates. Based on the 
information on project participants, we created eight knowledge net
works, each corresponding to one of the categories. The actors are 
considered connected if they participated in a project together 
(Autant-Bernard et al., 2007). In terms of partner selection, the Euro
pean framework programmes had a rather simple and basic constraint, 
namely the partners had to be located in at least two different EEA 
countries. This could possibly have biased the results in the selection of 
geographically distant or proximate partners. However, for the thematic 
areas of the projects included in our categories, our stipulated require
ment was at least four collaboration partners. With regard to project 
selection, the collaborative partners were numerous, which enabled us 
to draw unbiased conclusions from the identified knowledge networks 
(Autant-Bernard et al., 2007). 

The sizes of the knowledge networks of the project categories, as well 
as the overlapping of projects and actors with regard to each green fuel 

Fig. 1. Schematic representation of the emerging technological field of green 
shipping with the contribution of the established technological fields of bio
fuels, electricity storage and battery, fuel cells and hydrogen. (For interpreta
tion of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 

1 Note that also other alternative energy solutions to conventional (marine) 
fossil fuels exist for shipping, including liquefied natural gas, ammonia, meth
anol, and also wind-propulsion (sails, kites etc.). 

2 Biofuels covers the technological fields of bioethanol, biogas, biodiesel and 
synthetic natural gas among others. We selected these specific biofuels, as we 
test the knowledge network of each alternative fuel separately, to examine 
whether they constitute related or unrelated (established) technological fields 
vis-à-vis the emerging technological field of green shipping. We included the 
entire population of actors for each related established technological field in 
our analysis. 
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with the actors of the green shipping knowledge network are presented 
in Table 1. The networks of the different green fuels varied in size and 
the extent to which they overlapped with the green shipping knowledge 
network. The biodiesel, bioethanol and SNG networks were smaller than 
the rest of the networks. Few actors were participating in both biodiesel 
and green shipping networks, while there were no overlapping projects 
during the period 2007–2018. Therefore, we excluded projects on bio
diesel from the dataset. 

For the analysis we included only the actors that participated in more 
than one project during the entire period (2007–2018). We made this 
choice to ensure that we included actors that repeat a collaboration by 
participating in a later project. The dataset included the entire popula
tion of actors participating in EU-funded R&D projects on green ship
ping, biofuels (except biodiesel), hydrogen fuel, fuel cells, and electricity 
storage and battery, based in countries of the European Economic Area 
(EEA, comprised the EU member states plus Norway, Switzerland and 
Iceland) in the years 2007–2018 inclusive. Therefore, the entire popu
lation of actors included in the analysis is 981 actors that participate in 
at least one knowledge network and in at least two projects. To allow for 
dynamic analysis of the data, we divided the data into two periods ac
cording to the year in which the projects started. The first period covered 
2007–2013 (corresponding to FP7), while the second period spanned 
2014–2018 (corresponding to Horizon 2020). During FP7 bioethanol 
and biogas projects proved to have few common actors and did not 
overlap with the green shipping network for the entire period 
(2007–2018). Moreover, the analysis showed that there were no over
lapping ties between the bioethanol and biogas networks (2007–2013) 
and the green shipping network (2007–2018). Accordingly, we excluded 
these two categories. 

3.3. Methods 

Using Social Network Analysis (SNA), we depicted the data in a 
network form, in which actors were represented as nodes, whereas 
collaborations, which indicated knowledge transfer, were represented as 
ties. In that way, the data could be summarized in ten one-mode square 
sociomatrices (actor × actor) of the same size, including the entire 
population of actors: the ‘green shipping’ sociomatrix depicted the 
network of green shipping for the entire period (2007–2018), one 
sociomatrix depicted the network of green shipping for the period 
2007–2013, and two sociomatrices depicted each green fuel (SNG, 
electricity storage, fuel cells, and hydrogen) respectively covered the 
periods 2007–2013 and 2014–2018. 

Longitudinal and dynamic analysis of network data, notably in terms 
of explaining how knowledge network structures change over time, 
presents certain difficulties. Due to their nature, network data violate 
basic assumptions in most standard econometric techniques. As all ac
tors are members of the same network, the observations are not inde
pendent and the models suffer from structural autocorrelation and 
excess of zeros (Snijders et al., 2010). To overcome this problem, we 
used stochastic actor-oriented models (SAOMs), a permutation method 
that does not assume variable independence. Implemented in the RSiena 
software network data is treated as ‘snapshots’ repeated in continuous 

time, similarly to panel data (Balland et al., 2016; Snijders et al., 2010). 
We used SAOMs because they perform dynamic network analysis in 
actor, dyad, and structural levels. Due to these characteristics, we were 
able to use entire networks as variables and examine how one network 
affected the evolution of another network. 

3.4. Networks as variables 

Following the methodology proposed by Balland et al. (2016), we 
examined both the evolution of the knowledge network of the emerging 
technological field (green shipping) and the effect of knowledge net
works of established technological fields on the evolution of the green 
shipping knowledge network. We defined green shipping (2007–2018) 
as the dependent variable in both models examined. To express multiple 
network effects (when the structure of one network affected the evolu
tion of another network), we represented the dependent variable with 
the tie variables denoted as xij, while the tie variables denoted by wij 
represented the network of an explanatory variable (Ripley et al., 2018). 

Our aim was to explain the evolution of the green shipping knowl
edge network during the entire period under consideration 
(2007–2018). We wanted to understand how collaborations between 
actors in green shipping (dependent variable) evolve and therefore 
changed between FP7 (2007–2013) and Horizon 2020 (2014–2018). 
This was expressed by the rate of change (non-existing ↔ existing ties) 
for the network, from FP7 to Horizon 2020. Our explanatory variables 
and effects were derived from the evolution of the early emerging 
network of green shipping (2007–2013) in the first model, and of the 
knowledge networks of the established fields (SNG, electricity storage, 
fuel cells and hydrogen) during FP7 (2007–2013) in the second model. 

Social embeddedness. This variable was used to estimate how estab
lished knowledge networks shaped the knowledge network in the 
emerging field (H1a). To express this property, we employed the rate of 
change (non-existing ↔ existing ties) of the established knowledge 
networks (SNG, electricity storage, fuel cells, hydrogen) during FP7. It is 
portrayed by the change of a tie between nodes i and j of one network W 

(that is i→W j), leading to a change of a tie between nodes i and j of another 

network X (that is i→X j). 
Structural embeddedness. This variable showed the probability that 

two actors, which were connected with a third actor in the established 
networks, were connected in the new network (H1b). In single network 
evolution structural embeddedness is usually represented by triadic 
closure, whereas in multiple network settings structural embeddedness 
can be operationalized with the effect of closure of shared ties: 
∑

j∕=h
xijwhiwhj. This refers to the shared W ties of the established knowledge 

network (explanatory variable) contributing to the tie i→X j, of the green 
shipping knowledge network (dependent variable). 

Proximity. We examined the effects of institutional (H2a), and 
organizational (H2b) dimensions of proximity. These variables were 
dyadic explanatory variables, added as constant dyadic dummy cova
riates. Institutional proximity takes the value one if two agents were 
located in the same country, as they are acting under the same 

Table 1 
Network size and overlaps between networks in terms of projects and actors.  

Knowledge networks No. Projects Overlapping projects with green shipping (2007–2018) No. actors Overlapping actors with green shipping (2007–2018) 

2007–2018 Green fuels (2007–2018) Green fuels (2007–2013) 2007–2018 Green fuels (2007–2018) Green fuels (2007–2013) 

Green Shipping 82 – – 586 (209) – – 
Biodiesel (excluded) 52 0 0 308 29 15 
Bioethanol (excluded) 46 1 0 277 (127) 49 (37) 28 (17) 
Biogas (excluded) 111 1 0 591 (213) 55 (51) 42 (25) 
Electricity storage and battery 409 16 8 1771 (617) 148 (114) 109 (95) 
Fuel cells 343 11 7 967 (470) 92 (85) 76 (75) 
Hydrogen 343 11 7 965 (480) 100 (94) 78 (76) 
SNG 53 3 2 300 (153) 53 (46) 37 (35)  
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institutional context, otherwise it takes the value zero. Organizational 
proximity takes the value one when two actors were of the same orga
nizational type (universities, research centres, private firms, public 
agencies, other types of organizations), and zero otherwise. The two 
dyadic covariates were treated as constant. The institutional setting and 
organizational kind of an actor can change over time. However, such 
change does not happen easily and is considerably slower than the 
change in the collaborations between the actors (Broekel, 2015). 

Status. We examined the effect of the actors’ status in the established 
knowledge networks on the ties of the green shipping network (H3). This 
refers to a preferential attachment mechanism (Barabási and Albert, 
1999) whereby new actors in a network connect with already central 
actors, which augments the central actors’ popularity. In studies of 
single network evolution conducted to date this concept has been 
operationalized by endogenous degree centrality (popularity effect) 
(Balland et al., 2016). However, this was problematic in our case, for 
two reasons: (1) in a multiple network context, actor popularity is not 
endogenous to the dependent network, but refers to the popularity of 
actors in the explanatory networks, and (2) the R&D project data we 
used would give a false indication of the degree of actor centrality, as 
this measurement depends heavily on the size and numbers of partners 
in projects. Therefore, a more global centrality measurement is needed, 
the eigenvector centrality (Bonacich, 2007). Eigenvector centrality 
measures the influence of a node in the network and is an enhanced 
measure of degree centrality, based on the assumption that connections 
to more centrally positioned actors contribute more to the status of the 
actor under consideration compared with connections to peripheral 
nodes. We operationalized eigenvector centrality of actors, adding the 
eigenvector centrality score as a covariate variable. We measured the 
eigenvector centrality of actors for the knowledge networks of green 
fuels during the period 2007–2013 and examined its effect on the green 
shipping knowledge network for 2014–2018. 

Control variables. As we were dealing with undirected networks, we 
did not differentiate between in- and out-degree. Therefore, we could 
not use degree types of controls. We examined the effect that the density 
of the established networks had on the evolution of the new network. 
This effect measures the overall tendency of actors to create ties. We also 
used another type of control, namely the basic rate parameter of the 
green fuel networks, representing the amount of network change 
through time for each established knowledge network. Controlling for 
the effect of geographical proximity on the green shipping network 
evolution, we use a dummy matrix which takes the value one when two 
actors were located in the same region (NUTS2), otherwise it takes the 
value zero. As a status control we have used the degree centrality of the 
actors in the green fuel networks. Finally, in order to control for the 
effect of triads in the green fuel networks and how they affect the change 
of a tie in the green shipping network, we use the basic effect of triadic 
closure. 

4. Empirical analysis 

The descriptive statistics of the dyadic variables and the correlation 
between them are shown in Table 2. All variables were dummy vari
ables, taking only the values 0 and 1. Neither the explanatory variables, 
nor the proximity variables were highly correlated. Most of the dyadic 
variables positively affected each other, but the magnitude of the effect 
does not appear to have been large. 

To explain the evolution of green shipping network over time, we 
first explore the dynamics of the emerging network (green shipping). We 
employed the model described in the preceding section, testing the ef
fect of the rate of change (non-existing ↔ existing ties) during the early 
period of the emerging technology on the rate of change (non-existing ↔ 
existing ties) of the entire green shipping network (2007–2018). The 
results of the analysis are presented in Table 3. All estimations of the 
parameters were based on 1000 simulations, an amount that is consid
ered reliable (Balland et al., 2016; Snijders et al., 2010). The overall 

convergence rate of the model is 0.2898 < 0.8, while the convergence 
ratios of each variable are less than 0.1, making the algorithm approx
imation excellent. As the underlying idea behind the model is the effect 
of the rate of change (non-existing ↔ existing ties) of the explanatory 
network on the rate of change in the dependent network, the coefficients 
are interpreted as log-odds ratios of the time formation. In other words, 
they represent how the log-odds ratio of the dependent network will 
change with the change of one unit in the explanatory variables. 

The results of the analysis confirm the effect of the three mechanisms 
(embeddedness, proximity and status) in the evolution of the green 
shipping field. The rate of change (non-existing ↔ existing ties) of the 
early network of green shipping significantly affects the later formation 
of the technological field. However, in the formation of an emerging 
technological field, like green shipping, the contribution of established 
technological fields is important. Therefore, we test the effect of the rate 
of change (non-existing ↔ existing ties) of the established technological 
fields’ networks on the rate of change (non-existing ↔ existing ties) of 
the emerging field network. The results on the dynamics across tech
nological fields are presented in Table 4. We use the same model 
structure, and all estimations of the parameters were based on 1000 
simulations. The overall convergence rate of the model is 0.1138 < 0.8, 
while the convergence ratios of each variable are less than 0.1. 

Hypothesis H1a refers to the social embeddedness of green fuels’ 
knowledge networks on the knowledge network of green shipping. This 
is shown by the effect on the change in ties of the green shipping 
network (2007–2018) by the change in ties of the green fuels’ knowl
edge networks. This effect represents the shaping of the knowledge 
network of the new field. The change of ties in most green fuel knowl
edge networks (2007–2013) affected significantly the change of 
knowledge ties in the new technological field. The change in the 
knowledge ties of the established technological fields of SNG, fuel cells 
and electricity storage and battery had a significant positive effect on the 
evolution of the green shipping network. SNG, fuel cells, and electricity 
storage and battery networks constituted strong drivers for the evolution 
of green shipping network. Therefore, hypothesis H1a is confirmed for 
all green fuels except for hydrogen. 

Similarly, hypothesis H1b refers to the structural embeddedness of 
the change of ties in the green shipping knowledge network 
(2007–2018) on the weak ties and structural holes of the established 
green fuel knowledge networks (2007–2013). Overall, structural 
embeddedness was a strong driver towards the shaping of the green 
shipping knowledge network, confirming hypothesis H1b, with the 
exception of the hydrogen fuel network. When one actor was connected 
with two other actors in the knowledge networks of electricity storage 
and battery, fuel cells, and SNG, this significantly affected the connec
tion of those two actors in the green shipping knowledge network. The 
SNG network had the strongest effect on structural embeddedness in 
terms of significance and intensity. 

Further, institutional proximity significantly affected the evolution 
of the green shipping knowledge network, confirming hypothesis H2a. 
Similarly, organizational proximity constituted an important determi
nant for the evolution of the green shipping knowledge network, hence, 
confirming hypothesis H2b. Therefore, actors located in the same 
country, under the same institutional setting, and/or sharing the same 
organizational structure, were more likely to create a tie in the green 
shipping knowledge networks. 

In terms of the actors’ status in the established knowledge networks 
of green fuels, their eigenvector centrality did not seem to affect the 
evolution of the green shipping network, thus in general leading to our 
rejection of hypothesis H3.3 The only exception was the eigenvector 

3 We controlled the robustness of the results of status repeating the model 
with degree centrality, and the results were similar in significance. However, 
degree centrality with data on R&D projects does not reflect the real status of an 
actor, as it can be affected by the size of project. 
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centrality of actors in the SNG knowledge network, which had a sig
nificant positive effect on the change of ties in the green shipping 
knowledge network. As an enhanced measure of degree centrality, 
eigenvector centrality shows the connectivity of an actor with other 
central actors in the network. In other words, the status of an actor in the 
SNG knowledge network, positioned in such a way that it is connected 
with central actors, affects the evolution of the green shipping network. 

When we added the control variables, the density of the green 
shipping network had a negative effect on the evolution of the network. 
The value of the density parameter was not very important, as it 
correlated with all other statistics, which made it difficult to interpret. 
The basic rates of all of the networks were positive and significant, but 
the basic rate referred to the effect they had on the evolution of their 
own networks. For example, the basic rate of green shipping (rate green 
shipping 2007–2018) referred to the rate of change of ties (evolution) of 
the green shipping knowledge network. This specific rate was positive 
and significant, and therefore important, showing a significant amount 
of endogenous evolution in the green shipping network and in turn 
signifying strong path dependency. Geographical proximity is not sig
nificant, as expected, given the nature of the data in R&D projects. The 
same holds for the triadic closure of the early green fuel networks. It is 
rational that when three actors are closely connected with each other in 
another field, this does not affect the establishment of new ties in the 
emerging technological field. Finally, when we express the status of an 
actor through degree centrality, we observe the same results with the use 
of eigenvector centrality. 

5. Conclusions 

In this paper we set out to explore knowledge (re)combination across 
technological fields through a knowledge network perspective. Research 
has focused on the evolution of single technological fields and their 
knowledge networks (Ahuja et al., 2012; Balland et al., 2019; Broekel 
and Boschma, 2012), while there has been no evidence for how 
knowledge is transferred across technological fields. However, the latter 
is important for the generation of new knowledge and the emergence of 

Table 2 
Descriptive statistics and correlations of the dyadic variables used in the analysis.   

Min Max Mean SD Gr. Ship El. Stor F. Cell Hydrogen SNG Inst. Prox. 

Green shipping 0 1 0.005 0.073 – – – – – – 
2007–2018 
Electricity storage 0 1 0.01 0.101 0.011 – – – – – 
2007–2013 
Fuel cells 0 1 0.007 0.085 0.015 0.13 – – – – 
2007–2013 
Hydrogen 0 1 0.007 0.084 0.016 0.088 0.585 – – – 
2007–2013 
SNG 0 1 0.002 0.04 0.014 0.054 0.072 0.178 – – 
2007–2013 
Institutional proximity 0 1 0.085 0.279 0.007 0.016 0.021 0.017 0.004 – 
Organizational proximity 0 1 0.372 0.483 0.002 − 0.011 − 0.006 − 0.005 − 0.006 0.018  

Table 3 
Analysis of the evolution of green shipping technological field (2007–2018).  

Dependent Variable: Green Shipping 
2007–2018 

Coefficients Standard 
Errors 

p-values 

Social Embeddedness 
Green Shipping 2007–2013 4,3524*** 0,3335 <0.0001 
Structural Embeddedness (X:mixed from Y) 
Green Shipping 2007–2013 0,2331*** 0,0115 <0.0001 
Proximity 
Institutional Proximity 0,2755** 0,1156 0.0174 
Organizational Proximity 0,269*** 0,0895 0.0027 
Status/popularity (eigenvector) 
Green Shipping 2007–2013 2,2602*** 0,1987 <0.0001 
Controls (density) 
Green Shipping 2007–2018 − 4,4732*** 0,1086 <0.0001 
Green Shipping 2007–2013 − 3314*** 0,0278 <0.0001 
Controls (proximity) 
Geographical proximity 0,1574 0,2956 0.5945 
Controls (basic rates) 
Green Shipping 2007–2018 46,2805*** 5,3234 <0.0001 
Green Shipping 2007–2013 1,7984*** 0,0526 <0.0001 
Controls (degree status/popularity) 
Green Shipping 2007–2013 0,0177*** 0,0009 <0.0001 
Controls (triadic closure) 
Green Shipping 2007–2013 − 0,0626*** 0,021 0.0029  

Table 4 
Analysis of the evolution of green shipping (2007–2018) across technological 
fields.  

Dependent Variable: Green Shipping 
2007–2018 

Coefficients Standard 
Errors 

p-values 

Social Embeddedness 
Electricity Storage 2007–2013 0,601** 0,2792 0.0316 
Fuel Cell 2007–2013 0,6343** 0,3132 0.0431 
Hydrogen 2007–2013 0,2502 0,3512 0.4764 
SNG 2007–2013 1,2503*** 0,3049 <0.0001 
Structural Embeddedness (X:mixed from Y) 
Electricity Storage 2007–2013 0,4332*** 0,0682 <0.0001 
Fuel Cell 2007–2013 0,3321** 0,143 0.0204 
Hydrogen 2007–2013 − 0,0369 0,1295 0.7757 
SNG 2007–2013 0,4952*** 0,0741 <0.0001 
Proximity 
Institutional Proximity 0,2879** 0,1162 0.0134 
Organizational Proximity 0,3555*** 0,103 0.0006 
Status/popularity (eigenvector) 
Electricity Storage 2007–2013 − 0,3608 0,4006 0.3680 
Fuel Cell 2007–2013 − 0,3695 0,7951 0.6422 
Hydrogen 2007–2013 0,1526 0,9976 0.8785 
SNG 2007–2013 1768*** 0,2333 <0.0001 
Controls (density) 
Green Shipping 2007–2018 − 4,0707*** 0,1186 <0.0001 
Electricity Storage 2007–2013 − 2,3332*** 0,0158 <0.0001 
Fuel Cell 2007–2013 − 2,6663*** 0,012 <0.0001 
Hydrogen 2007–2013 − 2,7438*** 0,0194 <0.0001 
SNG 2007–2013 − 3,3705*** 0,0646 <0.0001 
Controls (proximity) 
Geographical proximity 0,0454 0,2356 0.8472 
Controls (basic rates) 
Green Shipping 2007–2018 22,2581*** 1172 <0.0001 
Electricity Storage 2007–2013 4,8539*** 0,0911 <0.0001 
Fuel Cell 2007–2013 3,3704*** 0,0657 <0.0001 
Hydrogen 2007–2013 3,4159*** 0,0657 <0.0001 
SNG 2007–2013 0,761*** 0,0316 <0.0001 
Controls (degree status/popularity) 
Electricity Storage 2007–2013 − 0,0001 0,0006 0.8677 
Fuel Cell 2007–2013 0,0008 0,0023 0.7280 
Hydrogen 2007–2013 0,0014 0,0028 0.6172 
SNG 2007–2013 0,0283*** 0,0022 <0.0001 
Controls (triadic closure) 
Electricity Storage 2007–2013 − 0,0117 0,0334 0.7262 
Fuel Cell 2007–2013 0,0184 0,0356 0.6054 
Hydrogen 2007–2013 − 0,0131 0,0296 0.6582 
SNG 2007–2013 − 0,0192 0,0258 0.4569  
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new technological fields (Salavisa et al., 2012; Wagner et al., 2019). 
Previous research has identified different mechanisms that influence 

the evolution of knowledge networks of established technologies – 
embeddedness, proximity and status – that represent actor relations and 
the structural characteristics of the knowledge networks (Ahuja et al., 
2012; Balland et al., 2016). Our paper provides the first analysis of the 
role of these mechanisms in influencing knowledge transfer across 
technological fields. Empirically, we have explored the emerging field of 
green shipping, and the different green fuels (electricity storage and 
battery, hydrogen, fuel cells, and SNG) as established technological 
fields, which through their application in shipping contribute to the 
development of the emerging field. We have demonstrated that some 
mechanisms in green fuel networks, such as embeddedness and insti
tutional and organizational proximities, are strong drivers for the evo
lution of the emerging green shipping field. 

In terms of embeddedness, the actors in the green shipping network 
were, to differing degrees, both structurally and socially embedded in 
the established technological fields of fuel cells, electricity storage and 
battery, and SNG. The actors exploited both strong and weak ties in the 
knowledge networks of established technological fields to form or 
reinforce relationships in the knowledge network of the emerging 
technological field. Our findings expand the understanding of embedd
edness as a key driver for the formation of inter-organizational knowl
edge networks (Balland et al., 2016; Ter Wal, 2014; Wen et al., 2021), by 
showing that the social ties and the structure of the knowledge network 
of established technological fields affect the creation of the emerging 
field. Therefore, we found that embeddedness constitutes an important 
driver of knowledge transfer and (re)combination, not only within single 
technological fields, but also across technological fields. 

In contrast, we found that network formation in an emerging tech
nological field is not driven by the status of actors in established tech
nological fields, with exception for SNG. This contrasts studies of 
knowledge networks in single technological fields where status is an 
important driver (Balland et al., 2016; Giuliani, 2013). Although the 
status of the actors in certain established networks (e.g. SNG) may affect 
the evolution of the new network, in general actors venturing into a new 
technological field rely more on other drivers than their own status in 
established fields. 

Finally, we found that the different dimensions of proximity vary for 
the formation of the knowledge network of the emerging technological 
field. Institutional proximity played an important role, as did organi
zational proximity, suggesting that interaction with similar types of 
organizations provides agents with the necessary trust and reliability for 
collaborating in an emerging technological field (Hansen, 2014; Tsouri, 
2019). In contrast to the positive effect that geographical proximity has 
been shown to have on the evolution of single technological fields (Ter 
Wal, 2014), the restrictions in the selection of partners in EU funded 
R&D projects did not permit us to detect a similar effect across tech
nological fields (Autant-Bernard et al., 2007). 

Although we did not find a strong pattern in the effect of all the 
established networks on green shipping, our overall findings are sig
nificant for understanding the knowledge transfer across technological 
fields and the evolution of knowledge networks of emerging techno
logical fields (Tödtling et al., 2009). The evolution of each network of 
green fuels affected the evolution of the green shipping knowledge 
network in different intensities. For instance, we saw a lacking effect 
from the embeddedness in the knowledge network of hydrogen fuel field 
on the emergence of the green shipping technological field, and status 
was only important in the case of SNG. The factors behind this differ
entiation remain still to be examined in future research. Potentially 
influential factors include the different levels of maturity of the estab
lished technological fields, and thus the degree of applications to other 
sectors, their relatedness and compatibility with the emerging techno
logical field, or whether the knowledge networks of the established 
technological fields include specific actors in privileged positions that 
are capable of transferring their properties to the new technological 

field. 
Our findings are in line with the existing literature on knowledge 

network evolution and the way that the mechanisms of embeddedness, 
status and proximity function (Ahuja et al., 2012; Balland et al., 2016). 
With regard to the interaction across technological fields, the effect and 
importance of the three mechanisms is varied. All three mechanisms 
previously found important for single technological fields have positive 
effects on the emergence and evolution of the new technological field. 
However, the significance and intensity of this effect depends heavily on 
the particular characteristics of the established technological field 
(Balland et al., 2016). Based on network data, our results lend further 
credence to the importance of related variety, and how new knowledge 
evolves based on existing knowledge bases (Boschma and Frenken, 
2006; Cheng, 2012). While notions of related variety and diversification 
have rested mainly on indicators such as patents, skills or industry 
classifications (Boschma, 2017), we show a similar pattern in terms of 
knowledge networks. Indeed, we show path dependence occurring at the 
network level, in the sense of a less constrained view on path depen
dence suggested by Martin and Sunley (2010), indicating opportunities 
for path renewal. As such, we use knowledge networks as a novel 
approach to studying how emerging green technological fields rest, and 
build upon established fields (Santoalha and Boschma, 2021; van den 
Berge et al., 2020). 

Overall, our findings thus suggest that knowledge creation for green 
shipping benefits from knowledge development in existing technolog
ical fields, previously deployed in other sectors such as transport. 
However, the realization of knowledge transfer, and indeed, the use of 
knowledge for implementation of low-emission solutions likely depends 
on a wider mix of policies such as public procurement of ferry services or 
demand for low-emission logistical services from buyers (Bergek et al., 
forthcoming). A key question is thus how favourable knowledge creation 
policies can be combined with measures to ensure market deployment, 
as well as policies that destabilise and disincentivise fossil fuel usage. 

In more general terms, one key policy implication is that the 
knowledge networks that are necessary for developing new technolog
ical fields, such as clean tech, can benefit from networks in already 
established fields, and needn’t be built from scratch. Many countries and 
regions now embrace so called mission-oriented, or smart specialisation, 
policy approaches, which entail prioritization of certain areas and 
technological fields. Our approach, can support the identification of 
areas in which match-making between established and emerging fields 
seems favourable. Furthermore, the interactions between established 
and emerging technological fields, which we have studied from a 
knowledge network perspective, is an important theme in sustainability 
transitions studies. Hence, future research could connect these studies 
more strongly, for instance by investigating how network dynamics 
evolve across technological fields with differing interactions modes (e.g. 
complementary interactions, whereby technologies positively influence 
each other, as opposed to competitive interactions whereby technologies 
can influence each other negatively). This could contribute to a better 
understanding of why certain technologies gain momentum and develop 
successfully whereas other technologies do not. 
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