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Abstract: The rapid expansion of a country’s economy is highly dependent on timely product
distribution, which is hampered by terrible traffic congestion. Additional staff are also required to
follow the delivery vehicle while it transports documents or records to another destination. This
study proposes Delicar, a self-driving product delivery vehicle that can drive the vehicle on the
road and report the current geographical location to the authority in real-time through a map. The
equipped camera module captures the road image and transfers it to the computer via socket server
programming. The raspberry pi sends the camera image and waits for the steering angle value. The
image is fed to the pre-trained deep learning model that predicts the steering angle regarding that
situation. Then the steering angle value is passed to the raspberry pi that directs the L298 motor
driver which direction the wheel should follow. Based upon this direction, L298 decides either
forward or left or right or backwards movement. The 3-cell 12V LiPo battery handles the power
supply to the raspberry pi and L298 motor driver. A buck converter regulates a 5V 3A power supply
to the raspberry pi to be working. Nvidia CNN architecture has been followed, containing nine layers
including five convolution layers and three dense layers to develop the steering angle predictive
model. Geoip2 (a python library) retrieves the longitude and latitude from the equipped system’s IP
address to report the live geographical position to the authorities. After that, Folium is used to depict
the geographical location. Moreover, the system’s infrastructure is far too low-cost and easy to install.

Keywords: computer vision; self-driving car; smart product delivery; Internet of Things; convolution
neural network; Raspberry Pi 3

1. Introduction

Failure to deliver the product in time is a typical scenario of Bangladesh that affects
the economy significantly. Among different reasons, the root cause of this scenario is to
stay stuck in traffic congestion. According to a recent statistic, because of the congestion in
Dhaka, the capital of Bangladesh, the amount of loss is around BDT 200 billion annually [1].
Investigators have reported a loss of 3.2 million working hours a day of traffic jams [2]. The
Center for Economics and Business Research is projected that, by 2030, it will increase to
almost BDT 300 billion [2]. Furthermore, in our country, road accidents are deeply linked
with drivers’ behavior. Most of them are tempted to race on the lane, neglecting the risk
of an accident. Disobeying traffic regulations and signals also leads to critical accidents
and disasters. This ill-mindedness has caused so many disasters, taken too many souls
and caused mass destruction in the last decades across the world. At least 4138 people
were killed and 4411 wounded in 4147 crashes in 2019, while 2635 were killed and 1920
wounded in 2609 accidents in 2018, according to police [1]. In cases where it is impossible
for a person to avoid a car accident, self-driving cars will save millions of lives and subside
the on-time product delivery failure case without road accidents.
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Artificial Intelligence (AI) plays a significant role in almost every aspect of human life,
in every type of industry. For example, researchers [3,4] used a support vector regression
algorithm to predict the water parameters. Considering physical and operational factors,
another group of researchers [5] engaged AI to assess pipe break rate and [6] decoding
clinical biomarker space of COVID-19. Nowadays, AI is also broadly used in building the
smart city [7,8], smart meter [9,10], agriculture [11–13], education [14,15], healthcare [16–18]
and so on. Machine learning is a branch of artificial intelligence that allows machines to
learn without being explicitly taught from prior data or experiences. Nowadays, the
neural network is a popular type of machine learning algorithm that mimics the human
brain. CNN (Convolutional Neural Networks) and other groundbreaking systems have
provided tremendous results in computer vision. In the majority of cases, they improved
the preceding manual extraction features and created new cutting-edge solutions for
such tasks as image classification [19], captioning [20], object detection [21] or semantic
segmentation [22]. A machine’s reaction times and alerts are far better. In addition, these
vehicles were fitted with extraordinary capabilities by long-range cameras and ultrasonic
sensors. Since the last decade, extensive work has been carried out on autonomous robotics
and driving systems. Many research studies focus on the classification, identification
and development of decisions based on the vision to improve, evolving techniques and
algorithms. There are also some off-road studies. In our comprehensive study, we have felt
the need for some missing features or works in those studied works.

Our self-driving product delivery vehicle can move on a road autonomously through
the deployed deep learning pre-trained model. The car’s key input is real-time camera
footage mounted on the roof. The system outputs the respective steering angle and drives
the car accordingly. Because the camera is the only control system input, the purpose
of the project is to teach the vehicle how to handle the steer. The network is trained
on a different machine and then shifted to an onboard computer to regulate the vehicle.
Then the autonomous product delivery vehicle is entirely independent of other machines.
Furthermore, the position of the car is reported to the authority through a map to monitor.
Obstacle avoidance is a different problem that can also be overcome, but it goes outside
the scope of the study to combine it with the system. The current system configuration
is not that capable of dealing with both steering angle prediction and obstacle avoidance.
This self-driving vehicle work will significantly change traffic systems and public safety
in a developing country like ours. It can also support national defense forces to perform
ground monitoring or conduct rescue tasks. More particularly, the risk of an accident can
be reduced dramatically. Moreover, the development cost of this system requires about
BDT 30K–40K for hardware and 20K–30K for software and other experimental purposes.
As a result, product delivery car owners in developing nations like Bangladesh would find
the technology beneficial and economical.

The objectives of this research are to develop a self-driving car for overcoming the
product delivery failure without any road accidents, to design a low-cost infrastructure
with effective outcomes, to build an end-to-end deep learning model equipped in the self-
driving car prototype, and to broadcast the geographical location of the vehicle through a
map in real-time.

With the introduction, this paper is composed of five parts. Section 2 covers the
literature review, and Section 3 contains working procedure, functional units, dataset
collection, normalization, augmentation, pre-processing, deep learning model and driving
instruction forwarding strategies. Section 4 shows the experimental outcomes. Finally,
Section 5 addresses the analysis and future scope.

2. Related Works

Lots of significant works and research have been performed on the autonomous vehicle
aspect. The NHTSA (National Highway and Traffic Safety Administration) describes five
levels of autonomous vehicles [23] shown in Figure 1. In no automation (level 0), the human
driver does all the driving. Lane-keeping, cruise control or assisted breaking are a few
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examples of level 1(driver assistance). Tesla Autopilot [24] claims at their level 2 position.
The Waymo (Google) self-driving car [25] is an example of conditional automation (level 3).
Waymo announced in 2017 that they are testing level 4 driving [24]. Full automation
(level 5)—The driving system takes complete control over the entire driving task under
all circumstances. The human driver does not need to be inside the car. Recent attacks
targeting VANET (Vehicular ad hoc network) with autonomous Levels 1 to 4, which are not
entirely autonomous, have been documented. Denial of service attack [26], sybil attack [27],
timing attack [28], illusion attack [29], message tampering [30], and node impersonation [29]
are examples of these types of attacks.
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Figure 1. Levels of autonomous driving by NHTSA.

The non-AI solution practices control theory to determine a steering angle to hold the
vehicle on the desired trajectory, typically identified by algorithms for computer vision.
PID (Proportional Integral Derivative) controller is one of the most popular methods in
control theory [31]. The controller functions in a loop that continually computes an error
value e(t) as a variance between the input from the vehicle and the next command signal. A
correction will be measured and applied afterwards. The correction value u(t) consists of
three parts (proportional, integral, derivative) and, as shown in Figure 2, can be determined
from the error e(t).

Sensors 2022, 22, 126 3 of 25 
 

 

five levels of autonomous vehicles [23] shown in Figure 1. In no automation (level 0), the 
human driver does all the driving. Lane-keeping, cruise control or assisted breaking are a 
few examples of level 1(driver assistance). Tesla Autopilot [24] claims at their level 2 po-
sition. The Waymo (Google) self-driving car [25] is an example of conditional automation 
(level 3). Waymo announced in 2017 that they are testing level 4 driving [24]. Full auto-
mation (level 5)—The driving system takes complete control over the entire driving task 
under all circumstances. The human driver does not need to be inside the car. Recent at-
tacks targeting VANET (Vehicular ad hoc network) with autonomous Levels 1 to 4, which 
are not entirely autonomous, have been documented. Denial of service attack [26], sybil 
attack [27], timing attack [28], illusion attack [29], message tampering [30], and node im-
personation [29] are examples of these types of attacks. 

 
Figure 1. Levels of autonomous driving by NHTSA. 

The non-AI solution practices control theory to determine a steering angle to hold the 
vehicle on the desired trajectory, typically identified by algorithms for computer vision. 
PID (Proportional Integral Derivative) controller is one of the most popular methods in 
control theory [31]. The controller functions in a loop that continually computes an error 
value e(t) as a variance between the input from the vehicle and the next command signal. 
A correction will be measured and applied afterwards. The correction value u(t) consists 
of three parts (proportional, integral, derivative) and, as shown in Figure 2, can be deter-
mined from the error e(t). 

 
Figure 2. Calculation of correction value in a PID loop. 

The whole mathematical formula is the following: 𝑢 𝑡 𝑘 𝑒 𝑡 𝑘 𝑒 𝑡 𝑑𝑡 𝑘 𝑑𝑒 𝑡𝑑𝑡  (1)

Figure 2. Calculation of correction value in a PID loop.

The whole mathematical formula is the following:

u(t) = kpe(t) + ki

∫ t

0
e(t)dt + kd

de(t)
dt

(1)
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The standard approach to solving the problem of self-contained driving has divided
the problem into several sub-problems, including lane marking, path planning and low-
level control, which make up a processing pipeline [32]. Researchers have recently explored
a new approach that simplifies the standard control pipeline dramatically through deep
neural networks to produce direct control outputs from sensor inputs [33]. The gaps
between the two methods are shown in Figure 3. Figure 3a visualizes the standard approach
in which the system predicts the motor torques based on the observation of the image
data. This approach split the problem into several sub-problems such as state estimation,
modeling and prediction, motion planning, low-level controller. In contrast, to solve the
same problem, Figure 3b demonstrates a deep neural network approach to predict the
motor torques directly from the image observation.
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In the late 1980s [34], a modern, completely linked neural network employed neural
networks to monitor automatic cars. In the late 2000’s it was later demonstrated [35]
using a six-stage, fully interconnected neural network (CNN) in the DARPA Autonomous
Vehicle (DAVE) project and most recently in the NVIDIA DAVE-2 project [32], with a
nine-layered CNN network. The training process of the NVIDIA project has been displayed
in Figure 4, where the steering angle is recorded for the center camera image and the
left and right camera image steering angle is shifted. Then fit into CNN architecture,
calculate the error and adjust the weight via backpropagation. The architecture of the
CNN model used by NVIDIA is nine-layer depth, including 5 convolution layers and three
dense layers. The first three convolution layers contain 24, 36, 48 kernels and the rest two
convolution layers consist of 64 kernels. This architecture includes 27 million connections
and 250 thousand parameters.
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The testing procedure (Figure 5) is a sample where the weight and the CNN archi-
tecture are saved, and the camera image goes through that saved model, predicting the
steering angle and the car drive by the wired interface.
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There are two different phases to the use of deep neural networks [36]. The first step
is training, in which the backpropagation techniques change the weights of the network.
The next phase is when unseen data are fed into the network to produce the predicted
output (e.g., the predicted image classification, for example) once it has been trained–i.e.,
network weights minimize errors in training example. The training phase is generally more
computational and requires high throughput, usually not available on embedded platforms.
On the other hand, the inferencing process is comparatively less computer-intensive and
latent, if not more so, is as critical as software output because many case stores have strict
real-time requirements. For example, with neural network and computer vision-based
learning methods, Masum et al. [37] attempted to introduce an autonomous automotive
program. The system predicts the steering angle learning from live images according to
which the vehicle moves autonomously.

David Stavens et al. [38] have attempted to describe the ruggedness of autonomous
off-road vehicles for the terrain project. They proposed a supervised machine learning
approach to estimate the roughness of the terrain from laser range data. They used data
from the 2005 DARPA Grand Challenge to compare nearby surface points acquired with
a laser. Bajracharya et al. [6] did the same kind of work in their research. They used
self-supervised training from sensors to know the near-field terrain traversability. The near-
field classification was then used to direct the far-field training of terrain traversability. As
part of the DARPA Learning Applied to Ground Robots (LAGR) project, the methodology
developed was incorporated into a fully autonomous off-road navigation system. Problems
in mobile off-road vehicles and mobile robotics caused by poor stereo vision are increasing
and remain vulnerable for as long as possible. Junsoo Kim et al. [39] introduced a model
focused on long-distance stereo vision to solve this problem. Training data generation
on every image frame in a self-supervised way gives robust, consistent stereo module
label input, ensuring success. From an input image, meaningful features are acquired, and
information is learned. These features train real-time classifiers that can identify complex
terrain to distance from the horizon. They claim that it exceeds the max stereo range of
12 m and can see paths and obstacles at a distance of 5 to more than 100 m [39].

The extensive usage of self-driving technology is exemplified by trains [40]. Some of
such self-driving trains include the Docklands Light Railway (DLR) in London, UK [41],
Yurikamome in Tokyo, Japan [40], London Heathrow airport’s ultra-pods [41] and SkyTrain
in Vancouver, Canada [42]. The successor of Robot Operating System (ROS) ROS2 based
self-driving vehicle architecture can activate safe and reliable real-time behavior [43].
Bakioglu et al. [44] proposed VIKOR and TOPSIS algorithms to prioritize risks in self-
driving cars, while another group of researchers [45] proposed a self-driving delivery
robot in last-mile logistics. Navigation routes, one-way streets, speech recognition, and
no-entry status are all things that self-driving vehicles require [46]. Based on an adaptive
large neighborhood algorithm (ALNS), Guo et al. [47] proposed a multimodal transport
distribution model for self-driving vehicles. Dommès et al. [48] investigated aged and
young pedestrians’ behavior in front of the conventional and self-driving car wherein
mixed traffic conditions. They undertook the simulated two-way street-crossing task.
When delivering commands to a self-driving vehicle Deruyttere et al. [49] developed a
model that can determine uncertainty, detect the causing objects of uncertainty and generate
a question for the passenger that describes the objects.

Tinghui Zhou et al. [50] used monocular video sequence networks of a single view
depth and multi-view pose. They approached it as unsupervised through similar ap-
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proaches were made by others as supervised. Using the images, they were tempted to
train the network with a targeted view (single view) and computed losses from some
multi-views (closer and distant views from the target view). Yanlei Gu et al. [51] proposed
a prototype mimicking the human driving system from the actual traffic environments
dataset. Again, different algorithms for different functions of the autonomous vehicle have
been suggested. Such as Voronoi Diagram (complete but limited to the static environment),
Occupancy Grid (low computational power but has problems vehicle dynamics), Driving
Corridors (continuous collision-free space findings but costs of computation with motion
constraints), etc., algorithms are used for planning for searching the best space available
in the path. Driving Corridors and Non-Linear Constrained Optimization method for
intersection and Multiple Criteria Decision Making for non-intersection segments planning,
Mixed-Observability MDP for pedestrian crossing, etc., these implemented obstacle de-
tection and decision making. Trajectory Planning is being worked out by Tiji Algorithm,
4th Order Polynomials, Cubic Bezier curves, etc., and many other algorithms are used [52].
Here the authors provided elaborated criticism and evaluation of such algorithms based on
different factors.

In manufacturing plants, a line following robot is often used for the pick-and-place
features. The robot receives the products from a position and deposits them on an intended
location via a pre-specified path. This route is often specified on a black surface as a white
line or on a white surface as a black line. Mostafa et al. [53] propose an amphibian line
following robot, which can move in both lands and at certain water levels. A line that follows
a robot reaches its target by following the predefined path as a white line over a black surface.
The line IR sensor is often used to determine which emission led will emit an infrared ray,
and the detector led will receive the infrared ray. By a fixed threshold, the robot will sense
the rows. L293D motor driver regulates the wheel position and torque of the vehicle. For
vehicle rotation, the DC motor is placed onto the wheel. The system can sense the water road
and, like a speed boat, activate a propeller mechanism with an integrated water sensor. Since
it is an autonomous device, the planned robot is free of any direct human intervention. The
idea of the line after the robot is used for different sectors such as rescue, recreation, libraries,
searches, and the army. Colak et al. [54] have developed a clever robot line to keep children
entertained in shopping malls. This system uses a black line of 4.8 cm to load up to 400 kg.
The control functions are remote and manual. Islam et al. [55] have also proposed a low-cost
system that can travel around 500 gm without falling off the ground. To strengthen the health
care system, Punetha et al. [56] used a robot concept row. If the patient requires drugs, the
medicine will automatically be transported along the road, reducing human effort.

A group of researchers [53] proposes an amphibian line following robot for product
delivery in Bangladesh perspective, which can move in both lands and at certain water
levels. A line that follows a robot reaches its target by following the predefined path as
a white line over a black surface. However, ensuring a predefined path as a white line
over a black surface for a long distance is a great challenge for this system. In contrast, our
proposed approach can decide the driving direction based on the existing road lane, cap-
turing real-time road images in adverse weather such as rainy, cloudy, etc. In Bangladesh,
such a kind of system will be a great addition in ensuring on-time product delivery. Many
research studies focus on classification, identification and development of decisions based
on the vision to improve, evolving techniques and algorithms. There are also some off-road
studies. In our comprehensive analysis, we have felt the need for some missing features or
works in those studied works. In traffic situations, weather plays an important role. It also
influences vision-based independence.

An Extended Kalman Filter (EKF) localization technique considers adverse weather
conditions while estimating the car’s posture by registering 3D point clouds against gaus-
sian mixture multiresolution maps [57]. In another study, Ahmad et al. [58] consider
weather and lighting conditions in the context of road marking. They consider various
messages as distinct categories, while most systems [59,60] use OCR-based algorithms to
detect letters first and then write. Unlike stormy, rainy days, dark conditions are created
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and lighting on the bright sunny day. Such changes affect the camera or other sensors
for visual input. These environmental effects are considered in various contexts such as
estimating the car’s posture, road markings, etc. However, it was not investigated so
thoroughly in a dark, rainy environment while the sensor captured image is not clear as it
is supposed to be. Land and off-road research primarily illustrated the roughness of the
route, visibility and road roughness styles. Very few have examined fragile or damaged
road sections (such as deep holes, damaged/broken road pieces, etc.). From a country
viewpoint, damaged and broken highways are causing severe traffic and transportation
havoc. Studies showing the identification of these broken sections of the road were not
possible as well as other cases. Furthermore, the cost of lots of studies is not optimized.
Some used Bluetooth modules to communicate and transfer data between vehicle and
computer which is expensive and not required. Moreover, using a Bluetooth device reduces
the power of a self-driving car’s ability for a long drive as the coverage of a Bluetooth
module is very limited. Furthermore, there is no feature to monitor in real-time and observe
the geographical location of the vehicle.

3. Methodology and Implementation

A good design of a system has a significant impact on the successful implementation of
a project. The overall architecture of the system is demonstrated in Figure 6. By supplying
the power into the Raspberry pi, the heart force of the system, the system starts to initiate. A
buck converter converts the 12V lipo battery power supply into 5V and 3A and continuously
feeds into raspberry pi enough for raspberry pi to be operating. To program and utilize the
raspberry pi despite an extra monitor, we have used a VNC viewer from a local pc. VNC
viewer provides instant remote access to the target computer. As the RAM of raspberry
pi is too slow to run a pre-trained deep learning predictive model, we need to choose a
technique where the predictive model runs into another high-configured computer and the
data transfers to the raspberry pi. The high configured local computer acts as a host, the
raspberry pi as a client, and the server uses a Transmission Control Protocol (TCP). After
establishing the communication between the local pc and raspberry pi, the camera module
becomes active and transfers the image to the pc.
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Because of the low processing power of the raspberry pi, per second, only ten images
have been sent to the local pc. After receiving the image, the image goes through the
pre-processing steps that include removing the upper part of the image, blurring the image,
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transforming the image from RGB to YUV and resizing the image. Then the pre-processed
image is sent to the pretrained deep learning model based upon the extended version of
the Nvidia CNN model for the self-driving car. The pretrained model can predict what the
steering angle for that image in that situation is. The steering angle data is transferred to
the raspberry pi through the previously established communication. Based on this steering
angle, the raspberry pi decides which direction it should advance, either forward, left, right,
or reverse. This instruction is transferred to the self-driving product delivery car. Based on
the instruction, the vehicle follows the direction. From the IP address, one can find out the
geographical position of the vehicle and track it. Furthermore, the system visualizes the
geographical position, i.e., longitude and latitude, through a well-organized map. Each
step is discussed in upcoming sections.

This section may be divided into subheadings. It should provide a concise and
precise description of the experimental results, their interpretation, and the experimental
conclusions that can be drawn.

3.1. Functional Hardware Units of the System

To develop the system, we require hardware tools as well as software tools. In our
project, we have used different components for controlling speed, direction, transmitting
and receiving data, and showing the vehicle’s speed on display. The hardware components
used in our project are enlisted below:

1. Raspberry Pi 3 Model B+
2. NoIR Camera with Night Vision
3. Motor Driver IC (L298)
4. Plastic Gear motor
5. 3 cell Lipo Battery (12V)
6. Buck Converter
7. Acrylic Chassis Board
8. Connecting wires
9. Switch

3.2. Functional Software Tools of the System

To develop the system, we require software tools along with hardware tools. To drive
the hardware, the software performs a leading role. Following software, programming
language, library, package, etc., are used in our work:

1. Python programming language: Python is a high-level, general-purpose program-
ming language.

2. Google Colab: Colaboratory (also known as Colab) is a free Jupyter notebook environ-
ment running in the cloud and storing on Google Drive notebooks.

3. Numpy: NumPy is a library that supports multi-dimensional arrays and matrices.
4. Pandas: Pandas is used for data manipulation and analysis.
5. Matplotlib: Matplotlib is the Python programming language plotting library.
6. Keras: Keras is an open-source neural-network library written in Python. It can run

top of TensorFlow, R, Theano or PlaidML, to allow quick experimentation with deep
neural networks [61].

7. Tensorflow: TensorFlow is an open and free software library for data flow used for
machine learning applications like neural networks.

8. Imgaug: A library for image augmentation in machine learning experiments, particu-
larly CNN (Convolutional Neural Networks).

9. OpenCV: OpenCV-Python is OpenCV’s Python API. It integrates OpenCV C++ API’s
best qualities with Python language.

10. Scikit-learn: It is a free machine learning library for the Python programming language.
11. VNC viewer: VNC Viewer transforms a mobile into a virtual desktop, giving one imme-

diate access from anywhere in the world to one’s Mac, Windows and Linux computers.
12. Sublime Text 3: Sublime Text is an advanced script, markup and prose text editor.
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13. Geoip2
14. Folium

3.3. Power Supply Strategy

The power supply strategy is displayed in Figure 7. A 3cell 1500 mah 12V Lipo battery
is used as the primary power source that supplies the power to the raspberry pi and L298
motor driver. The raspberry pi requires 5V and 3A to come into the working state.

Sensors 2022, 22, 126 9 of 25 
 

 

10. Scikit-learn: It is a free machine learning library for the Python programming lan-
guage. 

11. VNC viewer: VNC Viewer transforms a mobile into a virtual desktop, giving one 
immediate access from anywhere in the world to one’s Mac, Windows and Linux 
computers. 

12. Sublime Text 3: Sublime Text is an advanced script, markup and prose text editor. 
13. Geoip2 
14. Folium 

3.3. Power Supply Strategy 
The power supply strategy is displayed in Figure 7. A 3cell 1500 mah 12V Lipo battery 

is used as the primary power source that supplies the power to the raspberry pi and L298 
motor driver. The raspberry pi requires 5V and 3A to come into the working state. 

 
Figure 7. Power flow strategy. 

A direct connection with the battery may cause the death of raspberry pi because of 
the overpowering supply. So, to regulate the power supply, we have placed a buck con-
verter in between lipo battery and raspberry pi that continuously provides 5V and 3A. 
The raspberry pi connects with the buck converter through a micro USB cable. 

3.4. Deep Learning Predictive Model 
Figure 8 is a step-by-step developing process of the predictive model to forecast the 

steering angle based upon the given road image. 

Figure 7. Power flow strategy.

A direct connection with the battery may cause the death of raspberry pi because
of the overpowering supply. So, to regulate the power supply, we have placed a buck
converter in between lipo battery and raspberry pi that continuously provides 5V and 3A.
The raspberry pi connects with the buck converter through a micro USB cable.

3.4. Deep Learning Predictive Model

Figure 8 is a step-by-step developing process of the predictive model to forecast the
steering angle based upon the given road image.

3.5. Dataset Collection

We need a dataset containing a massive collection of road images and steering angles
against that image for a deep learning predictive model. Different nations’ legislators
(e.g., the USA, China, Australia, Singapore, and South Korea) [62–68] have established
or are adopting different regulating measures to enhance the security and privacy of
data utilized and sent by autonomous cars. The gathering of data on public roadways
is essential for self-driving car autonomy [69]. There exist several datasets developed
by individuals or organizations such as Sullychen [70], Nvidia [32], Udacity, commaai,
Apollo [71], etc. However, the dataset is too large and beyond our processing capability
because of our limited computational resources. For example, the opensource dataset by
commaai is 45 GB in compressed and 80 GB in uncompressed [72]. In Ref. [73], the authors
provide 27 publicly available vehicle datasets, assess them based on various parameters,
and recommend selecting the most suited dataset for specific goals. Furthermore, Udacity
published a huge open-source dataset in a sunny and overcast environment ranging from
23 GB to 183 GB in size [74]. So, for experimental purposes and considering the limited
hardware resources we have developed our own dataset using an open-source Udacity
simulator [75]. This simulator was designed for a Nanodegree program of Udacity in a
unity environment with two moods. One is training mood and another one autonomous
mode. One can drive a car in two tracks, and at the time of driving the steering angle,
throttle, speed, etc., is recorded against each image. At the training mood of the Udacity
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simulator, one needs to set the path directory where the image will be saved and the
steering angle is saved as a log file against each image.

We have collected the data on track two and saved the data into a folder shown in
Table 1. There have three cameras in the Udacity simulator that track center, left, right
images accordingly. Besides steering angle, it also saves the throttle, reverses the speed at
that time. The images are saved in jpg format into a different folder, while a log file into
CSV format tracks the image path. In this way, we have collected more than 8.4K images
based on developing our predictive model.
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Table 1. Recorded data at training mode.

Center Left Right Steering Throttle Reverse Speed

E:\android\curly_final\
IMG\center_2019_04_
12_01_52_50_770.jpg

E:\android\curly_final\
IMG\left_2019_04

_12_01_52_50_770.jpg

E:\android\curly_final\
IMG\right_2019_04

_12_01_52_50_770.jpg
0 0 0 0.00014

E:\android\curly_final\
IMG\center_2019_04

_
12_01_52_50_846.jpg

E:\android\curly_final\
IMG\left_2019_04_

12_01_52_50_846.jpg

E:\android\curly_final\
IMG\right_2019_04_
12_01_52_50_846.jpg

0 0 0 0.000199

E:\android\curly_final\
IMG\center_2019_04_
12_01_52_50_917.jpg

E:\android\curly_final\
IMG\left_2019_04_

12_01_52_50_917.jpg

E:\android\curly_final\
IMG\right_2019_04_
12_01_52_50_917.jpg

0 0 0 0.00026

3.6. Normalization

To understand the data distribution against the steering angle, we need to visualize
the dataset. Through histogram, in Figure 9, we have visualized the data across 25 bins
where the zero steering angle is too high, about more than 4K. So, we need to remove zero
biased data so that the model generalizes the steering angle.
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Figure 9. Visualization of the dataset.

We have considered a maximum of 600 hundred images per bin (Figure 10). So, the more
than 600 images bin keeps a maximum of 600 images and removes the rest of the images.
After this type of normalization, our dataset is down from 8.4K to 4K, which is too low.
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To increase the dataset, we have also considered the left and right images. The steering
angle in the dataset is actually based upon the center image. So, the steering angle will be
slightly sifted from the center for the left and right images. We have considered 0.15 positive
sifted for the left image and 0.15 negative shifted for the right image. Furthermore, the left
and right images help us more to generalize the dataset like this type of road image may
come into a real scenario. After this technique, the size of the dataset became more than
12.8K.

3.7. Augmentation

Our dataset does not resemble real-world road data, such as gloomy environments,
zoomed views, and so on, as we employed a simulator. However, even now, the size of the
photograph is insufficient. Augmentation is a procedure that artificially increases a training
dataset’s size by modifying the images in the dataset. ImageDataGenerator, a Keras deep
learning module, is mostly used in image data augmentation techniques. Among various
augmentation techniques, we experimented with four approaches: zooming, panning,
brightness, and random flipping that best fit our data.

In the zooming technique, the image is zoomed randomly by interpolating pixel values
or adding new pixel values around the image. If a float is specified, [1−value, 1+value] will
be the zoom range. So we do not zoom across the x-axis, but across the y-axis, we zoom at
1.3 scales. Figure 11 is a sample of the zoomed image.
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To pan an image, we have selected the following parameters for x and y and a sample
image is displayed in Figure 12.

translate_percent = {“x”: (−0.1, 0.1), “y”: (−0.1, 0.1)}
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The brightness of the image can be changed either by randomly darkening images,
brightening images or both. Values underneath 1.0 obfuscate the image, e.g., [0.5, 1.0],
whereas values greater than 1.0 illuminate the object, e.g., [1.0, 1.5] where 1.0 does not affect
illumination. We used a scale from 0.2 to 1.2, a sample shown in Figure 13.
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Flipping into left or right is another technique used in image augmentation. For
example, the right-oriented images turned left and left-oriented into right. In previous
approaches, we do not need to change the steering angle across the changing of the images.
However, in the case of flipping, the road image is the opposite. So, we need to flip the
steering angle across the image. A sample flipped image has been displayed in Figure 14
with the flipped steering angle.
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3.8. Pre-Processing of the Dataset

Pre-processing is another crucial technique to smooth the image before feeding it into
training steps. We have considered five pre-processing methods. First, an original image
and after the pre-processing step, the pre-processed image is shown in Figure 15. From the
original image, we have seen that the top part contains natural scenery that do not have
any value in steering angle prediction. Besides, removing this part also minimize the size
of the image.
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Figure 15. Pre-processed image.

The YUV color model is closer to human color perception than the standard RGB
model. So, we convert the RGB image into YUV format. Then, blurring the image remove
the noise and clean the image. We have used gaussian blur with 3 × 3 kernel size. Then we
resize the image into 200 × 64. Finally, to normalize the pixel value, we divide each value
via 255 as the value range is 0 to 255 in the original image.

3.9. Splitting of the Dataset

After pre-processing, the images need to be split into training and validation sets. The
model learns the steering angle through the training set, and via the validation set, it will
examine how accurately it learns. We preserve 20% of data for validation purposes so
that after training, we can test the performance of the trained model how much it learns.
Figure 16 clearly states that the distribution of the training and validation set is quite similar
and so fit for the pass into training step.
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3.10. Convolution Neural Network Architecture

A deep learning Convolution Neural Network (CNN or ConvNet) is a subset of deep
neural networks, most commonly used in visual image processing. To train and test deep
learning CNN models, each image will go through a sequence of convolution layers with
kernels, pooling layer, fully connected layers and apply activation function (softmax, tanh,
ReLu etc.) to classify an object with probabilistic values. Figure 17 is a full CNN flow to
analyze an image as input and identify the objects according to values.
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Figure 17. A CNN network with many convolutional layers. 

The first layer to extract features from an input image is convolution. Convolution is 
a dot product of an input image with a kernel to understand the feature. To understand the 
feature for an image, there have to be various types of convolution kernels. Despite defining 
the kernel, in CNN, we represent the number of kernels with the dimension. We have fol-
lowed the Nvidia CNN model to design our deep learning CNN architecture (Figure 18). 
Nvidia experiments with this CNN architecture in their self-driving project with more than 
72-h of video data. They tuned various parameters and found better outcomes for this net-
work. We also found promising results from this architecture. This architecture has nine 
layers combining five convolution layers, three densely connected layers and one output 
layer. The first three convolution layers are glued with 2 × 2 subsamples where the first 
layer, the second layer, third layer have 24, 36, 48 kernels, respectively, with 5 × 5 kernel 
size. The following two convolution layers include 64 kernels with 3 × 3 size features. Then 
we flatten the matrix and connect the flatten layer with a dense layer having 256 neurons. 
The successive two dense layers have 100, 10 neurons accordingly. The final one is the out-
put layer with one neuron. In each layer, we have used ‘elu’ activation function but the 
output layer. To optimize the model, we have chosen the Adam optimizer. For each deep 
learning model, the Adam optimization algorithm, an extension to stochastic gradient de-
scent, was used as the optimization algorithm. Recently it has seen broader adoption of 
computer vision and natural language processing for deep learning applications.  

Figure 17. A CNN network with many convolutional layers.

The first layer to extract features from an input image is convolution. Convolution is a
dot product of an input image with a kernel to understand the feature. To understand the
feature for an image, there have to be various types of convolution kernels. Despite defining
the kernel, in CNN, we represent the number of kernels with the dimension. We have
followed the Nvidia CNN model to design our deep learning CNN architecture (Figure 18).
Nvidia experiments with this CNN architecture in their self-driving project with more than
72-h of video data. They tuned various parameters and found better outcomes for this
network. We also found promising results from this architecture. This architecture has nine
layers combining five convolution layers, three densely connected layers and one output
layer. The first three convolution layers are glued with 2 × 2 subsamples where the first
layer, the second layer, third layer have 24, 36, 48 kernels, respectively, with 5 × 5 kernel
size. The following two convolution layers include 64 kernels with 3× 3 size features. Then
we flatten the matrix and connect the flatten layer with a dense layer having 256 neurons.
The successive two dense layers have 100, 10 neurons accordingly. The final one is the
output layer with one neuron. In each layer, we have used ‘elu’ activation function but
the output layer. To optimize the model, we have chosen the Adam optimizer. For each
deep learning model, the Adam optimization algorithm, an extension to stochastic gradient
descent, was used as the optimization algorithm. Recently it has seen broader adoption of
computer vision and natural language processing for deep learning applications.

Because adjusting the parameter learning rates looking at the average initial moments
(the mean) as in RMSProp, Adam uses the sum of the gradient’s second moments (the
uncentric variance). The algorithm explicitly determines an exponential growth rate of
the gradient and the square gradient. The beta1 and beta2 parameters regulate the decay
rates of such moving averages. The learning rate used in our model is 0.0001, and the
mean squad error is a loss function. Despite fitting all the images into RAM, we have fit the
dataset through a batch generator. We run the model with 20 epochs. Then after training,
we visualize the loss rate and accuracy rate. If the model loss and accuracy rate are not
good, we go back to the pre-processing steps and follow the same flow and again train and
visualization. After several times experiment, we have found an optimized model. Then
we have saved the model into hdf5 file format, where the network architecture and the
weight are stored.

After preparing the trained model, we have tested the model into a Udacity simulator
in an autonomous model where the model is fitted with the simulator. The input image fits
the model after pre-processing steps and predicts the steering angle following which the car
moves forward. We have developed a prototype to experiment with how the self-driving
car model works in real life from the perspective of Bangladesh. We assemble the hardware
parts, including 4-wheel chassis board, 4 motors, L298 motor driver, Lipo battery, buck
converter, raspberry pi, camera, power switch, etc.
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3.11. Driving Instruction through L298 Motor Driver

Four motors are connected with four wheels, and the L298 motor driver controls the
direction and rotation of the motor. Battery power is distributed to the L298 motor driver
and raspberry pi with a buck converter and a USB cable. A Noir Camera is placed in front
of the camera and directly attached to the raspberry pi. The camera module captures the
road video and passes the image to the raspberry pi at a 10 fps rate. The raspberry pi
passes the image to the pc through server communication on TCP protocol. The pretrained
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model takes the image as input, predicts the steering angle, and transfers it back to the
raspberry pi. Based on the steering angle, the raspberry pi commands the L298 motor
driver to move accordingly.

The working procedure of the L298 motor driver is shown in Figure 19. The out pin 1,
2 is connected with the right motor and pin 3, 4 with the left motor. Enable pin 1 for the
right motor that is connected with GPIO pin 4 of the raspberry pi. Similarly, enable pin
2 for the left motor with GPIO pin 27. Input pin 1, 2 of the L298 driver is connected with
GPIO 17, 22 for the right motor and GPIO 23, 24 with input pin 3, 4 for the left motor.
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4. Experimental Result

We have developed a prototype to experiment with how the self-driving car model
works in real life from the perspective of Bangladesh (Figure 20). First, we assemble the
hardware parts, including 4-wheel chassis board, 4 motors, L298 motor driver, Lipo battery,
buck converter, raspberry pi, camera, power switch etc. Then, four motors are connected
with four wheels, and the L298 motor driver controls the direction and rotation of the motor.
Finally, battery power is distributed to the L298 motor driver and raspberry pi with a buck
converter and a USB cable.
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communication on TCP protocol. The pretrained model takes the image as input, predicts 
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The performance of the car is tested on the actual road track. The vehicle is tested in
both lightening and cloudy atmospheres to understand its behavior on the change of the
environment. Figure 21a represents the lightening environment, and Figure 21b a little bit
of a cloudy environment. In both environments, the car performs very well to maintain its
track on the actual road.

The Noir camera module is placed in front of the camera and directly attached to the
raspberry pi. The camera module captures the road video and passes the image to the
raspberry pi at a 10 fps rate. The raspberry pi passes the image to the pc through server
communication on TCP protocol. The pretrained model takes the image as input, predicts
the steering angle, and transfers it to the raspberry pi. The car moves towards its direction
based upon the steering angle. The loss rate of the deep learning CNN model is shown in
Figure 22. From this scenery, we have seen that the loss rate is decreasing for both training
and validation datasets regarding increasing the number of epochs. Validation loss and
training loss difference is very well. Therefore, the model is neither overfitted nor underfit.

The accuracy of the model is measured in various environments or turning. Table 2 lists
all the accuracy where on lightening conditions the model outperforms then cloudy climate.
Similarly, right turning accuracy is 89.3% higher compared to straight and left turning.

In terms of accuracy, we compared our model to the previous literature in Table 3 as
well. The temporal fusion process employed in the TCNN setup is temporal convolution.
A fixed-length window of three (TCNN3) and nine (TCNN9) seconds was used. The
performance of TCNN models continues to increase, and the larger the time horizon, the
better. That’s why TCNN9 accuracy is 84.6% better than TCNN3 83.3%. However, it needs
a fixed size history window and is more memory intensive than the LSTM-based method.
It performs similarly 84.5% to TCNN9 when using the CNN-LSTM method. While the
Nvidia CNN architecture studied in our research shows an overall 89.2% that is notable
than other configurations.
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Table 2. Performance of the model on various environment/turn.

Environment/Turning Accuracy

Cloudy 88.9%

Lightening 89.6%

Left 87.1%

Right 89.3%

Straight 89.0%

Table 3. Accuracy comparison with previous literature proposed architecture.

Configuration Accuracy

TCNN3 83.3%

TCNN9 84.6%

CNN-LSTM 84.5%

Nvidia CNN 89.2%

The performance of the whole autonomous product delivery car network is recorded
on a per-frame basis. The camera sensor on the car passes 10 frames per second to the
remotely connected high configuration pc via raspberry pi that requires 0.07 sec per frame.
The image processing and to be predicted the steering angle requires 0.02 sec per frame. The
steering angle info then sent back to the raspberry pi to drive the car accordingly requires
another 0.03 sec. The network requires 0.12 sec per frame from image capture to prediction.
The performance of the trained model is experimented with using the Udacity simulator in
autonomous mode. A few snapshots from the various angle in autonomous mode have
been demonstrated in Figure 23. Through socket programming, the Udacity simulator
passes the road image to the model and predicts the steering angle. This steering angle
back to the car, and the vehicle moves according to that angle. The predicted steering angle
is shown in the top-left position of the Udacity simulator. Figure 23a is a sample for a left
turn where we have found that the model predicts angle as −12.16◦ and Figure 23b another
rightly turned position and model predict 8.50◦ steering angle. More curved situations are
also displayed in Figure 23c, complex right turn, and 23d, hill tracked right turn, where the
model predicts 17.25◦ and 17.09◦, respectively. Furthermore, the predicted steering angle is
shown in the command prompt at the left position of the images.
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tures to track the car immediately. At the time of product delivery, the vehicle owner can 
track his vehicle at any time. Geoip2 library is used to track the car from its IP address. 

After being given the IP address, geoip2 returns the geographical data of that vehicle. 
Those geographical data, i.e., longitude and latitude, are visualized through the Folium 
library of Python programming language. A demonstration of the current position of the 
self-driving product delivery vehicle is shown in Figure 24. 
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The visualization of the geographical position of the vehicle is one of the great features
to track the car immediately. At the time of product delivery, the vehicle owner can track
his vehicle at any time. Geoip2 library is used to track the car from its IP address.

After being given the IP address, geoip2 returns the geographical data of that vehicle.
Those geographical data, i.e., longitude and latitude, are visualized through the Folium
library of Python programming language. A demonstration of the current position of the
self-driving product delivery vehicle is shown in Figure 24.
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From the perspective of Bangladesh Road, the model is tested in several environ-
ments such as darkness, brightness distortion, gloomy atmosphere, etc., and performs at 
a satisfactory level. A source to destination position is shown in Figure 25. Because of the 
diverse environment augmentation to the original dataset, the vehicle is fit for the actual 
road of Bangladesh. We have experimented with the car at the Chittagong—Cox’s Bazar 
highway at the Rahattarpul area. During the self-driving vehicle movement, we have 
stored several pre-processed images that are sent from the Raspberry pi attached camera 
module shown in Figure 26. 
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From the perspective of Bangladesh Road, the model is tested in several environments
such as darkness, brightness distortion, gloomy atmosphere, etc., and performs at a satis-
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factory level. A source to destination position is shown in Figure 25. Because of the diverse
environment augmentation to the original dataset, the vehicle is fit for the actual road of
Bangladesh. We have experimented with the car at the Chittagong—Cox’s Bazar highway
at the Rahattarpul area. During the self-driving vehicle movement, we have stored several
pre-processed images that are sent from the Raspberry pi attached camera module shown
in Figure 26.
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Figure 26. Sent Pre-processed image at testing time of the vehicle. 

5. Discussion and Conclusions 
There is a lot of trouble with on-time product delivery from Bangladesh’s perspec-

tive, and human decision-making errors cause severe road accidents. Many drivers obey 
their feelings even though they are not correct in the moment. Thus, driving system auto-
mation will solve those problems. Therefore, autonomous vehicles can ensure on-time 
product delivery and reduce accident rates because of human error. We have developed 
Delicar, such a low-cost self-driving product delivery vehicle where the camera placed on 
the roof of the vehicle capture the image and raspberry pi sends the image to the pre-
trained model for steering angle with respect to that image. 

Moreover, it is low in cost and easy to implement. However, there does not exist any 
authentication system to receive the product. Anyone from the destination can receive the 
product that is a shortcoming of the study. Extensive chances of development in this work 
are kept open. Lots of essential features can be added to it in the future. To detect damages 
and holes in preceding the vehicles in the road using cameras and sensors and produce 
warning system is the future scope of our research along with double step authentication to 
receive the product such as password, fingerprint, etc. The future direction of the study also 
includes the most effective path programming and obstacle avoidance to reach the destina-
tion safely and quickly. The interplay of smart people, smart technology, and smart pro-
cesses, which may be shown as the Smart Golden Triangle, eventually determines the suc-
cess of smart cities. Such an intelligent product delivery car will drive the smart city to the 
next level. However, in Bangladesh, the traffic congestion costs 3.2 million working hours 
daily, BDT 200 billion annually. To ensure the traffic rules are followed and strictly avoid 
overtaking, the self-driving car is a great alternative. As an impact of such a solution, self-
driving product delivery cars will contribute to the economy via utilizing very few human 
resources. This autonomous product delivery car will advance the e-commerce industry to 
the next level by ensuring on-time delivery. In supply chain management, self-driving prod-
uct delivery cars may not only have a significant influence on logistics by lowering costs 
and delays, but they could also have a significant impact on distribution and manufacturing 
centers. Therefore, the Government should instantly install this proposed system to deliver 
the product in time to save Bangladesh’s economic deterioration. 
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5. Discussion and Conclusions

There is a lot of trouble with on-time product delivery from Bangladesh’s perspective,
and human decision-making errors cause severe road accidents. Many drivers obey their
feelings even though they are not correct in the moment. Thus, driving system automation
will solve those problems. Therefore, autonomous vehicles can ensure on-time product
delivery and reduce accident rates because of human error. We have developed Delicar,
such a low-cost self-driving product delivery vehicle where the camera placed on the roof
of the vehicle capture the image and raspberry pi sends the image to the pre-trained model
for steering angle with respect to that image.

Moreover, it is low in cost and easy to implement. However, there does not exist any
authentication system to receive the product. Anyone from the destination can receive the
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product that is a shortcoming of the study. Extensive chances of development in this work
are kept open. Lots of essential features can be added to it in the future. To detect damages
and holes in preceding the vehicles in the road using cameras and sensors and produce
warning system is the future scope of our research along with double step authentication
to receive the product such as password, fingerprint, etc. The future direction of the study
also includes the most effective path programming and obstacle avoidance to reach the
destination safely and quickly. The interplay of smart people, smart technology, and smart
processes, which may be shown as the Smart Golden Triangle, eventually determines the
success of smart cities. Such an intelligent product delivery car will drive the smart city to
the next level. However, in Bangladesh, the traffic congestion costs 3.2 million working
hours daily, BDT 200 billion annually. To ensure the traffic rules are followed and strictly
avoid overtaking, the self-driving car is a great alternative. As an impact of such a solution,
self-driving product delivery cars will contribute to the economy via utilizing very few
human resources. This autonomous product delivery car will advance the e-commerce
industry to the next level by ensuring on-time delivery. In supply chain management,
self-driving product delivery cars may not only have a significant influence on logistics by
lowering costs and delays, but they could also have a significant impact on distribution and
manufacturing centers. Therefore, the Government should instantly install this proposed
system to deliver the product in time to save Bangladesh’s economic deterioration.
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