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Abstract—Big Data pipelines are essential for leveraging Dark Data, i.e., data collected but not
used and turned into value. However, tapping their potential requires going beyond existing
approaches and frameworks for Big Data processing. The Computing Continuum enables new
opportunities for managing Big Data pipelines concerning efficient management of
heterogeneous and untrustworthy resources. This article discusses the Big Data pipelines
lifecycle on the Computing Continuum, its associated challenges and outlines a future research
agenda in this area.
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CLOUD COMPUTING has been a major dis-
ruptive technology in the last decade, providing
resources-as-a-service for diverse Internet appli-
cations and offering elastic capacity and cus-
tomisable connectivity over a large-scale network.
However, Big Data processing applications’ re-
silience, sustainability, and human-centric col-
laborative requirements demand an interoperable
end-to-end ecosystem that pushes the data cen-
tre infrastructure services towards remote nodes
closer to the data sources. In this context, it
is crucial to employ serverless computing and
blockchains technologies to develop a new gen-
eration of scalable and secure Big Data-aware
Cloud infrastructures [1]. The Computing Con-
tinuum extends the Cloud services with emerging
Edge and Fog computing paradigms, reducing
overheads for transferring distributed data into
remote data centres [2]. In the Big Data domain,
eminent challenges in supporting the processing
of Big Data remain, including effective discovery,
modelling and simulation of Big Data pipelines
and their trustworthy deployment over heteroge-
neous resources from different providers [3].

Big Data pipelines are composite pro-
cessing and communication streams
with non-trivial properties and char-
acteristics. Examples of the so-called
Big Data ”Vs” include volume, ve-
locity, variety, veracity, validity, value,
variability, venue, vocabulary, vague-
ness, etc. Big Data pipelines require
management and usage of heteroge-
neous computing resources on the
Computing Continuum; however, pro-
viding a general-purpose solution for
transparent Big Data pipelines charac-
terisation and control across the Com-
puting Continuum is still an open re-
search problem [4].

This article introduces research and design
challenges related to the lifecycle of the Big Data
pipelines on the Computing Continuum, while
not aiming to give a comprehensive review. Its

ultimate purpose is to outline a research agenda
for future work in this area.

1. TAPPING THE DARK DATA
The Internet of Things (IoT) allows seamless

cyber-physical integration of computing services
in disparate application domains. The IoT de-
vices generate massive amounts of data that can
overwhelm the centralised Cloud data centres and
require low latency pre-processing and filtering
close to the data sources [5]. Without proper
handling, the collected assets often become Dark
Data, comprising the mass of text, tables, images,
and other unstructured and untapped data stored
for compliance purposes. If not exploited, Dark
Data brings organisations more risks than added
value. Additional primary sources of Dark Data
are organisations running their core services on
data generated and (pre-) processed outside the
boundaries of their (Cloud) data centres.1

To take advantage of the untapped Dark Data,
the Computing Continuum offers organisations a
dynamic infrastructure for adaptive resource man-
agement and data processing strategies, tailored
according to the application needs. However, sev-
eral barriers related to infrastructure management,
Big Data processing and Dark Data analysis hin-
der the effective use of the Computing Contin-
uum.

Dark Data and the Computing Continuum
are tightly related concepts. Dark Data produced
across the Computing Continuum in such a dis-
tributed setting is technically impractical to col-
lect and process in a centralised manner. Or-
ganisational and legal obstacles that hinder the
data transfer, storage and analysis in a centralised
location aggravate the problem and require novel
paradigms for managing data pipelines.

Cloud, Fog, Edge infrastructures
enable the generation of massive
amounts of unused and devalued
Dark Data.

1https://www.gartner.com/smarterwithgartner/
what-edge-computing-means-for-infrastructure-and-operations-leaders
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Big Data pipelines are essential for
leveraging Dark Data, but valorising
and tapping their potential requires
going beyond the current state-of-the-
art in Big Data processing.

The Computing Continuum enables
new opportunities for supporting Big
Data pipelines but requires efficient
management of heterogeneous and
untrustworthy resources.

2. AN ECOSYSTEM FOR MANAGING
BIG DATA PIPELINES ON THE
COMPUTING CONTINUUM

Tapping the full potential of Dark Data re-
quires critical research related to efficient us-
age of the Computing Continuum and Big Data
pipeline processing and analysis. The envisioned
ecosystem for managing the Big Data pipeline
lifecycle on Computing Continuum comprises a
feedback sequence of six phases, depicted in
Figure 1: Discover → Define → Simulate →
Provision → Deploy → Adapt. These phases
involve a set of relevant stakeholders discussed
in this section.

1) Discover: The Big Data pipeline definition
process starts by analysing a provider’s Dark
Data that consists of various sources (static data
and event streams). The goal is to discover the
structure and properties of the Big Data pipelines
and provide input to their definition.

2) Define: Business domain experts use
the domain-specific processing requirements ex-
tracted from the Dark Data to structure, define,
configure, and design Big Data pipelines. For this
purpose, they use a Domain Specific Language
(DSL) designed explicitly for the pipelines before
deploying them. Data scientists with artificial in-
telligence (AI) and machine learning (ML) exper-
tise inject the implementation details of the Big
Data pipelines, such as data-specific analytical
models and processing codes.

3) Simulate: Pipeline simulation (used by
business domain experts and data scientists) tests
the Big Data pipeline definition before deploy-

ment on the Computing Continuum. Simulation
is essential to estimate the resource needs for the
deployment and execution of pipelines.

4) Provision: A decentralised blockchain-
based marketplace provides a pool of Computing
Continuum resources (hardware and software)
belonging to untrustworthy third-party resource
providers for pipeline deployment (e.g., Cloud
virtual machines, integrated access devices, sen-
sors) and engaging DataOps operators.

5) Deploy: After designing and testing the
Big Data pipeline, the DataOps operators auto-
matically deploy it across the provisioned Com-
puting Continuum resources.

6) Adapt: An intelligent and data-aware adap-
tive scheduling mechanism addresses the dynamic
Big Data pipeline runtime (i.e., failures, veloc-
ity fluctuations, infrastructure drifts) under the
DataOps supervision.

A two-stage approach hides the technical
complexity between the data consumers and data
providers, making the process of managing Big
Data pipelines more transparent, efficient and
effective:

1) At design time, pipelines are discovered
(and learned) from the data sources, designed
(and customised), simulated based on the pro-
visioned marketplace Continuum resources, and
deployed as-a-Service.

2) At runtime, pipelines are monitored and
adapted as new data from the data providers is
served as input to them. They execute and deliver
valuable data outputs and insights that represent
actionable knowledge for data consumers.

In contrast to the concurrent Big Data ecosys-
tems and ETL (extract, transform, and load)
platforms, such as xPlenty2 and Airflow3, the
envisioned ecosystem encompasses the entire life-
cycle of managing Big data pipelines across the
Computing Continuum [3]. This lifecycle allows
clear separation of the design and runtime deploy-
ment of pipelines and enables modern serverless
execution [6]. The ecosystem further employs
decentralised control to support the integration of
untrustworthy third-party resources from various
control domains, which frees the stakeholders
from the monopoly of the Cloud providers [7].

2https://xplenty.com
3https://airflow.apache.org
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Figure 1. Envisioned ecosystem for managing Big Data pipelines on the Computing Continuum.

However, this benefit raises new challenges for
securing the ecosystem from third-party misuse
and lacks a common data governance framework.

Example scenario: In modern manu-
facturing industries (e.g., sanitary ce-
ramic manufacturing), business do-
main experts typically know the ab-
stract workflows executed by their or-
ganisations but are unaware of the
generated Big Data pipelines under-
neath. These industries employ ad-
vanced technologies such as smart
robotic arms, sensors, etc., ensuring
high production precision in manufac-
turing parts (e.g., ceramic-based san-
itary items). However, they do not
use the Dark Data collected within
the production line (e.g., environment
parameters like temperature, humidity,

etc.) for flexible real-time operation
and trouble-free manufacturing.

To date, experts often perform the
quality control of a manufacturing part
manually at the end of the production
process. If a component is subject to
a defect that changes its shape in a
non-recoverable way, it is impossible
to predict it before completing the
production process. On the other hand,
employing, for example, Big Data
pipeline discovery techniques allow
data scientists to identify the relevant
data pipelines underlying the produc-
tion process of the ceramic industry.
Thus, monitoring their progress over
time to pinpoint the most influential
data in case of defects. Pushing this
data in a pipeline ecosystem (benefit-
ing from a pool of resources on the
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Computing Continuum) enables deep
data analysis and allows data scien-
tists to infer, for example, significant
changes in the values that recurrently
bring to a defect. This pipeline allows
manufacturing experts predict poten-
tial (recurring) defects before the pro-
duction process by only monitoring
the behaviour of the involved data
pipelines. Consequently, this empow-
ers manufacturing industries to reduce
the time to production of a new com-
ponent targeting a zero-error manufac-
turing process.

3. BARRIERS
It is essential to lower the barriers discussed

here to enable organisations incorporate Big Data
pipelines in their business processes and make
them accessible to a broader set of stakehold-
ers regardless of the hardware infrastructure. Al-
though Grid computing addressed these barriers
at varying maturity levels, the solutions targeted
primarily scientific applications without consider-
ing Dark Data for industrial application pipelines.
Moreover, Grid infrastructures used to connect
homogeneous bare-metal supercomputers lack the
heterogeneity and mobility present in today’s
virtualised continuum platforms.

3.1. Discovery barrier
Big Data processing often relies on the as-

sumption of an already known data pipeline
anatomy at the outset before running any Big
Data processing feature [8]. Therefore, the core
challenge in discovering data pipelines is map-
ping and analysing their structure (and significant
variations) by turning torrents of event data gen-
erated by complex Computing Continuum into
valuable insights related to workflow performance
and compliance. The discovery activity is crucial
to identify bottlenecks, inefficiencies and risks
hidden behind the complexity of data pipelines,
which prevent or delay the proper pipeline enact-
ment in Cloud, Fog and Edge environments.

3.2. Definition barrier
The diversity and complexity of data mod-

elling and processing pipelines and the hetero-
geneity of the Computing Continuum require
a multidisciplinary effort using expert domain
and technical knowledge of the computational
environment. However, the collaboration between
domain and technical experts requires repeated,
time-consuming, and error-prone communication
cycles and introduces a learning gap with signif-
icant overhead. Therefore, it is critical to bridge
the gap between domain and technical experts by
using simple and easy to use high-level definition
languages and supporting tools [9].

3.3. Simulation barrier
Simulating complex and dynamic Big Data

pipelines running on top of many heterogeneous
services and infrastructure resources is essential
for increasing their performance and accuracy.
Existing simulation approaches in business pro-
cess and workflow modelling rely on prior per-
formance knowledge, such as throughput, time
and resource utilisation, and are rarely accurate.
Since Big Data pipeline execution and throughput
are non-deterministic (i.e., vary significantly on
the heterogeneous computing and network re-
sources), it is critical to provide pipeline simu-
lation frameworks that help predict their overall
performance across the Computing Continuum
analytically. The simulation tool needs to imple-
ment a step-level performance analysis to auto-
matically predict the necessary resources with-
out the need for expensive deployments and to
measure the performance of individual steps for
scaling the pipeline steps [10].

3.4. Provisioning barrier
Provisioning resources in the Cloud requires

selecting and trusting the provider and its re-
sources, difficult to achieve in the Computing
Continuum with a myriad of small providers and
limited resources [11]. This challenge requires
new models for open hardware and software
resource marketplaces in the Computing Contin-
uum, together with novel trust mechanisms. Re-
cent advancements in blockchain technologies en-
able heavy computations on untrustworthy servers
whilst delegating the trust to smart contracts. This
principle of off-chain computing builds on repli-
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cation, reputation and decentralised consensus
algorithms, hardware cryptography and monetary
incentives to extend some properties of smart
contracts (trust, traceability and transparency) to
regular Cloud resources. Off-chain computing,
however, is still limited to simple applications,
a pay-per-task model, significant deadlines, and
offers no service-level agreement (SLA). To sup-
port modern Big Data pipelines and compete
with the leading Cloud computing platforms, it
is critical that provisioning mechanisms for Fog
and Edge computing cater towards supporting the
same applications and providing similar SLA.

3.5. Deployment barrier
The traditional pipelines management meth-

ods use the Cloud, Fog, and Edge resources in
isolation and only explore static metrics for their
characterisation, such as data processing speed,
load-balancing, and data transmission overheads.
Therefore, the fragmented approaches lead to
inefficient pipeline deployment and overly com-
plex adaptation processes. With the advent of
microservices architectures and containerisation,
Big Data pipelines deployments must consider the
proper installation sequence, facilitate networking
connectivity, and provide optimised tasks config-
uration with guaranteed security and scalability
[12]. For this reason, the deployment of complex
Big Data pipelines needs orchestrators capable of
exploiting the provisioned Cloud, Fog and Edge
computing infrastructure, automating the software
deployment on a large scale of heterogeneous
and distributed resources and adequately handling
the various contexts, status and lifecycle of these
resources.

3.6. Adaptation barrier
Big Data pipelines execution across the Com-

puting Continuum commonly depends on provi-
sioning and composition of resources and services
across multiple providers. Several interoperabil-
ity issues prevent efficient resource provisioning
across different network domains, such as in-
compatible transport protocols, data formats, and
missing open platform communications support.
Within a single control domain, resources and
service providers usually offer proprietary inter-
faces for infrastructure definition and resource
provisioning, limiting interoperability and locking

users to a single provider. Regrettably, existing
Cloud interoperability solutions are mostly lim-
ited to heterogeneous networked service inter-
faces, are not compatible with the Cloud stan-
dards, and ignore software component portability
across deployment interfaces, critical for Big Data
pipelines. Numerous other ad-hoc solutions rely
on manual, tedious and error-prone development
of mediators to resolve heterogeneity problems
[13].

4. GOING BEYOND STATE OF THE
ART IN RESEARCH

Overcoming these barriers requires going be-
yond the current state of the art and answer-
ing several core research questions. Table 1sum-
marises the key aspects.

4.1. Discovery
Operations managers can use advanced ana-

lytics to take a deep dive into historical process
data, identify relationships among process steps,
and optimise the factors that prove to have the
most significant effect on yield. Nonetheless, ex-
isting solutions cannot align executed processes
and their associated data pipelines to meet re-
quirements related to compliance and efficiency.
To this aim, organisations need a more granular
approach to discovering and diagnosing data-
intensive processes. Process mining aims to pro-
vide a solution.

State of the art While many organisations
collect vast troves of event data, they typically
use event data only for tracking purposes, not as
a basis for improving operations. There are many
hurdles to overcome for extracting event data suit-
able for process mining. These include merging
event data distributed over various sources, events
that do not point to process cases, event data con-
taining unusual behaviour, and events at different
granularity. While many successful process dis-
covery solutions in several application domains
exist, they are suitable for processes with no
incorporated data perspective [14]. Conformance
checking compares a model and an event log for
the same process to understand the presence and
nature of deviations. Most conformance checking
techniques use ad-hoc implementations of tradi-
tional searching algorithms in specific domains.
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Table 1. State of the art and research challenges

Area State of the art Research challenges

Discovery
Process discovery assumes the availability of a well-formed event
log.

Techniques to extract well-formed event logs from
heterogeneous sources.

Process discovery with no incorporated data perspective. Discovery techniques to learn the data pipelines’ un-
derlying processes.

Process mining cannot accomplish the analytics task in the presence
of Big Data.

Scalable AI-based Big Data pipeline-driven analytics.

Definition Big Data analysis solutions lack user-friendly pipeline definition
and reuse with pluggable components.

Graphical compositional DSLs for defining Big Data
pipelines, provisioning meta-pipelines libraries, and
developing extensible and pluggable container tem-
plates for pipeline steps supporting different program-
ming environments and computational resources.

Simulation There are no frameworks for testing and simulating Big Data
pipelines before deploying on the Computing Continuum.

Approaches for simulating pipelines and finding the
most cost-effective distribution of resources.

provisioning Current blockchain-based decentralised Cloud computing
approaches support stateless pipeline steps with no dependencies
and no hardware guarantees for performing individual steps.

Decentralised oracles capable of assessing the hard-
ware properties for executing the pipelines.
Improvement of off-chain computing protocols on the
blockchain for supporting interdependent and stateful
pipeline steps.

Deployment Current orchestrators are suitable to deploy, scale, and manage
applications on single data centres rather than many distributed data
centres in the Cloud.

Orchestration mechanisms with auto-scaling features
to deploy and execute pipelines on the Computing
Continuum and adapt them to data drifts or exogenous
events.

Adaptation Platforms for pipeline deployment lack support for automated
deployment with ad-hoc Edge resources and adaptive resource
provisioning with infrastructure drift-awareness.

User and provider-centred approaches for improved
and adaptive pipeline deployment, utilising resources
across various control domains.

However, when process models and event logs
are considerable, the existing approaches do not
scale efficiently due to their ad-hoc nature and
often cannot accomplish the analytical tasks [15].

Research questions for pipeline discovery
• How can we extract Big Data pipeline event

logs considering distributed data over var-
ious sources, incomplete data (i.e., with
events that do not explicitly point to any
pipeline instance), data outliers (i.e., unusual
behaviour also referred to as noise), and
different event granularity levels?

• How can we learn the structure of Big Data
pipelines from event logs containing traces
with many events, based on process mining
and AI techniques?

• How can we visualise pipelines based on a
flow-based notation, providing detailed di-
agnostics about their execution (bottlenecks,
critical waiting times)?

4.2. Definition
Ensuring a smooth usage of Cloud resources

for Big Data analysis requires developing lan-
guages and graphical interfaces that hide tech-

nical details of Cloud technologies. A practical
solution to solving such problems is DSLs that
does not target universality but a specialised set of
problems efficiently. On the other side, Big data
pipelines involve processing various inputs and
outputs between steps and data preparation, which
are highly domain-dependent. Their setup and
maintenance are complex, time-consuming, and
require multiple technologies. The heterogeneity
of necessary computing resources provided by
the Cloud and Edge for deploying such pipelines
leads to ad-hoc processing models usable only on
a specific technological stack.

State of the art Many of today’s Big Data
pipelines orchestration solutions, such as Pachy-
derm, Apache Airflow, Snakemake, Apache NiFi,
NextFlow, Tekton Pipelines and ARGO, lack a
simple DSL or graphical interface to define data
pipelines for broad application experts [16], who
require deep technical knowledge of the Cloud
software. The existing solutions also lack knowl-
edge reusability and debugging support directed
towards domain experts. In most cases, exposing
data pipelines “as-a-service” is impossible out-of-
the-box. For example, Apache Oozie and Luigi
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support Hadoop-based pipeline management but
do not provide a flexible solution implementable
in different technologies. Other partial solutions,
such as Amazon GreenGrass, Azure IoT Edge
and Apache Edgent, focus on supporting data
processing on the Edge devices but do not span
across Cloud and Edge. Applications such as
Apache NiFi and Node-RED provide pipeline
design features but do not natively support data
tasks on the Cloud and Edge devices. Some
efforts address these challenges by using con-
tainer technologies for data pipelines. In the early
days of containers, scientific workflows provided
preliminary solutions [17] to build and deploy
pipelines using Docker. Other platforms, such as
Tekton Pipelines, Argo Workflows, and Kubeflow,
have runtime container support for individual
pipeline component steps but cannot define dy-
namic pipeline executions.

Research questions for pipeline definition
• How can we capture distributed data pipeline

syntax and semantics using DSLs on the
Computing Continuum infrastructure along
with a format for data serialisation and de-
serialisation?

• How can we configure, deploy, and simulate
data pipelines and corresponding DSL com-
pilers capturing its definitions using graphi-
cal notations?

• How can we use an extensible library of pre-
defined container templates, handling var-
ious data formats and types and allowing
for injecting business logic and automated
processing of input and output types?

4.3. Simulation
Designing and implementing Big Data

pipelines requires cost and performance
optimisation of business data services over
heterogeneous resources. A viable approach
is to ensure an a-priori evaluation of the
deployment strategy. The application of
simulation techniques, based on previously
identified resource and infrastructure patterns,
allows the assessment of the distributed data
services, ensures the selection of cost-optimising
deployment strategies and identifies potential
bottlenecks (e.g., unexpected rate of data
inputs/outputs, inefficient pipeline steps).

State of the art While related problems such
as simulating Cloud deployments, Fog and Edge
computing systems, Grid computing and others
offer solutions with varying levels of maturity,
there is still a gap in state of the art in data
pipeline simulation. Several scientific workflow
simulators on computational Grids and Clouds,
such as GroudSim, GloudSim, and Dynamic-
CloudSim, scale up to hundreds of thousands of
heterogeneous machines [18], but do not provide
execution models for Edge and Fog resources.
Furthermore, their performance models focus on
virtual machine is application performance, vary-
ing parameters related to scalable hardware re-
sources and estimation of instructions per second.
Another approach in the state of the art is to sim-
ulate workflow execution by predicting the total
execution time of each task based on machine
learning [19] and or evolutionary programming
[20]. None of the workflow prediction approaches
applies to Big Data pipelines since they do not
address the dynamic nature (differing workloads
and Continuum resources during execution) or
continuous nature of the pipelines.

Research questions for pipeline simula-
tion
• How can we simulate data pipelines to eval-

uate and predict the individual step perfor-
mance?

• How can we design a performance model
based on step measurements (e.g., performed
in a sandbox) for estimating the aspects of
throughput and data transfer of Big Data
pipelines defined using a DSL?

• How can we design an execution model
to support the identification of bottlenecks
through the parameters provided by a Big
Data pipeline performance model?

4.4. Provisioning
Fog and Edge computing aim to decongest

the network by reducing the data transfers to-
wards data centres and enabling applications with
low latency requirements. This decentralisation
promises to improve the service offering and
remove the vendor lock-in. Off-the-shelf solutions
such as OpenStack and Kubernetes are not fit for
geo-distributed environments. Their controllers
cannot maintain a complete state of the resources
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where network latency is much higher than in
regular data centres. Moreover, these controllers
represent a single point of failure and a perfor-
mance bottleneck that defeats the purpose of Fog
and Edge computing.

State of the art Recent projects attempt to
combine volunteer computing (a.k.a. Desktop
Grids) with blockchain technologies to manage
distributed Cloud infrastructures [21]. Desktop
Grids such as Xtremweb and BOINC typically
implement a pull-based execution model that sup-
ports independent deterministic tasks. This model
works well with Internet latency (e.g., BOINC
pooled an average of 36.6 PetaFLOPS in March
2020) because no knowledge of the state of
resources is required to schedule tasks. However,
the control of Desktop Grids remains centralised
and prohibits the development of free economic
models for rewarding the workers. iExec imple-
mented a decentralised Cloud computing infras-
tructure based on Xtremweb featuring a market-
place for determining the price of a given execu-
tion and a replication and majority voting (needed
to protect requesters from malicious workers) on
the Ethereum blockchain. This off-chain comput-
ing technique, pursued by some projects such
as Golem and Gridcoin, shares a pay-per-task
approach and implements payment in smart con-
tracts, which removes the need for trusted parties
between the requesters and the workers. One
challenge of blockchain-based Cloud computing
infrastructures is their dynamic nature, which
causes extreme performance variability swings,
sometimes even after applying lean techniques to
analytic pipelines [22].

Research questions for resource provi-
sioning
• How can we design a decentralised market-

place for software appliances (i.e., virtual
machines, containers) with pre-installed Big
Data frameworks for publishing and mon-
etising proprietary, original cryptographi-
cally signed software?

• How can we design a decentralised
blockchain-based marketplace for
Cloud/Fog/Edge hardware devices
(e.g., servers, sensors) with hardware
specifications, performance and reputations

metrics certified by decentralised oracles
accessible through a REST interface?

• How can we create a decentralised execution
infrastructure of trusted servers advertised on
a marketplace and accepting authenticated
client workloads?

4.5. Deployment

The advent of Cloud and Big Data sys-
tems and microservices brought forth the needs
of environment provisioning and auto-scaling.
Hence, the management of applications’ lifecy-
cle orchestration became an integrated part of
resource managers, i.e., orchestrators. Tools such
as Mesos, Yarn, OpenShift, Docker Swarm and
Kubernetes enable the deployment of contain-
ers and the applications’ lifecycle management.
Kubernetes is currently the dominant tool for
managing containerised applications.

State of the art Unification of Cloud and
Edge processes requires evolving the software
to deploy, scale, and manage applications in the
Cloud, historically designed for a single data cen-
tre [23]. However, some are starting to integrate
the Edge through proper abstraction mechanisms,
resource disaggregation, and challenging network
orchestration issues [24]. Ongoing efforts to adapt
Kubernetes for the Edge include open-source at-
tempts such as KubeEdge, startups such as Ori,
Rafay Systems, and Volterra, and existing Cloud
providers and initiatives like Google’s Anthos,
Microsoft’s Azure Arc, and VMware’s Tanzu.

Research questions for pipeline deploy-
ment

• How can we design an orchestrator capable
of providing flexible, scalable and resilient
deployment of Big Data pipelines over the
Computing Continuum?

• How can we monitor and enforce data
pipelines while providing automated elastic-
ity and featuring real-time event detection
and decision?

• How can we ensure secure and resilient or-
chestration of Big Data pipelines with online
adaptation?
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4.6. Adaptation
The resource heterogeneity in the Computing

Continuum limits the possibility for provisioning
and orchestrating resources belonging to different
providers, hindering the execution of the complex
data pipelines across resources residing in other
control domains. The major Cloud providers (e.g.,
Amazon, Google, Microsoft) provide resources
through an automated centralised infrastructure
deployment. They do not support the utilisation
and integration of third-party provisioning and
orchestration algorithms that manage resources
across multiple network domains.

State of the art Resource provisioning is es-
sential for transparent pipelines execution in the
Computing Continuum. Recently, several promis-
ing resource management and provisioning ap-
proaches in the Computing Continuum emerged,
such as heterogeneous pooling of devices with
unpredictable utilisation rates [2] and resource al-
location based on Petri Nets [25]. These methods
focus on resource provisioning by considering
a limited set of non-functional parameters and
optimising either a single constrained objective
or a set of weighted objectives combined in a
linear function. From the perspective of infras-
tructure description and automated deployment,
several industrial solutions, such as CloudForma-
tion, Terraform, and Heroku, address important
issues, but support infrastructure description and
automated deployment on ad-hoc Edge resources.
Furthermore, they provide no adaptive pipeline
resource provisioning support with infrastructure
drift awareness.

Research questions for pipeline adapta-
tion

• How can we realise smart data-aware pro-
visioning of resources and services across
the Computing Continuum with adaptation
to infrastructure drifts?

• How can we design an engine for intelligent
on-the-fly configuration of heterogeneous re-
sources in the Computing Continuum with
improved interoperability?

• How can we monitor dynamic resource pro-
visioning with a time-critical assessment of
SLA violations?

5. SUMMARY AND OUTLOOK
In this article, we argued for the need for an

ecosystem to support the complete lifecycle of
Big Data pipeline processing to release the po-
tential of Dark Data. The ecosystem must enable
their discovery, definition, model-based analysis
and optimisation, simulation, deployment, adap-
tive runtime monitoring on a decentralised het-
erogeneous Computing Continuum infrastructure.
We discussed the main concepts and state of
the art for these phases, along with key consid-
erations. Finally, we suggested several research
problems to serve as a research plan for the
future.
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