
SIM-PIPE DryRunner: An approach for testing

container-based big data pipelines and generating

simulation data

Aleena Thomas

SINTEF AS

Oslo, Norway

Aleena.Thomas@sintef.no

Nikolay Nikolov

SINTEF AS

Oslo, Norway

Nikolay.Nikolov@sintef.no

Antoine Pultier

SINTEF AS

Oslo, Norway

Antoine.Pultier@sintef.no

Dumitru Roman

SINTEF AS

Oslo, Norway

Dumitru.Roman@sintef.no

Brian Elvesæter

SINTEF AS

Oslo, Norway

Brian.Elvesæter@sintef.no

Ahmet Soylu

Oslo Metropolitan University

Oslo, Norway

Ahmet.Soylu@oslomet.no

Abstract—Big data pipelines are becoming increasingly vital in
a wide range of data intensive application domains such as digital
healthcare, telecommunication, and manufacturing for efficiently
processing data. Data pipelines in such domains are complex
and dynamic and involve a number of data processing steps that
are deployed on heterogeneous computing resources under the
realm of the Edge-Cloud paradigm. The processes of testing and
simulating big data pipelines on heterogeneous resources need to
be able to accurately represent this complexity. However, since
big data processing is heavily resource-intensive, it makes testing
and simulation based on historical execution data impractical.
In this paper, we introduce the SIM-PIPE DryRunner approach
– a dry run approach that deploys a big data pipeline step by
step in an isolated environment and executes it with sample data;
this approach could be used for testing big data pipelines and
realising practical simulations using existing simulators.

Index Terms—Big data pipelines; Dry run; Software contain-
ers; Sandbox; Testing; Simulation

I. INTRODUCTION

The need for supporting big data pipeline processing is

increasing rapidly with more and more applications running

on the Cloud and large IoT systems handling huge volumes

of data [1]. Big data pipelines are designed to handle large

amounts of streaming and batch processing data and are be-

coming indispensable in a wide variety of application domains

[2]. One of the main challenges in managing big data pipelines

is analyzing the behaviour of different pipeline steps in order

to deploy them in a cost-effective manner. Since deploying

computing resources for these pipelines is expensive, it is

crucial to adjust the deployment parameters for optimized ex-

ecution and to ensure only required resources are provisioned

[3]. Therefore, one of the key aspects of the big data pipeline

lifecycle relates to testing and simulation before deployment in

a production setting [4]. Testing refers to executing steps in a

pipeline according to its definition, whereas simulation focuses

on estimating the performance of the pipeline in the actual

computing infrastructure by predicting the performance of the

pipeline given the execution parameters. An efficient mean

of testing and simulating pipelines before deployment allows

identifying errors and bottlenecks early and addressing them

before provisioning expensive computing resources in the

actual production environment on the Cloud-Edge continuum.

There are multiple simulation solutions for big data

pipelines (e.g., [5]–[7]). One of the main challenges with

the simulators is that most of the existing approaches rely

on results from previous runs of pipelines or analyses by an

expert in order to make predictions [4]. In the case of big data,

predicting performance using previous runs is likely to result

in high costs if the pipeline is highly computing-intensive. Big

data pipelines are complex and dynamic processes built to run

on top of a multitude of heterogeneous services and computing

resources, which makes prediction of their performance a

challenge [2]. To this end, we propose an approach—SIM-

PIPE DryRunner—based on dry running of big data pipelines.

We describe dry running of big data pipelines as the execution

of a pipeline using a sample or smaller input data size

(compared to the full-scale big data) on a test environment as

opposed to using the infrastructure for production deployment.

The overall approach is depicted in Figure 1. We assume

that the resource usage metrics for the dry run of the pipeline

on a representative set of small input data can be used

in the analysis of its behaviour for large amounts of input

data. The proposed approach deploys each step in the correct

order in an isolated testing environment, hereafter called a

sandbox. We use an isolated environment (e.g., a virtual

machine) for the dry run, since it can reduce interference from

other running applications and ensures better estimates of the

performance for the pipelines. The approach enables one to

run the pipeline and analyze it in a lower cost environment

than simulators, which do additional processing to simulate

the actual computing environment like the Cloud or Edge

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works.

This is the author accepted version of an article published in 
2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)

https://doi.org/10.1109/COMPSAC54236.2022.00182



Fig. 1. Dry run approach for testing and simulating big data pipelines.

where it will be deployed in production. The approach, firstly,

could be used to check the correctness of the pipeline and to

ensure that the pipeline is working as expected and producing

the expected output. Secondly, dry run results can be used in

simulators to aid in predicting the performance of the pipeline

and identify possible bottlenecks. Thereby, the dry run result

of the pipeline for a small data size may be used to predict the

performance for bigger data sizes, assuming that the data are

processed in chunks/slices. For example, metrics collected by

dry running with different chunk sizes can be used to estimate

infrastructure resources required for scaling the pipeline (e.g,

CPU, memory and disk size, and using multiple processes).

Software container technologies could simplify the execution

of data pipelines [8] both in isolated and production envi-

ronments by encapsulating individual data pipeline steps in

platform and programming language independent containers.

In this paper, we describe the proposed dry run approach and

present a tool—the SIM-PIPE DryRunner tool—implementing

the approach. The overall SIM-PIPE solution aims at using the

dry run results for testing the pipelines and simulating them

using existing simulators.

The rest of the paper is organized as follows. Section

II provides the description of our approach as well as the

technical architecture and implementation. In Section III, we

present a use case for the proposed approach, while Section

IV presents related work. In Section V, we summarize our

approach and provide directions for future work.

II. SIM-PIPE DRYRUNNER APPROACH

The proposed approach based on dry running of big data

pipelines relies on the use of an isolated sandbox environment

to execute pipeline steps. By maintaining an isolated testing

environment, we are able to get an estimate of the resource

usage of each step without interference from other running

processes. Moreover, the container-based implementation of

the step facilitates accurate estimation of its total execution

time in the actual deployment infrastructure. This is due to

the homogeneity of container technologies, which ensures that

the execution of the container is reproducible regardless of

the computing infrastructure in which it is executed. Thus, by

running the container-based implementations of the pipeline

steps, we ensure that we obtain values from dry run, which

can be used to predict how the pipeline behaves on resources

on the Cloud-Edge continuum.

Figure 2 shows the main steps of the dry run process. Once

a dry run is initiated, a step in the pipeline and sample data

are deployed to the sandbox using a container. During the

execution of the step, execution time will be recorded and

the sandbox will be continuously pooled for metrics about

the execution. These metrics are stored for later use. Once

the step has successfully performed the data processing task,

the resulting data will be retrieved, the running step will be

removed from the sandbox, and the same process will be

repeated for the next steps (i.e., deploy the step and feed it

with the resulting data from the previous one). Based on the

data gathered, analytics will be performed to derive results that

apply to the entire pipeline. The pipeline steps, in case of steps

performing batch processing, are provided with a sample input

to be used during the dry run. In case of steps which perform

continuous processing, there is a user defined option to provide

the number of seconds to wait before the step is terminated,

this ensures that the correctness of the step and recording of

resource usage metrics can be done for that specified amount

of time. All the details including resource usage statistics,

inputs to the steps, and outputs of the execution are stored

and eventually used to perform resource usage analytics.

In the following we describes the technical architecture and

implementation of the SIM-PIPE DryRunner tool, and outline

a typical use of the tool.

A. Technical Architecture and Implementation

In order to demonstrate the feasibility of the approach for

dry running of big data pipelines, we designed and imple-

mented a prototype application—the SIM-PIPE DryRunner

tool. It consists of several components that are deployed sepa-

rately in order to ensure an appropriate execution environment

for the dry run approach. The current version of the tool, along

with installation instructions are available on GitHub1.

Figure 3 shows the deployment topology and architecture

for SIM-PIPE DryRunner tool. The tool is designed to be de-

ployed in two separate hosts: one for hosting the front-end and

business logic, and one for hosting the sandbox environment.

The main component is the dry run controller, which performs

a step-wise analysis of the pipeline by deploying steps and

1https://github.com/DataCloud-project/SIM-PIPE



Fig. 2. The SIM-PIPE DryRunner process for testing and collecting performance data.

Fig. 3. SIM-PIPE DryRunner tool: deployment topology and architecture.

collecting relevant data. Host 1 in Figure 2 contains the dry

run controller and REST service (which serves the front-end of

the implementation) as well as the dry run data storage, which

is implemented using TimescaleDB2. In our implementation,

these sub-components are deployed on the host using Docker

containers. The necessary files for providing the input and

storing the output of each step are transmitted and stored using

an SFTP server which also runs in a Docker container in host

2. When deploying a step to be analyzed, the dry run controller

sends (if needed) data over SFTP to the sandbox host, which

makes it available to the container and executes the step.

The dry run controller and REST service are implemented

using NodeJS3 and use a number of NodeJS libraries related to

2https://www.timescale.com
3https://nodejs.org

managing the execution of containers on a target host, namely

dockerode4 for container execution control in the sandbox and

ssh2-sftp-client5 for interacting with the SFTP server on the

sandbox. The REST API is developed using GraphQL6 (a

query language for APIs). Hasura7 is used to develop and

connect to the data model of the dry run data storage. The

front-end of the SIM-PIPE DryRunner tool is implemented

using Appsmith8.

The current version of the SIM-PIPE DryRunner tool user

interface is depicted in Figure 4. The interface displays a list of

4https://github.com/apocas/dockerode
5https://github.com/theophilusx/ssh2-sftp-client
6https://graphql.org
7https://hasura.io
8https://www.appsmith.com



dry runs tied with a specific pipeline as well as the associated

runs to each dry run. For each run, it displays the run state

(“Waiting”, “Queued”, “Active”, “Completed”, “Failed”, or

“Cancelled”) as well as statistics on each of the steps. The

statistics include the used CPU, memory, network, and running

time. In addition to the statistics, the current version of the user

interface displays logs from the execution of the steps. The tool

assumes that the pipeline description is provided in the form

of a Domain Specific Language (DSL) which is described in

a Github repository9. This DSL has been developed as part of

the DEF-PIPE tool which is a GUI (Graphical user Interface)

based tool to design, implement and store big data pipelines.

More details and usage guidelines of this tool are given in a

Github repository10.

The current implementation supports explicitly step imple-

mentations as described in the big data pipeline approach in

[9], whereby each container collects input data, stores output

data, and any intermediate data separately in a file system.

Thereby, the SIM-PIPE DryRunner tool provides input data to

the steps and stores intermediate step outputs for analysing the

dry run. Other step implementations that do not use file-based

data transmission are also applicable, but the data delivery

system currently does not support this.

The dry run data storage uses a relational database model

and records each dry run with a timestamp and pipeline

identifier. Each run is also associated with the DSL model

that was used when the run was started as well as its (current)

status and the timestamps when the run was created, started,

and ended. Each run stores data for each of the steps that

are in the input DSL model with the step name, status, and

metrics about the used CPU and memory. Intermediate data

are stored on disk in a file system that are marked with the

pipeline identifier, run identifier, and step number and can be

served on request to the front-end.

B. Using the SIM-PIPE DryRunner tool

Dry run using the SIM-PIPE DryRunner tool is done

through the following steps:

• First, the user creates a new dry run for a pipeline by

providing its DSL description and sample input data using

the SIM-PIPE DryRunner tool UI.

• The user starts a new dry run and the current status of

the run and each step is displayed in the UI.

• After each step has completed execution indicated by

its status, the user can click on the step to view the

logs generated during execution, CPU usage percentage,

network usage, memory usage and maximum memory

usage over time.

• In case of failure of a step, the status of the step and

correspondingly run would indicate failure status, and

only the logs would be displayed which may help in

debugging.

9https://github.com/DataCloud-project/DEF-PIPE-DSL
10https://github.com/DataCloud-project/DEF-PIPE

• The step can also be stopped while running, and this

stops the current step and all the succeeding steps in the

pipeline.

III. USE CASE

The SIM-PIPE DryRunner tool was tested on data pipelines

in the context of a digital health system, where developers and

data engineers are using data pipelines to implement different

e-health services. The main objective of the digital health sys-

tem is to monitor, support and help patients, especially elderly,

at their homes, remotely. The system uses data pipelines to

gather sensor data (e.g., welfare sensors and medical devices)

from the patients, store and process the patient data, and

provide relevant data to the right stakeholder at the right time

(e.g., notifications of events to healthcare providers, storing

data in electronic health records, and providing data and

notifications to third party health systems).

Figure 5 illustrates a generic digital health data pipeline

that involves three steps: 1) Data generation, pre-processing

and routing, 2) Data storage and analysis, and 3) End user

application logic. The first step is deployed on the Edge,

while the two latter are deployed on the Cloud. The steps

are the same three steps shown in the SIM-PIPE DryRunner

tool UI in Figure 4. The first step involves collecting and

formatting sensor data from healthcare sensors and medical

devices that the patient uses. The second step involves storing

the data and checking it against the patient plan. The third step

involves different types of end user application logic, such as

notifying healthcare providers and submitting reports to 3rd

party healthcare systems.

Several instances and variants of data pipelines are deployed

in the digital health use case. There are pipeline instances for

each patient. Some of the challenges in managing the various

variants of pipelines relates to i) scaling individual steps of the

pipeline, ii) the need to build new applications for each new

type of sensor, and iii) finding the optimal resource allocation

for data processing steps. The SIM-PIPE DryRunner tool

is used to address these challenges, allowing the developers

and data engineers of the digital health data pipelines to

test new variants of the pipelines without deployment on

production infrastructure in order to identify trouble spots and

bottlenecks early, as well as better understand the resource

requirements required from the metrics collected by the SIM-

PIPE DryRunner tool.

IV. RELATED WORK

There are several simulation approaches for data pipelines

that include tools to simulate big data pipelines, such as

the event-based simulator GroudSim [5], and process-based

simulators GridSim [6] and CloudSim [7]. Despite the number

of simulation approaches in literature, there are few that can

be used for testing and simulation of big data pipelines. Liu et

al. [10] present a survey of scientific workflow management

systems in the context of big data pipelines, out of the five



Fig. 4. SIM-PIPE DryRunner tool front-end.

Fig. 5. SIM-PIPE DryRunner tool front-end.

systems presented only two of them (Taverna11, Swift12) had a

simulation or testing component. While Taverna is specialized

to support bio-informatics pipelines, Swift only provides tools

for unit and integration testing of pipelines. These simulators

vary in ways in which they accept data for simulating a

pipeline. Many of them run pipelines multiple times and the

results from the runs are used in simulation [11].

Iatropoulou et al. [12] present a data pipeline management

11https://incubator.apache.org/projects/taverna.html
12https://github.com/square/workflow-swift

system for container-based big data pipelines and supports

design, composition, configuration, orchestration, enactment,

and validation of end-to-end big data analytic services. Each

step in the input pipeline is provided in the form of one of

the four predefined containerized application images (named

as Apps) which is part of their microservices architecture.

Though it handles several types of big data workflows, it is

not open source and thus cannot be extended.



V. CONCLUSIONS AND OUTLOOK

We proposed a new approach—SIM-PIPE DryRunner—for

dry running of big data pipelines using an isolated sandbox

for deployment of steps. Testing and simulation of big data

pipelines is challenging, since the existing methods depend on

information from previous runs or domain expert knowledge,

which are difficult to acquire in case of big data pipelines. We

also developed an initial version of the tool—the SIM-PIPE

DryRunner tool—with a user interface in which the pipeline

designer can input and dry run big data pipelines and view the

results of the resource usage of step execution and logs. The

dry run results of the big data pipeline can be used in existing

simulators by bringing them into the respective format that

can be used as input. One limitation of this method is that

it assumes that the big data pipelines have container-based

implementations.

In the future, we aim to enable the SIM-PIPE DryRunner

tool to recommend minimum requirements for the resources

necessary to run the pipeline steps successfully (i.e., the

minimum memory and CPU requirements) and to provide

an estimation of the optimal horizontal scaling for each

individual step that will allow for executing the pipeline

without bottlenecks. Future work also involves extending

it further by integrating advanced analytics for the results

obtained from the sandbox. This involves predicting the

resource usage performance and total execution time of the

pipeline when a given input size is specified. We also aim to

analyze and quantify the impact of parallelisms for various

pipeline steps. This can be used in configuring the resources

at deployment or in scheduling algorithms. Finally, we also

plan to use the dry run results in existing simulators. This

requires investigation of input formats which is accepted by

these simulators and conversion of the output of our tool into

a format that is usable by them.

Acknowledgements. This work received partial funding from

the European Commission Horizon 2020 DataCloud project

(grant number 101016835), the NFR BigDataMine project

(grant number 309691), and the SINTEF internally funded

SEP DataPipes project.

REFERENCES

[1] R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan,
B. Varghese, E. Gelenbe, B. Javadi, L. M. Vaquero, M. A. S. Netto,
A. N. Toosi, M. A. Rodriguez, I. M. Llorente, S. D. C. D. Vimercati,
P. Samarati, D. Milojicic, C. Varela, R. Bahsoon, M. D. D. Assuncao,
O. Rana, W. Zhou, H. Jin, W. Gentzsch, A. Y. Zomaya, and H. Shen,
“A manifesto for future generation cloud computing: Research directions
for the next decade,” ACM Computing Surveys, vol. 51, no. 5, 2018.

[2] M. Barika, S. Garg, A. Y. Zomaya, L. Wang, A. V. Moorsel, and
R. Ranjan, “Orchestrating big data analysis workflows in the cloud:
Research challenges, survey, and future directions,” ACM Computing

Surveys, vol. 52, no. 5, 2019.
[3] A. Shakarami, H. Shakarami, M. Ghobaei-Arani, E. Nikougoftar, and

M. Faraji-Mehmandar, “Resource provisioning in edge/fog computing: A
comprehensive and systematic review,” Journal of Systems Architecture,
vol. 122, p. 102362, 2022.

[4] I. Bambrik, “A survey on cloud computing simulation and modeling,”
SN Computer Science, vol. 1, no. 5, p. 249, 2020.

[5] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer,
“Groudsim: An event-based simulation framework for computational
grids and clouds,” in Proceedings of the Euro-Par Parallel Processing

Workshops (Euro-Par 2020), ser. LNCS, vol. 6586. Springer, 2010, pp.
305–313.

[6] R. Buyya and M. Murshed, “Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing,” Concurrency and computation: practice and experience,
vol. 14, no. 13-15, pp. 1175–1220, 2002.

[7] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-

ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.
[8] M. Matskin, S. Tahmasebi, A. Layegh, A. H. Payberah, A. Thomas,

N. Nikolov, and D. Roman, “A survey of big data pipeline orchestration
tools from the perspective of the datacloud project,” vol. 3036, 2021.

[9] N. Nikolov, Y. D. Dessalk, A. Q. Khan, A. Soylu, M. Matskin, A. H.
Payberah, and D. Roman, “Conceptualization and scalable execution
of big data workflows using domain-specific languages and software
containers,” Internet of Things, vol. 16, p. 100440, 2021.

[10] J. Liu, S. Lu, and D. Che, “A survey of modern scientific workflow
scheduling algorithms and systems in the era of big data,” in Proceedings

of the IEEE International Conference on Services Computing (SCC

2020). IEEE, 2020, pp. 132–141.
[11] T.-P. Pham, J. J. Durillo, and T. Fahringer, “Predicting workflow

task execution time in the cloud using a two-stage machine learning
approach,” IEEE Transactions on Cloud Computing, vol. 8, no. 1, pp.
256–268, 2017.

[12] S. Iatropoulou, P. Petrou, S. Karagiorgou, and D. Alexandrou, “Towards
platform-agnostic and autonomous orchestration of big data services,” in
Proceedings of the IEEE Seventh International Conference on Big Data

Computing Service and Applications (BigDataService 2021). IEEE,
2021, pp. 1–8.


