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Abstract—Artificial intelligence (AI)-enabled Industrial Internet of Things (IIoT) marks the rise of
systems at the convergence of tremendous amounts of data from multiple IoT devices for
complex machine learning/AI software that supports decision making and predictive
maintenance in various industries. However, the omnipresent neglect of data quality leads to the
accumulation of dark data and the impregnation of biases in AI systems. We address the
problem of taming data quality in AI-enabled IIoT systems by devising machine learning
pipelines as part of a decentralized edge-to-cloud architecture. These pipelines generate
services for (i) erroneous data repair and (ii) unsupervised detection of events and deviations in
sensor data. We present the design and deployment of our approach from an AI Engineering
perspective using two industrial case studies.

THE INDUSTRIAL INTERNET OF THINGS
(IIOT) revolutionizes several industries, such as
manufacturing, transportation, and energy. It is
a major driving force behind Industry 4.0 and
employs Artificial Intelligence (AI) techniques,
e.g., Machine Learning (ML), to exploit the mas-
sive interconnection and large volumes of IIoT
data. AI-enabled Industrial IoT systems (IIoTs)
improve decision-making [1] and perform predic-
tive maintenance [2] (e.g., tool wear and product
defect prediction in the manufacturing domain) in
industrial processes. The quality and continuity of
IIoT data is a bottleneck and makes these systems
rather conservative in what they can achieve. Fur-
thermore, the growing neglect of data quality in
AI-enabled IIoTs [3] leads to the accumulation of
dark data (unstructured, untagged, and untapped
data not analyzed) [4] and the impregnation of
biases [5].

IIoT data endures a long journey on the edge-
cloud continuum: (i) data obtained by sensors
observing industrial processes is consumed by a
rugged industrial computer to control actuators,
such as a machine tool in manufacturing; (ii) it is
transferred to an edge device over wired/wireless
communication channels using industrial com-
munication protocols (e.g., OPC-UA, OPC-DA,
NMEA, Bluetooth); and (iii) it is aggregated on
edge to be transferred to the cloud using API
protocols (e.g., REST, RPC, SOAP, GraphQL).
Taming data quality in AI-enabled IIoTs aims
to detect and manage data quality issues (bias,
freezing, precision degradation, data drift in sen-
sors) on this journey and preserve data continuity
on the edge-cloud continuum. Sensor bias is an
offset shifting sensor output by a constant value.
A sensor freezes when its output is constant in
successive samples. Precision degradation occurs
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Figure 1: Edge-Cloud AI pipeline architecture to tame data quality.

when sensor reading variance increases. Factors
such as material corrosion and damage affect data
drift (i.e., change in the input data that affect the
model’s ability to make accurate predictions). We
present a decentralized edge-cloud AI pipeline
architecture for taming data quality to address the
aforementioned issues. The architecture supports
our two ML-based data quality pipelines (erro-
neous data repair and unsupervised data valida-
tion pipelines in Figure 1) accompanied by our
in-motion data tagging solution. Having an AI
engineering perspective (AI engineering dimen-
sions [6]), we address the engineering challenges
of realizing this architecture in industrial produc-
tion environments.

Sensor measurements are often corrupted or
have missing values due to electromagnetic inter-
ference, packet loss, or signal processing faults.
The first data quality task is to detect and tag er-
roneous and missing values on the edge gateway
(in-motion data tagging). Our ML pipelines lever-
age recurrent patterns in IIoT data to (i) gener-
ate virtual sensors repairing missing/corrupt data
in one sensor based on high-quality data from
other sensors (erroneous data repair pipeline1)
and (ii) determine events and deviations in an
unsupervised manner (unsupervised data valida-
tion pipeline2). We containerize and deploy their

1https://github.com/sintef-9012/erdre
2https://github.com/ejhusom/udava

services (ML models) on edge for real-time in-
ference and the cloud for inference on historical
data. Domain experts specify heuristics to profile
data and generate quality metrics (data profiling
service). These metrics help maintain high data
quality standards for AI-based applications and
auditing.

In-motion Data Tagging
Tagging in-motion high-frequency data is the

first step in detecting data quality issues at the
data source in real-time. In-motion tagging is
crucial to prevent erroneous data in posterior sta-
tistical analysis and closed-loop machine control
algorithms. For instance, active control for vibra-
tion damping could apply erroneous responses
due to unexpected signal peaks. We deploy our
in-motion data tagging solution on edge to la-
bel parts of time-varying sensor data as cor-
rupt/missing with error codes (see Figure 1).
Tagging erroneous values instead of removing
them helps identify data for posterior data repair.
For instance, a low signal-to-noise (SNR) value
could be identified as erroneous. We compare the
peaks in the data before and after data repair as
some may need to match.

Sensor failure due to hardware faults.
Sensors fail due to unpredictable environmental
conditions (e.g., too high temperature) or cable
disconnection. Failures in Integrated Electronic
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Piezo-Electric (IEPE) sensors can be detected
by filtering bias voltage from the sensor output
signal. If the bias voltage is not a constant value
or is null, the data is marked with an error code.

Sensor failure due to electromagnetic in-
terference (EMI). High-frequency noise cannot
be easily filtered when EMI is in the measure-
ment range of the sensors. We find the SNR
ratio (measure the sensor signal level and noise
floor) to discard EMI. If it is below 2:1, the
measurement is noisy and marked with an error
code. The SNR of 2:1 gives a vibration sensor
the capacity to measure problematic vibrations
despite background noise.

Sensor failure due to signal processing
errors. Errors such as aliasing, ski-slope, spectral
leakage, or jitter may arise after post-processing
sensor data (e.g., Fast Fourier Transform). Alias-
ing and leakage can be avoided by low-pass filters
and Hanning windows, respectively. We detect
Ski-slope in the frequency spectrum of a signal
where frequency appears high at low speeds and
very low at high ones. We compute deviations in
periodicity with a reference clock to detect jitter.

Erroneous Data Repair
We provide an ML pipeline (Figure 2(a)) that

automatically repairs erroneous data identified by
our in-motion data tagging solution. The pipeline
generates a virtual sensor that estimates the signal
of interest based on data from other sensors in the
same IIoT system.

The pipeline preprocesses raw data from in-
put sensors and trains an ML model (Step 1
in Figure 2(a)). The data preprocessing entails
the selection of window size and features from
the input to predict one or more values of the
target sensor. The model is evaluated based on a
metric expressing the prediction error concerning
ground truth for unforeseen target sensor data,
mean squared error or R2-score.

The trained model is containerized with an
API and deployed as a virtual sensor (Step 2).
The virtual sensor takes production sensor data as
input and repairs its erroneous part (Step 3). It can
be deployed on edge for real-time repair, while
another virtual sensor with a larger input window
repairs historical data on the cloud. Virtual sen-
sors for erroneous data repair are prone to concept
drift due to process changes (e.g., different parts

produced) and the environment (e.g., vibrations
from other machines, high temperature). They
cannot generate accurate values for the faulty
sensor when input data is out of distribution.
Uncertainty estimation [8] in the performance of
virtual sensors can autonomously guide the gener-
ation and deployment of new virtual sensors using
recent data (Step 4). Bayesian Neural Networks
(BNNs) can determine the uncertainty of a virtual
sensor’s performance in the form of confidence
intervals for the prediction [9]. When confidence
intervals are above a threshold, it is necessary
to store new data and train a new virtual sensor
based on new and some old data to minimize
catastrophic forgetting. During this adaptation,
the virtual sensor may not be usable. Hence, we
encounter a trade-off between adaptation time and
virtual sensor performance. Moreover, it is hard to
train BNNs due to additional parameters to train
probability distributions.

Unsupervised Data Validation
IIoT data acquired during industrial processes

can reveal transitions in process behavior reflect-
ing normal operation or process shifts and drifts
leading to product defects. Process shifts and
drifts are unexplained or unexpected trends of
a measured process parameter(s) away from its
intended target value in time-ordered analysis.
Our unsupervised data validation pipeline [10]
automatically discovers reference patterns repre-
senting modes of process behavior in training
data from a reference production cycle. Its event
detection service tracks deviations (process shifts
and drifts) in production data by checking the
recurrence of these patterns (see Figure 2(b)).

The pipeline splits the training time-series
data into subsequences and extracts a low-
dimensional summary vector of statistical fea-
tures (Step 1 in Figure 2(b)). It uses k-means
(when the number of clusters is known) or mean-
shift clustering (when unknown) to assign feature
vectors into clusters.

The cluster model (set of cluster centers)
is deployed in an event detection service (Step
2). The service computes the feature vectors of
the production data and assigns labels to its
subsequences (Step 3). The labels are employed
to detect events, such as anomalies where data
points are too far from cluster centers in optimal
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Figure 2: ML pipelines for (a) Erroneous data repair and (b) Unsupervised data validation. We can use
any supervised ML algorithm to obtain the model in (a), but deep learning techniques have especially
proved efficient for time series analysis [7]. The pipeline in (a) can be used in any domain dealing with
time-series data. We use unsupervised ML algorithms in (b). We designed the pipeline in (b) for the
manufacturing industry due to the repetitiveness of production cycles that enables learning meaningful
clusters. We evaluated the performance of our data repair and validation approaches in our case studies.
Virtual sensors in (a) effectively repair erroneous data in our case studies when redundant/correlated
sensors are available. The best ML architecture in our case studies based on R2 and MSE scores
is Long Short-Term Memory Network (LSTM). LSTM models have good accuracy in most cases
but need more training time. Convolutional Neural Network (CNN) models are a good compromise
between performance and training time. The event detection service in (b) assigns different behavior
patterns to different clusters in our case studies, allowing for unsupervised detection of various forms
of behavior. The deviation metric helps validate data over multiple production cycles and reason about
the root cause of deviation by comparison with other parameters (e.g., tool wear).
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production cycles. The service also calculates a
deviation metric by checking the sum of distances
between feature vectors and cluster centers. The
metric increases when there are drifts in process
behavior or changes in process parameters.

Data Profiling
Domain-specific knowledge about data quality

can help detect quality issues that the pipelines
cannot. For instance, temperature readings ex-
ceeding 120 degrees and more than five percent
of data points are invalid since several occur-
rences of such temperatures could damage ma-
chine components. Machine tool temperature and
force measurements often have a linear correla-
tion. It is crucial to quantify the limits of this
correlation and ensure that nonlinear behavior is
detected before catastrophic consequences. Our
architecture adopts Great Expectations (GE)3, an
open-source data quality framework that enables
engineers to write expectations (assertions) on
data for domain-specific data quality checks. GE
generates code from expectations to analyze data
and obtain interactive hypertext data documents.
These documents profile data and assess data
quality based on satisfaction of expectations.
They are beneficial for auditing data acquisition
and persistence from industrial processes. Fur-
thermore, they help create a data quality culture
by making engineers confident in their data-
driven decisions and corresponding uncertainty
estimates.

Case studies: Engineering the pipelines
for industrial settings

Numerous challenges arise in engineering our
data quality pipelines in Figure 1 for industrial
production environments. Therefore, we analyzed
the pipelines and the proposed architecture by
using AI engineering dimensions [6] and two
different industrial settings in the manufacturing
domain: (a) broaching fir tree slots for jet engine
turbine discs performed at CFAA - Advanced
Manufacturing Centre for Aeronautics in Spain
and (b) high-speed CNC milling of car engine
cylinder heads at Renault factory in Spain.

Deployment infrastructure. We can deploy
our pipelines on a standalone machine, edge

3https://greatexpectations.io/

device, or the cloud as a docker container with
access to a time-series database (e.g., InfluxDB)
or an API provided by a data acquisition sys-
tem. The pipelines acquired the training data in
the aerospace case from the SAVVY data sys-
tems edge device4. They obtained the automotive
data through the KASEM cloud API5 developed
to maintain manufacturing machines. The high-
frequency automotive data were stored in the
cloud infrastructure KASEM E-maintenance. We
experienced several deployment infrastructure-
related challenges in the pipeline design for the
edge-cloud continuum while adhering to data
privacy and security constraints (e.g., sensor data
is the intellectual property of data producers).
Therefore, many scientific and engineering contri-
butions lie in designing distributed ML architec-
tures [11] for a fleet of distributed sensors, edge
devices, and the cloud. When our pipelines are
deployed on a standalone machine or edge device
(often local “on-premises”), data producers (e.g.,
manufacturers) handle data security based on
security standards such as ISO/IEC 27000 and
ISA/IEC-62443 series for industrial cybersecu-
rity. In cloud-based deployment, sensitive data
are sent from data producers to the Cloud infras-
tructure using standard protocols (e.g., TLS6) to
ensure the transmitted data security.

Real-time decision-making. One goal is to
create real-time inference services (event detec-
tion service and virtual sensors on edge gateway
in Figure 1). The pipelines are invoked to create
an inference service based on the availability of
training data start and end timestamps (specified
by a domain expert or automatically derived
based on product quality information). The ser-
vices are containerized and deployed on edge to
achieve real-time decision-making.

Model building and versioning. Our
pipelines build ML models as often as necessary,
but mostly when new reference (training) data
is available. Data freshness, a quality dimension
referring to how up-to-date the data is, affects
model creation. When it is low, the pipelines
employ new reference data to create a new model
(automatic, e.g., when product quality and tool
wear information in our case studies are available

4https://www.savvydatasystems.com/
5https://www.predict.fr/produits-services/logiciels/
6https://datatracker.ietf.org/doc/html/rfc8446
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for unsupervised data validation). In addition,
uncertainty estimation autonomously guides
the generation and deployment of new virtual
sensors (models) using recent data. Models are
stored and versioned as binary files using a
chronological system in Git (with DVC7).

Integration of models and components.
Data owners/producers invoke ML models as a
web server or docker container. These models
are deployed on-premises on an edge device or
the cloud of data owners (see Figure 1). They
provide a simple and open API (without security
authentication) for receiving input (training and
production data) and sending output (clusters and
deviations or repaired data). The realization of
our edge-cloud architecture for our case studies
was highly impacted by where the predictive
maintenance is done. The validation of fir tree
slots in the aerospace case was at the edge
device of the SAVVY data systems. Therefore,
we deployed the ML models as a simple web
service in this resource-constrained device. The
data acquired from a fleet of machines in the
automotive case was transferred to the cloud
having virtually unlimited resources. There, we
containerized the ML models as a service for
validating and repairing data in parallel on more
than one CNC machine in the automotive factory.

The challenges in integrating models and
components are principally related to the evolu-
tion of the industrial processes and, consequently,
the data and model evolution. Although we con-
sider manufacturing processes for producing the
same products or parts, there might be minor
modifications to product specifications and pro-
cess parameters (e.g., the need to ramp up produc-
tion) that can render ML models obsolete (e.g.,
concept drift). Obsolete models can be addressed
by uncertainty estimation and continual learning.
Our architecture can be a basis for implement-
ing continual learning mechanisms, such as on-
line training, replay, and knowledge distillation.
Therefore, there is a need to investigate continual
learning [12] and domain adaptation [13] in con-
junction with the continuous deployment of ML
models [14].

DataOps. We developed and deployed our

7Open-source Version Control System for Machine Learning
Projects, https://dvc.org/

pipelines on the cloud following the DataOps
discipline [15]. The operational IIoT data and
up-to-date domain knowledge from field experts
were the means to improve the pipelines. For ex-
ample, we received new data and requirements for
the data repair pipeline, which led to generating
and deploying new versions of virtual sensors.
Uncertainty estimation, in turn, is a significant
part of DataOps and provided feedback to update
virtual sensors in our case studies.

Implications and way forward
Data quality in IIoT should be docu-

mented and traceable along the entire production
line/industrial processes over time. We introduce
the concept of data quality hallmarks (certificates
of data quality-related information in IIoT) in
our EU InterQ8. Data quality metrics, events, and
deviations should be part of a hallmark for a well-
defined asset for a given time. Data quality hall-
marks can be generated at regular intervals and
traceable using immutable blockchain technology.
We have been developing a solution (InterQ-
TrustedFramework) for end-to-end industrial data
traceability, trust, and security.

Data quality hallmarks should be connected
to process and product quality hallmarks. Process
quality is the degree to which the manufacture of
a product meets its process requirements. Prod-
uct quality entails how well a product/artifact
satisfies customer needs, serves its purpose, and
meets industry standards. Data, process, and prod-
uct quality hallmarks should be traceable using
blockchain. Traceability will enable isolating root
causes for faults in complex IIoT ecosystems.
Smart contracts between the stakeholders of an
IIoT ecosystem should be used to accept/reject
quality transactions from different stakeholders
to adhere to stakeholder agreements on quality
and build trust more autonomously.

The data quality solution standardization for
AI-enabled IIoT is an active area for standardiza-
tion bodies such as ISO8000. Data quality valida-
tion and repair should be standard for each IIoT
level (sensor, edge, and cloud). Then, the trace-
ability of data quality hallmarks can positively
impact traditional industries trying AI solutions
to optimize their processes.

8https://interq-project.eu/
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Manufacturers implementing our architecture
will gain more control over the data and the
process, supporting more efficient production. We
expect more control over the data adjusting an
ongoing machining process will outweigh the cost
of setting up the infrastructure needed.
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