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A B S T R A C T

Computerized solutions for field management optimization often require reduced-order models to be computa-
tionally tractable. The purpose of this paper is to compare two different graph-based approaches for building
such models. The first approach represents the reservoir as a graph of 1D numerical flow models that each
connects an injector to a producer. One thus builds a network in which the topology is primarily determined
by ‘‘well nodes’’ to which ‘‘non-well nodes’’ can be connected if need be. The second approach aims at building
richer models so that the connectivity graph mimics the intercell connections in a conventional, coarse 3D grid
model. One thus builds a network with topology defined by a mesh-like placement of ‘‘non-well nodes’’, to
which wells can be subsequently connected. The two approaches thus can be seen as graph-based analogues
of traditional streamline and finite-volume simulation models. Both model types can be trained to match
well responses obtained from underlying fine-scale simulations using standard misfit minimization methods;
herein we rely on adjoint-based gradient optimization. Our comparisons show that graph models having a
connectivity graph that mimics the intercell connectivity in coarse 3D models can represent a wider range of
fluid connections and are generally more robust and easier to train than graph models built upon 1D subgridded
interwell connections between injectors and producers only.
. Introduction

The cost of evaluating a forward model is in many cases a limiting
actor for model-based uncertainty quantification and field manage-
ent optimization, in particular when the model evaluation consists

f a full simulation run with a traditional reservoir simulator. Various
eep-learning methods have been proposed as to build models that
re computationally inexpensive to evaluate, see., e.g., Costa et al.,
014, Kim et al., 2020, Tang et al., 2020, Kim and Durlofsky, 2021, Liu
nd Reynolds, 2021, Zhong et al., 2021, and references therein. Such
odels can give reliable forecasts of production responses from a given

et of input parameters and control strategies. However, a limitation
f purely data-driven models is that they cannot guarantee that the
redicted results represent physically consistent and meaningful states.
his can seriously affect the ability to generalize outside of the range of
raining data. Models may, for instance, be able to predict the spatial
istribution of phase saturations (Maucec and Jalali, 2022; Zhang et al.,
021), without having the ability to provide reliable predictions of
onsistent well responses. So-called physics-informed methods try to
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E-mail addresses: Knut-Andreas.Lie@sintef.no (K.A. Lie), stein.krogstad@sintef.no (S. Krogstad).
URL: http://folk.ntnu.no/andreas (K.A. Lie).

circumvent these problems by incorporating loss functions to penalize
predictions that violate fundamental flow physics or by trying to learn
the underlying residual equations directly (Navrátil et al., 2019; Jin
et al., 2020; Fraces et al., 2020; Wang et al., 2021a; Rodriguez-Torrado
et al., 2021). A main drawback with all these machine-learning meth-
ods is that they require much observed or simulated data and that the
training can be computationally expensive.

An alternative approach is to start more directly from the flow
physics and develop simplified/reduced models that can be calibrated
to match observed or simulated data. We will, in particular, study the
family of interwell numerical simulation models, which represent the
reservoir as a flow network connecting injectors and producers. The
INSIM versions of this idea use analytical and semi-analytical methods
to evolve pressures and saturations for each interwell connection (Zhao
et al., 2015; Guo et al., 2018a,b; Guo and Reynolds, 2019) and have
proved to be useful in history matching waterflooding scenarios. On
the other hand, the INSIM methods require special simulation tools
and do not easily extend beyond two-phase flow. The method can be
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generalized to more complex flow physics if one instead uses a stan-
dard finite-volume method to solve for the flow within each interwell
connection (Lerlertpakdee et al., 2014; Lutidze, 2018; Ren et al., 2019;
Kiærr et al., 2020; Wang et al., 2021b; Leeuwenburgh et al., 2022).
Among the many possible configurations, we have chosen GPSNet (Ren
et al., 2019), which allows multiple flow paths between each injector
and producer, but assumes that all connections have the same number
of uniform grid cells so that the flow paths can be mapped onto a
rectangular grid for simple inclusion in a standard simulator. Another
related approach is RGNet (Sankaran and Sun, 2020), which relies on
the diffusive time-of-flight to identify drainage regions that are coupled
using inter-partition transmissibilities to form a network graph.

If we think of the INSIM/GPSNet family as the graph-model ana-
logue to streamtubes/streamlines, it is easy to also envision graph
models having a richer topology that mimics that of a 3D coarse finite-
volume grid. In lack of a better name, we will refer to this model as
CGNet (coarse-grid network). Setting up a representative 3D volumet-
ric model can be challenging if the reservoir geometry and geology
are largely unknown, but preliminary experiments indicate that good
matches can be obtained with simple Cartesian grids delimited by the
presumed map outline of the reservoir as long as one can provide
ballpark estimates of the petrophysical properties (Lie and Krogstad,
2022).

When used for model reduction, the training data for the reduced
graph models will come from simulations of an underlying fine-scale
model. The training thus consists of tuning the intercell transmissibil-
ities, the pore volumes, and possibly also the parameters of the fluid
model to minimize the misfit in the predicted outcomes from the fine-
scale and the graph models. One may argue that this setting is no
different from traditional history matching of a coarse model (Morteza
et al., 2019). In our opinion, however, there are important differences.
Firstly, we emphasize that our aim is not to calibrate parameters like
in a conventional coarse-grid model, which usually attempt to preserve
local characteristics of the reservoir’s petrophysics. With CGNet, we
instead seek to train physics-based data-driven models that reproduce
the same flow rates and pressure as observed in each well, while still
adhering to basic laws of flow physics. All petrophysical parameters
should thus only be viewed as tunable algebraic coefficients, as no
attempt will be made to preserve the petrophysical quantities and the
geological realism from the prior model, which has traditionally been a
major challenge in history matching. (Mamonov et al., 2007 proposed a
method that is similar in spirit in the sense that it seeks to optimize the
coarse mesh to preserve aggregated objective values used in production
optimization.) Secondly, the fine-scale simulations used for training are
not set up as representative production histories, but are instead driven
by randomly perturbed well controls that attempt to excite a wider span
of physical states within the reservoir.

Both model types, CGNet and GPSNet, are realized inside a fully
differentiable, open-source reservoir simulator (Lie, 2019) that imple-
ments standard discretizations, solvers, and flow models but relies
on automatic differentiation for the computation of gradients and
Jacobians. This means that the graph models are fully differentiable
with respect to all the tunable parameters, so that their gradients
can easily be computed by solving adjoint equations. The training
can thus be formulated as a misfit minimization problem and solved
by a gradient-based quasi-Newton method in complete analogy to
the backpropagation methods that power the training of feed-forward
neural networks in machine learning. Advantages and disadvantages
of using such a method instead of an ensemble smoother with multiple
data assimilation (Emerick and Reynolds, 2013), which is very popular
within history matching, are discussed in Borregales et al. (2021).

The main purpose of this paper is to compare the ability of the
two types of graph models to match simulations from a fine-scale
method and compare the predictive ability of the resulting models on
production scenarios that are different from those used in training.
In Lie and Krogstad (2022), we discuss how one can use similar ideas
to produce purely data-driven models that reproduce observed well
2

responses. p
2. Flow equations and discretization

The reduced graph-based modeling methods can in principle be
applied to both compositional and black-oil type models, but to keep
the equation system as simple as possible, we only consider two-phase,
compressible, immiscible flow without capillary pressure,
𝜕
𝜕𝑡
(

𝜙𝜌𝛼𝑆𝛼
)

+ ∇ ⋅
(

𝜌𝛼𝑣𝛼
)

= 𝑞𝛼 , 𝑣𝛼 = −𝐊𝜆𝛼
(

∇𝑝 − 𝜌𝛼𝑔∇𝑧
)

,

𝛼 = 𝜆𝑤𝑏
𝛼 J

(

𝑝𝑤𝑏 − 𝑝
)

, 𝛼 ∈ {𝑤, 𝑜}. (1)

In the first equation, which represents conservation of mass, 𝜙 is
porosity and 𝜌𝛼 is the phase density, 𝑆𝛼 is saturation, 𝑣𝛼 is phase flux,
and 𝑞𝛼 is the volumetric source of phase 𝛼. The second equation, Darcy’s
law, defines 𝑣𝛼 in terms of the absolute permeability 𝐊, the common
fluid pressure 𝑝, the gravity constant 𝑔, phase density 𝜌𝛼 , and the phase
mobility 𝜆𝛼 = 𝑘𝑟𝛼∕𝜇𝛼 , where 𝑘𝑟𝛼(𝑆𝛼) is the relative permeability and
𝜇𝛼 is the phase viscosity. The third equation relates the volumetric
source 𝑞𝛼 to the phase mobility 𝜆𝑤𝑏

𝛼 at the well, the productivity index J,
and the difference between the wellbore pressure 𝑝𝑤𝑏 and the reservoir
pressure 𝑝. If we also specify that the fluids fill pore space completely,
the first two equations can be reduced to a system of two equations for
the fluid pressure 𝑝 and the water saturation 𝑆𝑤. In the last equation,
the choice of unknown depends upon whether fluid rate or wellbore
pressure is specified as a known control, which may vary from one well
to the next.

The system of flow Eqs. (1) will be discretized on three types of
grids: (i) on 1D stacks of uniform cells representing a single interwell
connection for the GPSNet models; (ii) on the fine-scale 3D reservoir
grid, typically a corner-point grid or some other form of stratigraphic
grid, which we for generality can assume has unstructured topology and
polytopal cell geometries; and (iii) on a coarse partition (or a coarse
approximation) of the 3D fine-scale grid for the CGNet models. For a
uniform treatment, we follow (Lie, 2019) and introduce 𝙳𝚒𝚟 and 𝙶𝚛𝚊𝚍

as the discrete numerical analogues of the standard divergence and
gradient operators. These operators are linear and can be represented
as sparse matrices determined entirely from the grid topology. We now
let 𝑺 be a vector of unknown saturations, one per cell, and 𝒗 the vector
of fluxes across all cell interfaces; vectors are defined analogously for
all other physical quantities. If we understand the product of two vector
quantities as the vector containing the product of the elements, we can
write the discrete flow equations on the form1

𝝋𝑐

𝛥𝑡
[

(𝑺𝛼𝝆𝛼)𝑡+𝛥𝑡 − (𝑺𝛼𝝆𝛼)𝑡
]

+ 𝙳𝚒𝚟(𝝆𝛼𝒗𝛼𝑡+𝛥𝑡) = 𝒒𝛼 ,

𝛼 = −𝑻 𝝀𝛼𝙶𝚛𝚊𝚍
(

𝒑 − 𝑔𝝆𝛼𝒛
)

, 𝒒𝛼 = 𝝀𝑤𝑏
𝛼 𝐉(𝒑𝑤𝑏 − 𝒑). (2)

In the fine-scale model, the vector 𝝋 contains the pore volumes of
he cells whereas the transmissibilities 𝑻 and the productivity indices
account for permeability and geometric factors affecting the flow. In

he graph based models, these three vectors are merely tunable factors
hat will be calibrated during the training of the models.

. Reduced graph models

As explained in the introduction, we consider two types of reduced
raph models which we can see as the graph model analogue of
treamtubes and a conventional finite-volume model, respectively. This
ection will review their setup briefly and also explain how the models
re trained by minimizing the misfit with the training data.

1 The equations are stated on a conceptual form. The correct equations also
ontain rock compressibility and averaging operators, including conditional
hase upwinding, that are necessary to evaluate mobilities and densities at
ell and wellbore interfaces. These do not change the role of the parameters
, 𝑻 , and 𝑱 and have thus been dropped to keep the notation as simple as

ossible. Full details can be found in Lie (2019).
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3.1. Interwell network model (GPSNet type)

In interwell network models, the key idea is to represent the reser-
voir in terms of a limited set of flow paths that connect injectors and
producers. The fluid movement inside each flow path is calculated by
solving a 1D system of flow equations, much in the same way as in
a streamtube method, except that all the 1D connections are usually
coupled through the well nodes, so that the resulting global system of
connected flow paths must be solved jointly. We consider the special
case of a so-called GPSNet (Ren et al., 2019) interwell model, which
in the basic setup has a single flow path for each connected pair
of injectors and producers; GPSNet can also be set up with different
interwell network topologies and multiple interwell connections per
well pair, as we will discuss later. The flow paths terminate in well cells,
which offer the possibility for fluid communication among the flow
paths without fluids having to go through the wells. Fig. 1 illustrates
the setup of a GPSNet model for a simulation case built on top of the
reservoir geometry and petrophysics from a public model of the Norne
oil field.2

There are several ways to determine the set of connected well pairs.
he simplest is to just connect all injectors to all producers, like in
ig. 1. With six injectors and five producers, this gives thirty interwell
onnections. All these well pairs may not be communicating actively in
eality, but the advantage of including all possibilities in the model is
hat it gives us more flexibility in the training of the reduced model.
n the other hand, this naive approach can lead to a combinato-

ial explosion for cases with many injectors and producers or poor
odel performance because of overparameterization. In INSIM (Zhao

t al., 2015) and related approaches like FlowNet (Kiærr et al., 2020;
eeuwenburgh et al., 2022), possible connections are limited based on
he lateral proximity of wells (and pseudowells added for increased
ccuracy). This tacitly assumes that wells that are far apart in physical
pace are not connected by long-range high-permeability flow channels.
o circumvent this potential problem, the RGNet approach, proposed
y Sankaran and Sun (2020) uses diffusive time-of-flight instead of
uclidean distance to measure proximity.

In previous research (Borregales et al., 2020), we have shown that
f a GPSNet is used as a reduced model for an underlying fine-scale
eservoir model, one can minimize the number of interwell connec-
ions by initializing according to well allocation factors determined
y flow diagnostics (Møyner et al., 2015) of the original simulation
odel. Minimizing the number of connections based on flow physics
nfortunately tends to give too restrictive models that are more difficult
o match. Herein, we thus consider the straightforward all-injectors-
o-all-producers connection seen in the lower-right plot of Fig. 1 as
he basic setup, but will compare it to other types of setups, in-
luding all-to-all topologies that also incorporate injector–injector and
roducer–producer connections.

Once the necessary interwell connections among well and pseudow-
ll nodes have been identified, each connection is assumed to be a
olumetric flow tube and subdivided into a finite set of grid cells so that
e can use (2) to compute the corresponding fluid flow (Lerlertpakdee
t al., 2014). To be able to use the resulting models within standard
ommercial simulators, Ren et al. (2019) proposed to map the flow
aths onto a standard 2D volumetric grid. In their GPSNet, the flow
ubes are assumed to be rectangular cuboids, and their discretized
ersions are mapped and stacked into a rectilinear grid so that each
nterwell connection becomes a horizontal row of 3D cells, as you
an see to the upper left in Fig. 1. Seen from the reservoir simulator,
he resulting collection of flow tubes will appear as any conventional

2 The full model is published as an open data set on Github () by the Open
orous Media (OPM) initiative. We use a derived version thereof featured in
he example suite of the MATLAB Reservoir Simulation Toolbox (MRST) (Lie,
019).
3

2D+ simulation model, except that the transmissibilities have been
manipulated so that only horizontal flow is allowed by setting values
corresponding to vertical connections to zero. Each injector or producer
is completed in a single well cell and multiple connections are man-
aged through the mechanism of non-neighboring connections, which is
present in most standard simulators. Notice that the choice of having
the same number of grid cells for each connection was made to simplify
the setup and subsequent bookkeeping and is not an inherent limitation
of the method.

During training, we match the well indices of individual wells and
the overall pore volume and transmissibility of each flow tube and not
the values associated with individual cells and cell faces in the grid.
That is, if 𝑛𝑐 denotes the number of interwell connections among the
𝑛𝑤 wells, the training parameters will be {𝑇𝑘, 𝜑𝑘} for 𝑘 = 1,… , 𝑛𝑐 and
J𝑘} for 𝑘 = 1,… , 𝑛𝑤.

3.2. Graph model with 3D interconnection (CGNet)

A key limitation with the GPSNet type models just described is that
they do not include any interaction among the interwell flow paths,
excepts through the well cells at each end. In the INSIM family, one can
increase the possible flow paths by introducing imaginary ‘‘ghost wells’’
throughout the reservoir (Guo et al., 2018b). These wells do not inject
or extract fluids but only redistribute the flow from incoming flow
paths to outgoing flow paths and hence serve to enrich the modeling
of interconnectivity inside the reservoir. RGNet models (Sankaran and
Sun, 2020) achieve much of the same effect through the use of so-
called inter-partition transmissibilities (Iino et al., 2020) that turn the
interconnection among the dynamic drainage volumes of individual
wells into a general reservoir network.

We propose a different idea for creating a richer graph topology
than in the interwell network models by specifying a graph that mimics
the intercell connectivity of a 3D finite-volume method. In principle,
each connection in this graph could be subgridded as in the interwell
models, and similar graph topologies could be constructed using the
ghost well idea from INSIM or extended versions of the general graph
connection of RGNets. However, since we already have an underlying
fine-scale model, whose predictions we seek to reproduce as accurately
as possible, we can create the graph topology by aggressive coarsening
of the underlying 3D simulation model. The coarsening is achieved
by grouping cells from the underlying fine-scale model into effective
grid blocks in the coarse model. These aggregated blocks are simple to
represent using an integer vector, and the approach has the advantage
that it preserves the exact geometry of the underlying fine-scale model.
The aggregation can be performed in many different ways, including
use of systematic graph partitioning methods (Karypis and Kumar,
1998), ad-hoc methods as discussed in Lie et al. (2017) and Chapter 14
of Lie (2019), or just plain ‘‘cookie-cutter’’ partitions.

Fig. 2 illustrates the creation of such a CGNet model for the Norne
field, using an index-space partition of the corner-point grid. The
resulting model has 36 nodes, each with a tunable pore volume, 58
edges with associated tunable transmissibilities, and 14 well–reservoir
connections, each with a tunable well index. This graph model is
distinctively different from the GPSNet shown in Fig. 1, which has
11 nodes with associated and tuneable well indices, and 30 edges
with two adjustable parameters (pore volume and transmissibility) per
edge. The CGNet model has 52% more parameters than the GPSNet
model, but maps onto a grid that only has 12% as many cells as the
30 × 10 grid in the GPSNet model. It is also instructive to compare the
interwell communication in the two models. In GPSNet, two wells are
either explicitly connected or their communication must go through a
subset of the other wells. This limits the number of parameters that can
effect the interwell communication. In CGNet, on the other hand, there
are many possible paths through the network of non-well nodes that

can connect individual well pairs. This means that the communication
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Fig. 1. GPSNet graph model for the Norne field with six injectors and five producers. The interwell connection is simple: each injector is connected to all producers and vice
versa. Each interwell connection is discretized into ten uniform cells and mapped onto a uniform rectangular grid. In the upper-right plot, well cells completed by a well are
colored dark gray. The white cells are not active in the simulation grid, and to avoid cluttering, arrows indicate the non-neighboring connections have only been included for the
well cells connected to I1 and P1.
Fig. 2. CGNet graph model built from a coarse partition of the Norne field. The coarse partition is generated in two steps: first a regular 5 × 6 × 1 partition in index space,
followed by a split of disconnected blocks, giving a total of 36 coarse blocks. The graph topology is then formed by connecting blocks that share one or more fine-cell faces,
i.e., following the transmissibility graph of two-point, coarse-grid, finite-volume scheme.
between two wells is affected by more parameters, so that CGNet will
have more flexibility to detect long-range interwell communication.

The graph topology in a CGNet model does not depend on the
well placement. This means that a trained model in principle could
support conversion of producers to injectors and vice versa. This is
generally not possible with interwell graph models since the whole
network of injector–producer pairs would change once one or more
wells are converted. The exception may be if one uses an all-to-all
network topology. For CGNet one can also imagine that the parameters
corresponding to transmissibility and pore volume are trained with
multiple fine-scale simulations having different placement and number
4

of wells, but it remains to be more thoroughly investigated whether
the resulting models will be sufficiently accurate. This may also be
possible for GPSNet, as long as one can derive a network topology that
is representative for all cases, but is conceptually more difficult.

The training process is initialized by upscaling pore volumes, trans-
missibilities, and well indices from the underlying fine-scale models.
For pore volumes and other additive properties, it is sufficient to use
standard volumetric averaging. Herein, we upscale the transmissibili-
ties using a well-specific, global approach (Krogstad et al., 2016) that
uses a least-squares method to compute the transmissibilities based on
𝑛 − 1 independent incompressible flow solutions for 𝑛 wells. The
𝑤 𝑤
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particular upscaling method is not essential and can easily be replaced
by any standard method if the well-specific method is not available or
considered too computationally expensive (e.g., for cases with many
wells). Initial values for the well indices are computed by averaging
the fine-scale well indices over each perforated coarse block.

3.3. Model training

To train our network models to match the output from a full
simulation, we seek to determine a set of parameters 𝜽 that minimizes
a weighted sum of squares

𝑀(𝜽) = 𝒎(𝜽)𝑇𝒎(𝜽), (3)

where 𝒎 holds the scaled misfits 𝑚𝑖 = (𝑦𝑖(𝜽)−𝑦𝑖,𝑟𝑒𝑓 )∕𝑤𝑖 in the quantities
of interest. 𝑦. Here, 𝑦𝑖,𝑟𝑒𝑓 is the 𝑖th reference data point and 𝑦𝑖(𝜽) is
the corresponding output data point computed by the network model.
If 𝑦𝑖,𝑟𝑒𝑓 were measurements, the weights 𝑤𝑖 would typically be set
depending on the measurement error, whereas in our case, in which
there is no measurement error, we simply use weights to homogenize
the magnitudes of the data points or (de-)emphasize individual data
points. It is also common to add a regularization term of the form
𝑤𝜃‖𝜽−�̂�‖22 to (3). Here, �̂� could hold, for instance, initial guesses or the
means over parameter groups. Herein, we do not minimize (3) directly
but instead work with the Lagrange function (𝑮 represents the residual
Eqs. (2)):

𝐿𝜆 = 𝑀
(

𝜽
)

+ 𝜆𝑇𝑮
(

𝒙,𝜽
)

. (4)

For the numerical examples presented in the next section, we im-
pose lower and upper bounds on each parameter, and each parameter
is scaled to the unit interval. The Lagrange function 𝐿𝜆(𝜽) is minimized
using a variant of the Limited-memory Broyden—Fletcher—Goldfarb—
Shanno algorithm with bound constraints (L-BFGS-B) (Byrd et al., 1995)
and use of the adjoint equations of (2) and automatic differentiation
to compute the necessary gradients. The Hessian approximations are
projected to the active parameter set to obtain search directions, and
a cubic line-search with acceptance based on strong Wolf conditions is
used to obtain step lengths.

We typically observe that roughly 90% of the iteration steps are
accepted without the need for further line search. On the other hand,
after an initial phase that typically reduces the misfit 2–3 orders of
magnitude, we observe rather slow convergence for the model training
using this approach. Zhang and Reynolds (2002) studied the conver-
gence properties of the L-BFGS method applied to history matching
and reported results for different scaling approaches. We experimented
with some of these but did not observe consistent improvements for
the examples considered here. This could be because our objective is
different from the one used by Zhang and Reynolds (2002) and because
we are considering a more diverse set of parameters. Accordingly, for
the results presented in the following, we use standard scaling of the
L-BFGS method (see e.g., Nocedal and Wright, 2006).

4. Numerical examples

This section compares CGNet and GPSNet for their ability to match
training data simulated from an underlying fine-scale model and then
subsequently predict the correct behavior of the same model subject to
different well controls. All numerical results are obtained using solvers
and workflow tools implemented in the open-source MATLAB Reservoir
Simulation Toolbox (MRST, 2021; Lie, 2019; Lie and Møyner, 2021).
The implementations of CGNet and GPSNet used herein, as well as
tutorial scripts demonstrating their use, have been publicly available
as part of the networks-module of MRST since the 2022a release.
5

4.1. Norne field model

In the first example, we investigate how well CGNet and GPSNet
work as proxies for the field production from a reservoir model with
realistic reservoir geometry and heterogeneity. To this end, we use the
reservoir geometry taken from a public simulation model of the Norne
oil and gas field from the Norwegian Sea. The reservoir geometry is
described by a 46 × 112 × 22 corner-point grid with 44 915 active
cells and has several faults, displaced layering, pinched cells, internal
gaps, non-neighboring connections, etc. Petrophysical parameters are
generated as described by Lorentzen et al. (2019) using their code but
without inclusion of some of the random parameters that perturb con-
nectivity across faults. The static model and examples of corresponding
network topologies for CGNet and GPSNet have already been shown in
Figs. 1 and 2.

The Norne field is produced with water drive as the main recovery
strategy, but with gas injection to prevent rapid depletion of the gas
cap. The corresponding simulation model uses a 3-phase black-oil
model with dissolved gas and vaporized oil and involves features such
as end-point scaling of relative permeability and capillary pressure,
pressure-dependent porosity and transmissibility, and history-matched,
time-varying well controls. Altogether, this makes up for a quite com-
plex case, where effects are difficult to disentangle. Herein, our main
purpose is to compare and illustrate the behavior of CGNet and GPSNet.
We will therefore make several simplifications to make the discussion
more clean-cut.

First of all, the reservoir is assumed to be initially completely
filled with oil. Our motivation for this simplification is that it is
straightforward to specify a stratified fluid distribution in CGNet but
more cumbersome with GPSNet; we will come back to a case with
fluid stratification in Section 4.2. Second, we simplify the flow physics
to a two-phase, waterflooding scenario described by a simple dead-
oil model with constant formation-volume factors, quadratic relative
permeabilities with zero residual saturations, and constant viscosities
with an oil–water viscosity ratio of 5:1, giving an unstable displace-
ment. Likewise, instead of using the true wells and well trajectories,
we assume that the reservoir is produced from five vertical producers
operating at constant bottom-hole pressure, supported by six vertical
water injectors operating at constant rate. The wells are set up to form
one dominating five spot and two weaker line drives, which together
ensure that fluids flow throughout the whole reservoir volume. (We
henceforth refer to this setup as Case 0.) Our motivation for these
simplifications is to create a setup with which we can investigate the
effect of different network topologies and how robust the calibration
process and the calibrated networks are to significant changes in major
flow directions inside the reservoir, without also having to consider cal-
ibration of initial saturations and fluid parameters determining relative
permeabilities, capillary pressures, and PVT behavior. (For complete-
ness, we mention that the full Norne case is available as one of the test
cases for FlowNet (Leeuwenburgh et al., 2022) at https://github.com/
equinor/flownet-testdata.

The graph models are trained using a fine-scale simulation with
oscillatory well controls, created by adding a 5% random variation
around the prescribed bottom-hole pressure controls and a 25% vari-
ation around the prescribed water injection rates; see Fig. 3. The
purpose of the random input controls is to excite the relative interwell
dependence inside the reservoir and thereby create training data that
span a wider set of possible reservoir states. (Such a perturbation
procedure may not be necessary if the simulation schedule contains
enough variation in the well controls to excite a wide spectrum of states
or if the network models are calibrated to observed well responses in
a pure data-driven setting; see, e.g., Lie and Krogstad, 2022.) We thus
have two data sets covering the same time horizon: a simulation with
oscillatory well controls that will be used for training and a simulation
with constant well controls that will be used to measure prediction

accuracy. Notice that this setting is different from conventional history

https://github.com/equinor/flownet-testdata
https://github.com/equinor/flownet-testdata
https://github.com/equinor/flownet-testdata
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Fig. 3. Stochastic well controls used to create the training data for the Norne field model: bottom-hole pressures for the five producers (left) and water rates for the six injectors
(right). The dashed lines show the controls for the reference simulation used for prediction.
Fig. 4. Training accuracy and prediction quality for GPSNet and CGNet on Norne Case 0. The left plot shows the convergence of the misfit function for the training data. The
middle and right columns show deviations in predicted water and oil rates of producers P1 and P5, respectively.
i
t

matching, where one usually has a training period followed by a
prediction period.

The training is set up as a misfit minimization problem between
the simulation output from the fine-scale simulation and the predicted
outcomes from the graph models, with mismatches in bottom-hole pres-
sure scaled by 500 bar and the oil and water well rates scaled by 2 ⋅104

nd 104 m3/day, respectively. With 144 time steps in each simulation
nd 11 wells, the number of data points is thus 4752. The gradients
equired by the L-BFGS-B algorithm are computed by adjoint equations
nd automatic differentiation. All parameters are scaled to the unit
nterval. For the pore volumes, we use linear scaling and constraints
0.001, 4] relative to the initial guess, whereas logarithmic scaling and
elative limits of [10−3, 102] are used for the transmissibilities and well
ndices. Fluid parameters are not matched in this example.

.1.1. Misfit in predicted well curves
To compare the training ability of the GPSNet and CGNet models

rom Figs. 1 and 2, we first train both with 50 iterations of the misfit
inimization algorithm.3 The number of calibrated parameters are 108

or CGNet and 71 for GPSNet. Fig. 4 reports the observed reduction in
isfit for the training data together with the deviations in the resulting

3 Complete code for setting up and calibrating CGNet and GPSNet can be
ound in the norneCGNetAjoint.m and norneGPSNetAjoint.m scripts
f the network-models module of MRST from release 2022a and onward.
6

i

prediction in two of the production wells. GPSNet has a better initial fit
to the training data than CGNet and also trains faster for the first eight
iterations, but after 50 iterations, the two models give comparable mis-
fits with respect to both training and the true data. With 36 grid cells
in total, the CGNet model has very few cells between the wells and will
consequently be subject to more numerical smearing and give smoother
reservoir responses. It is nonetheless interesting to observe how the
larger number of possible paths between injectors and producers in the
network graph of the CGNet result in an equally accurate prediction
of phase rates as the 300-cell GPSNet model. The slight wiggles in
the water-rate curve for GPSNet are a result of breakthrough in the
individual interwell connections. (A similar effect can be observed in
streamline simulation, but is then less pronounced because each well
pair is usually connected by multiple streamlines.)

A cursory look at the production curves in Fig. 4 may give the
false impression that the match is much better for the water rate in
producer P1 than for the oil rate in producer P5. Our default well
configuration gives an unbalanced drainage, in which producer P1 has
much higher liquid rates and experiences earlier water breakthrough
than the other wells. With equal weighting of deviations in phase rates
from all producers, the relative error will generally be larger in wells
with lower rates, as is clearly seen in the oil rates for producer P5, but
the absolute errors are of similar magnitude, if not smaller for P5. This
s usually acceptable when one is primarily interested in reproducing
he correct overall field production. However, one could also argue that

t may be advantageous to introduce relative, well-dependent weights
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Fig. 5. Reduction in misfit during training of the CGNet and GPSNet models for Norne with training data derived as random perturbations of Case 0.
Table 1
Misfit in the prediction of Case 0 for the Norne waterflood simulation, measured as the scaled sum of the discrepancies in bottom-hole pressure and phase rates.

GPSNet CGNet

specification 1 path injector–producer 2 paths all-to-all diagnost 5 × 6 × 1 5 × 6 × 2 10 × 14 × 1 10 × 14 × 3
# parameters 71 71 71 131 121 51 108 248 497 1479
# grid cells 150 300 600 600 550 200 36 70 166 400

50 iterations 1.07e-2 3.00e-3 3.24e-3 3.17e-3 1.01e-3 6.8ee-3 3.41e-3 2.33e-3 1.57e-3 1.17e-3
100 iterations 2.91e-3 2.21e-3 2.61e-3 2.07e-3 8.26e-4 4.69e-3 2.59e-3 1.36e-3 1.03e-3 4.24e-4
200 iterations 1.88e-3 1.69e-3 2.20e-3 1.62e-3 5.44e-4 4.56e-3 2.12e-3 1.00e-3 5.03e-4 2.67e-4
300 iterations 1.23e-3 1.37e-3 2.06e-3 1.16e-3 4.92e-4 3.48e-3 1.67e-3 6.48e-4 3.84e-4 2.24e-4
400 iterations 9.37e-4 1.26e-3 2.01e-3 9.41e-4 4.85e-4 3.48e-3 1.50e-3 4.60e-4 3.40e-4 1.85e-4
500 iterations 9.59e-4 1.15e-3 1.76e-3 8.83e-4 4.79e-4 3.45e-3 1.22e-3 4.24e-4 2.99e-4 1.58e-4
750 iterations 7.11e-4 1.02e-3 1.53e-3 6.08e-4 4.95e-4 3.45e-3 8.74e-4 2.99e-4 2.93e-4 1.24e-4
in the mismatch function that better reflect the observed rates (and
pressures) to study individual wells in full detail. Notice that we could
also have calibrated the end-point scaling of the relative permeability
model (six parameters for a two-phase model) and the initial pressure
and saturation, but this proved to not have significant positive effect in
this particular case.

4.1.2. Comparison of different network configurations
The two specific networks shown in Figs. 1 and 2 are just ex-

amples of how one can set up GPSNet and CGNet models. For a
more thorough comparison, we train four additional GPSNet models:
two models with five and twenty grid cells per interwell connection,
respectively, one having two flow paths connecting each well pair,4
ne with all-to-all communication (i.e., including producer–producer
ommunication), and one with interwell connections determined by
low diagnostics (Borregales et al., 2020, 2021). Likewise, we trained
hree additional CGNet models derived from partitions having more
rid blocks (5 × 6 × 2, 10 × 14 × 1, and 10 × 14 × 3). All models
ere trained with 750 iterations. Fig. 5 shows the convergence of the

raining iterations and Table 1 reports the misfits in predictions of
odels extracted at different stages of the training process.

Increasing the number of network nodes (i.e., coarse blocks) for
GNet improves the misfit with respect to both the training and the
rediction data. It is particularly promising that using more fitting
arameters does not adversely affect the misfit minimization during
raining. On the other hand, the convergence of the optimization
ethod is painstakingly slow after the first 20–30 iterations, which

ndicates that one should look for alternatives to quasi-Newton methods
hat are better suited for the later stages of the optimization. (In Lie
nd Krogstad, 2022, we show that the classical Levenberg–Marquardt
ethod Nocedal and Wright, 2006 may be a viable alternative.)

4 In other words, there are two edges connecting the corresponding well
odes in the network graph and two rows of cells connecting the wells in the
ectangular grid.
7

For GPSNet, the initial training process is significantly slower with
five cells instead of ten per interwell connection in the default injector–
producer setup and only catches up after 400 iterations. On the other
hand, the prediction misfit is lower with five cells from iteration 300
and onward. Using twenty cells instead of ten results in larger misfits
both with respect to training and prediction data. The extra grid cells
are better spent if we instead configure the model with two connections
(of ten cells each) for each injector–producer pair. The resulting model
has 131 parameters and trains slower up to 330 iterations than the basic
71-parameter model, but the resulting predictions are nonetheless more
accurate in all the extracted stages from 100 iterations and onward.

Even better results are obtained if injector–injector and producer–
producer connections are added to the basic setup, giving 121 pa-
rameters and 550 cells. This may appear counter-intuitive if we view
GPSNet as a collection of streamtubes, for which there would not be any
flow between two injectors or two producers unless one of them has
cross-flow. However, although the streamtube analogy can be useful
to motivate the basic setup, the connections in GPSNet are not really
streamtubes and should only be considered as edges in a general graph.
Fig. 6 shows two snapshots of the water saturation for Case 0. The
most distinct feature in the left plot is the water breakthrough from
injector I1 to producer P1, but we also clearly see how injector I4
has found a way to connect to the producers by way of I1 (similar
observations apply to injectors I2, I3, and I6). Likewise, I1 connects
weakly to other wells by way of I5. These observations are more
pronounced at the end of the simulation. From this, we conclude that
increasing the connection among wells gives the model more freedom
to adapt its dynamics to the observed data. Contrary, if we use flow
diagnostics to restrict the number of connections to the ones observed
in the fine-scale simulations, we deprive the model some of its freedom:
The model trains fast for the first 10–20 iterations, but after this, the
misfit reduction stagnates quickly, resulting in a worse overall match
compared with all the other setups. (In previous research Borregales
et al., 2020, we found GPSNet models configured by flow diagnostics to
be effective for the much simpler Egg model. These results used fewer
training iterations and are thus in agreement with what we observe

herein.)
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Fig. 6. Water saturation in a GPSNet model with all-to-all communication after 15 time steps (left) and at the end of simulation of Case 0 (right). Out of the 55 interwell
connections, the plots only show the connections involving injector I1.
Ranked in terms of accuracy, the GPSNet model with connections
derived from flow diagnostics is less accurate than the 5 × 6 × 1
CGNet model, the four models with injector–producer connections fall
between the two coarsest CGNet models, while GPSNet with all-to-all
connections ranks between the second and third-most accurate CGNet
models.

In terms of computational efficiency, a comparison is more complex.
When mapped into a reservoir simulator, the computational cost of a
forward simulation is generally proportional to the number of grid cells,
which, for comparable accuracy in prediction, is significantly lower
for the CGNet models. On the other hand, the 1D flow paths in the
GPSNet models imply that the resulting discrete systems are sparser
and essentially block-triangular, which can be utilized to localize and
significantly accelerate the nonlinear solver; see, e.g., Appleyard and
Cheshire, 1982 for details. Such solvers are not yet available in standard
reservoir simulators, and our conclusion is therefore that the CGNet
approach is more computationally efficient.

For the training process, the forward simulations are a major con-
tributor to the overall computational cost. The second contribution
comes from the adjoint equations. These are of the same size as the
forward problem but are quicker to solve since they are linear. For the
relatively small grid sizes considered here (36 to 600 cells) and number
of parameters (51 to 1479), our simulators in MRST are unfortunately
so dominated by computational overhead that it is not possible to draw
any well-founded conclusions.

4.1.3. Predictive power outside the span of the training data
A next natural question is the predictive power of the GPSNet/

CGNet models when applied to cases having reservoir states and well
responses outside the data set used to train the model. To investigate
this, we consider three different displacement scenarios applied over
the same simulation horizon as in Case 0:5

Case 1: Fixed injection rates and bottom-hole pressures as in Case
0, but with a 50% random perturbation of the individual wa-
ter rates and a 10% variation of the individual bottom-hole
pressures.

Case 2: Case 0 but with the most dominant well, producer P1, shut in
after eight years.

Case 3: Case 0 but with P1 shut in and I1 and I2 converted to produc-
ers from the start of the production (time zero).

Table 2 reports misfits in prediction for a subset of the GPSNet
and CGNet models just discussed. For Case 1, the fluid displacement

5 Complete code for this validation test for GPSNet can be found in
the norneGPSNetGeneralityTest.m script in the network-models
module of MRST from release 2022a and onward. The code for CGNet is
completely analogous and can easily be constructed with the help of the
norneCGNetAdoint.m script.
8

follows much the same flow paths as in the training data. All models are
therefore able to predict the qualitative behavior of the well responses,
but the large difference in how the same total flow volume is distributed
amongst the wells compared with the training data causes a slight
degradation in the prediction accuracy, as can clearly be seen for P1
in the left column of Fig. 7. Unlike in Case 0, our basic GPSNet model
with injector–producer topology is now the least accurate. Results with
two paths per injector–producer connection or all-to-all connections are
slightly better, but not (significantly) better than the coarsest CGNet
model and are hence not reported for brevity. Flow diagnostics on
Case 1 identifies one interwell connection not found in Case 0, which
immediately suggests that the GPSNet model derived for Case 0 may
not be rich enough to give good predictions for Case 1; this is confirmed
by our simulations (not reported for brevity).

Case 2 has two distinct production phases: During the first 2/3
of the simulation the displacement is identical to the reference case
and well responses are thus predicted well for all the CGNet models.
Because the fluid system is incompressible, shutting P1 in after eight
years causes an instant redistribution of flow paths and a step increase
in the liquid rates in the remaining producers. Such an event is not part
of the training data but all models are nonetheless able to capture the
qualitative behavior of the liquid rates in all wells, even though the
quantitative deviation from the truth case are significant, as shown for
the producer with the largest mismatch in the middle column of Fig. 7.
It is also interesting to observe a clear example of overfitting for the
CGNet with most parameters (10 × 14 × 3) in the sense that the more
we train the model, the worse the prediction mismatch gets. The basic
GPSNet model suffers from an incorrect wiggly behavior, as observed
earlier, and is generally the least accurate. The results for the other
GPSNet configurations are no better and are not reported for brevity.

In Case 3, the displacement inside the main section of the reservoir
(the area bounded by injectors I1 to I4) has been converted from a
five-spot configuration to a line drive and is thus significantly different
from the training simulation. Because we now have a different injector–
producer topology, the only GPSNet we can hope will give good results
is the one with all-to-all connections. For CGNet, all models should
still be applicable without modifications because they do not rely on a
specific interwell topology. However, even though all trained models
performed better than their untrained (upscaled) counterparts, they
cannot be said to give acceptable predictive accuracy. The predictions
obtained with GPSNet have similar low accuracy. Altogether, this is
disappointing (albeit not surprising) with respect to the generality of
the GPSNet and CGNet models and shows the importance of specifying
training data with sufficient variation to ensure generality.

4.1.4. Training with multiple simulations
To improve the generality of the models, we will train the networks

using the three different production scenarios described in Case 1
to 3. To construct training data, we apply the random-perturbation
procedure described earlier to the injection rates and bottom-hole
pressures prescribed as controls in Cases 1 to 3. (We do not include
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Fig. 7. Well responses predicted on Case 1 to Case 3 by GPSNet and CGNet models trained with 300 iterations on training data derived from the original setup (Case 0). The
GPSNet uses injector–producer topology for Cases 1 and 2 but must use all-to-all topology for Case 3 because injectors I1 and I2 have been converted to producers.
Table 2
Misfit in the prediction of three alternative Norne waterflooding scenarios having well responses that (partially) fall outside of the data used to train the GPSNet and CGNet
models. As in Table 1, the misfit is measured as the scaled sum of the discrepancies in bottom-hole pressure and phase rates. The first column gives the number of iterations used
to train the model, with a zero value indicating pure upscaling without any training. GPSNet uses the default setup with a single interwell connections with ten grid cells for all
injector–producer pairs, except for Case 3, which can only be run with the all-to-all network.

Its Case1 Case 2 Case 3

GPSNet 5 × 6 × 1 5 × 6 × 2 10 × 14 × 3 GPSNet 5 × 6 × 1 5 × 6 × 2 10 × 14 × 3 GPSNet 5 × 6 × 1 5 × 6 × 2 10 × 14 × 3

0 3.88e-1 6.43e-0 1.22e-0 5.42e-1 5.31e-1 7.34e-0 1.05e-0 5.16e-1 2.44e-1 3.18e-0 3.93e-1 8.43e-2
50 1.87e-2 1.50e-2 1.24e-2 5.02e-3 3.40e-2 1.47e-2 1.21e-2 8.29e-3 2.57e-2 1.16e-1 1.16e-1 4.03e-2
100 1.33e-2 1.05e-2 1.15e-2 3.00e-3 3.53e-2 1.99e-2 1.91e-2 9.44e-3 4.53e-2 1.33e-1 1.91e-1 3.86e-2
200 1.42e-2 9.99e-3 1.14e-2 2.89e-3 2.22e-2 1.81e-2 1.09e-2 9.52e-3 1.06e-1 6.16e-2 3.71e-2 1.43e-2
300 1.64e-2 6.21e-3 9.75e-3 2.36e-3 3.24e-2 1.29e-2 1.09e-2 1.15e-2 1.38e-1 1.02e-1 3.27e-2 1.41e-2
400 1.66e-2 5.39e-3 8.51e-3 2.34e-3 3.76e-2 1.63e-2 1.08e-2 1.62e-2 1.51e-1 1.21e-1 4.54e-2 1.66e-2
500 1.72e-2 5.07e-3 6.30e-3 1.86e-3 3.67e-2 1.65e-2 1.06e-2 1.93e-2 1.88e-1 1.37e-1 4.09e-2 1.58e-2
750 1.66e-2 4.30e-3 6.19e-3 1.28e-3 2.41e-2 1.68e-2 1.05e-2 1,97e-2 1.15e-1 1.40e-1 4.35e-2 1.53e-2
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Table 3
Misfit in the prediction of alternative Norne waterflooding scenarios predicted by
three CGNet models and an all-to-all GPSNet, all trained with 200 iterations on
random-variation training data derived from the scenarios of Cases 1 to 3.

CGNet Case 0 Case 1 Case 2 Case 3 Case 4

5 × 6 × 1 3.03e−03 2.36e−03 3.11e−03 3.18e−03 1.48e−02
5 × 6 × 2 2.76e−03 1.89e−03 2.81e−03 2.02e−03 8.78e−03
10 × 14 × 3 1.52e−03 1.48e−03 3.00e−03 5.07e−04 7.18e−03
GPSNet 5.71e−03 3.42e−03 2.82e−03 2.47e−03 2.55e−02

Case 0, as its dynamics is very similar to Case 1.) In each step of the
misfit minimization, we will thus perform three forward simulations
corresponding to the random perturbed versions of Case 1 to 3, and
measure the misfit for each of these simulations. However, the L-
BFGS-B method requires a single misfit value and hence we define the
overall misfit function as the mean of the misfits from each of the
three different data sets, with the gradient used in the optimization
algorithm defined analogously. Once each network model has been
trained simultaneously for all three scenarios, we go back and evaluate
how well it predicts the three individual base cases (Case 1 to 3).
Fig. 8 reports the same well responses as in Fig. 7 computed with
three different CGNet models and GPSNet with all-to-all connections,
all trained with 200 misfit minimization iterations over the three new
training data sets; Table 3 reports the corresponding misfits.

With the new training data, the prediction quality improves for
Cases 1 to 3, and is now within the variation seen in the training
data. For Case 0, the misfits increase slightly to be at the same level of
accuracy as obtained for the other cases. The reason for this increase is
that the misfit reduction for three sets of training data is somewhat
9

slower from iteration ten and onward compared to training with a
single simulation, and for a fixed number of iterations the match is
thus slightly worse. In comparing the two network types, we notice
again that whereas the misfits largely have similar magnitude, the
qualitative behavior of GPSNet is generally less correct due to delayed
breakthrough and wiggles caused by breakthrough in individual flow
paths.

We end by comparing the predictive power of CGNet, trained on a
single simulation derived from Case 0 and on three simulations derived
from Case 1 to 3, using a new setup that once again deviates from the
training data:

Case 4: Case 0 but with producer P1 shut in the period between four
and eight years.

n this case, the well curves of the remaining wells will exhibit two
istinct step changes, corresponding to the almost instant redistribution
nterwell communication when well P1 is shut in and turned back on.
ig. 9 shows that once again, we do not obtain a fully satisfactory match
f events that lie outside the span of the training data, but training with
richer data set improves the overall match, as expected.

.2. Brugge model

In this example, we consider optimization of net-present-value
NPV) for the synthetic Brugge model (Peters et al., 2013) by using
trained CGNet or GPSNet as proxy. The initial saturation and wells

f the fine-scale model are depicted in the left plot of Fig. 10. There
re 20 producers placed in the oil cap, surrounded by 10 injectors. The
rid has 44474 active cells, and the fluid model is two-phase oil–water.
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Fig. 8. Well responses predicted on Case 1 to Case 3 by three different CGNet models and GPSNet with all-to-all topology, all trained with 200 iterations on random-variation
training data derived from the scenarios of these three cases.
Fig. 9. Water and oil rates for producer P3 predicted on Case 4 by two different 10 × 14 × 3 CGNet models trained with 200 iterations on random-variation training data
derived only from Case 0 (yellow curves) and from the three different scenarios in Case 1 to 3 (green curves). The misfits in prediction are 2.32e-2 and 7.18e-3, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
There are seven saturation-regions with different relative-permeability
and capillary-pressure curves. In the base setup, injectors are set to
inject water at 636.95 m3/day with an upper limit on BHP set to 180
bar. Producers are set to produce at a liquid rate of 317.98 m3/day with
a lower BHP limit of 50 bar. The simulation horizon is 10 years. With
these settings, five injectors and three producers hit their BHP-limit
during simulation of the (full) reference model.

4.2.1. Model training
To build the CGNet model, we initially partition the grid in 14 × 14

locks laterally. To obtain more resolution around wells, we also split
ff each of the 30 groups of cells containing well perforations as individ-
al blocks. The resulting grid blocks are depicted in the second plot of
ig. 10. In total, the resulting CGNet model consist of 196 cells (graph

vertices) and 352 interfaces (graph edges). The simple upscaling pro-
edure we use for initialization assumes regularly-shaped blocks, and
he initial untrained CGNet-model therefore produces well responses
hat are far from those of the full model. We introduce additional
arameters for scaling the relative permeability curves for each coarse
lock in the CGNet to reproduce the effect of the multiple fluid regions
n the fine-scale fluid model. In particular, we introduce parameters for
caling both the endpoints and the values of the water/oil relative per-
eability curves. Accordingly, for each block there are 6 parameters for

tuning the shape of the fluid functions in addition to the pore-volume
parameter. With well connection factors and transmissibilities added,
the resulting CGNet model has 7×196+30+352 = 1754 parameters. We
10
note that the parameters for, e.g., oil relative permeability in the water
zone will have little or no effect on the output. Accordingly, the number
of effective parameters is probably substantially smaller. We finally note
that initial saturations are not included as parameters for this CGNet
model but are simply set as the volume average over the coarse blocks.

For GPSnet, we introduce connections for every injector–producer
pair, giving a total of 200 connections. Each connection is discretized
by ten grid cells, so the GPSNet model contains a total of 2000 cells.
We use the same parameters as for the CGNet model, except that the
same scaling of transmissibilities and relative permeability scalers are
applied to all cells and cell interfaces of each row of cells representing
a single interwell connection. In addition, we introduce parameters for
initial saturation because reasonable saturation values for the GPSNet
model are more difficult to determine. Accordingly, our GPSNet model
contains 8 × 200 + 2000 = 3600 parameters.

The models are trained in the same way as in the previous example,
except that random perturbation are not introduced to excite more
states and that we scale the mismatches in liquid rates and bottom-
hole pressures by 300 m3/day and 50 bar, respectively. Fig. 11 depicts
bottom-hole pressure and liquid rates for four of the producers. Both
the CGNet model and the GPSNet model are obtained by 150 training
iterations and show quite good match with the fine reference model
(the four wells considered in Fig. 11 constitute a representative sam-
ple). Further training could have given us a closer match, but here we
wish to test the network models as proxies for optimization of NPV and
perform subsequent training based on new fine-scale simulations as we
approach an optimum.
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Fig. 10. The Brugge model. In the lower-left plot, injectors are shown with blue labels and producers with red labels. The upper-left plot depicts the coarse partition used to
create the CGNet model with corresponding connectivity graph shown in the lower-right plot. Here, nodes that are connected to wells are highlighted using red circles. Because
an extra block is created around each well, the well nodes are either connected to a single non-well node if the extra block is contained inside another block, or to two non-well
nodes if the extra well block touches the edge of the surrounding block, as shown in the inset to the far right. (More than two connections are only possible for multilayered
partitions or if the well block lies at the corner of the surrounding block; this is not the case here.) The upper-right plot depicts the connectivity graph of the GPSNet model in
which all injectors are connected to all producers.
Fig. 11. Bottom-hole pressure and liquid rates for four of the producers for the base-case setup of the Brugge model. Results shown for the reference case (solid lines), trained
CGNet model (dashed lines), and trained GPSNet (dotted lines).
Table 4
Target and upper/lower limit values for well controls of the base case and
corresponding bounds used in the optimization.

base case lower bound upper bound

Injector target rate [m3/day] 636.95 10 1000
Injector upper limit BHP [bar] 180.00 160 180
Producer target liquid rate [m3/day] 317.98 10 500
Producer lower limit BHP [bar] 50.00 50 120

4.2.2. Optimization of net-present value
Next, we employ the two network models to optimize net-present

value (NPV). In the NPV-function, oil revenue is set to 50 USD/stb,
water injection cost to 3 USD/stb, and water production cost to 3
USD/stb. We set the yearly discount rate to 10 %. The left plot of
Fig. 12 depicts how the NPV evolves for the base case, as predicted
by the reference model and the two network models. Both the reduced
models match the reference closely. At the end of simulation, the NPV
is 1.886×1010 USD for the reference and 1.879×1010 USD for both CGNet
and GPSNet (first row of Table 5).
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For optimization, we split the ten-year simulation horizon into ten
equal control periods. During these control periods, each injector can
be controlled either by rate, BHP, or a mix of the two, as our adjoint
implementation calculates the derivative of whichever control mode is
active; see, e.g., Kraaijevanger et al. (2007) and Krogstad et al. (2018).
Similarly, producers are controlled by liquid rate and/or BHP. With 30
wells having 10 control steps each, this adds up to a control vector with
2×30×10 = 600 entries. The control bounds used in the optimization are
listed in Table 4. The NPV-optimization converges in approximately 40
iterations. The corresponding curves for the trained CGNet and GPSNet
models are shown in the middle plot of Fig. 12; see the right plot for
magnification of the upper-right corner.

Based on the results from the Norne example, we cannot necessarily
expect that the network models trained against the base-case scenario
will match well with the fine-scale simulation for the new and op-
timized well settings. Accordingly, we retrained the network models
based on the fine-scale simulation with the new and optimized well
setting and then subsequently performed NPV-optimization from the
new start points we obtained by simulating the previously optimized
settings with the new retrained models. These start points will not
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Fig. 12. The left plot shows how NPV evolves for the Brugge base case; curves for the reference model and CGNet/GPSNet overlay. The middle plot shows optimized NPV
predicted before and after retraining and re-optimization; curves for the reference model are computed using the well settings suggested after the second optimizations with the
retrained network models. The right plots shows an enlargement of the upper-right corner of the middle plot.
Table 5
Net-present values at the end of simulation (see Fig. 12) computed by the fine-scale and
the two network models on three different scenarios: the base case, after optimization
with CGNet, and after optimization with GPSNet. For the fine-scale simulations, we use
well settings obtained by the retrained and reoptimized network models.

CGNet GPSNet

fine-scale trained retrained trained retrained

Base case [1010$] 1.886 1.879 – 1.879 –
CGNet optimized [1010$] 2.361 2.367 2.357 – –
GPSNet optimized [1010$] 2.356 – – 2.383 2.342

necessarily be optima for the retrained network models. However, the
improvements in NPV, as predicted by the fine-scale model after this
second optimization step, were very limited because both network mod-
els matched the fine-scale simulation well, even before the retraining.
The middle and right plots of Fig. 12 show NPV curves for GCNet
and GPSNet after the first optimizations (trained) and after the second
optimizations (retrained), as well as NPV values computed by the fine-
scale model with well controls proposed by the second optimizations.
Table 5 displays the corresponding NPV-values at the end of simulation
(10 years).

Figs. 13 and 14 compare the mismatch in predicted bottom-hole
pressures and liquid rates for the CGNet and GPSNet models, respec-
tively, applied to the optimized well schedules. The producers are the
same as in Fig. 11. The optimized well settings are distinctly different
for the two network models, even though similar trends can be ob-
served. It has previously been observed (see e.g., van Essen et al., 2011)
that the response surfaces of well-control optimization problems do not
exhibit distinct extrema but rather ridges and valleys. It is therefore to be
expected that the two models give different optimized controls. Because
no attempt was made to regularize the controls in time, sharp jumps
between control steps are also anticipated. For CGNet, we observe close
agreement with the fine-scale simulation in both pressure and rates. For
GPSNet, on the other hand, larger discrepancies can be observed for
pressure. This could be a result of convergence problems we observed
in the forward simulation of the GPSNet model (due to extensive well
crossflow) during the training procedure, which in turn could hamper
the gradient accuracy.

5. Concluding remarks

We have demonstrated how GPSNet and our new CGNet can be
used to derive reduced models by training the model against simulation
responses from a fine-scale model. Although the models are guaranteed
to give physical results, their predictions will only be (highly) accu-
rate in a (small) parameter domain surrounding the training data. To
improve generality, we therefore proposed to train against simulations
with randomly perturbed well controls that excite a larger variation
12
in well responses and reservoir states; more systematic and targeted
perturbations will likely produce similar results. For simulation studies
encompassing large differences in flow patterns and interwell con-
nections, it is recommended to train the models using a selection
of representative displacement setups. In this regard, CGNet is more
general because the topology of the underlying network is not given
by the interwell connectivity, which may vary from one scenario to
another.

At their best, and for a comparable number of parameters, CGNet
and GPSNet have similar predictive power. However, we observed that
CGNet models are easier to configure and initialize, particularly for
cases involving nonuniform fluid distributions. In our opinion, it is
also simpler to systematically increase the accuracy of CGNet. One
explanation for this is that CGNet has richer network topology and
more parameters relative to the number of grid cells. For a comparable
number of parameters, evaluation of a CGNet model can therefore be
expected to be faster. The richness of the network topology can also
be increased in GPSNet by adding non-well nodes, e.g., as discussed
by Leeuwenburgh et al. (2022), but this quickly increases the cell count
of the corresponding 2D+ simulation model, as each new flow path
connecting two non-well nodes or a well node and non-well nodes
must be represented by a row of cells. Altogether, our conclusion is
therefore that CGNet offers a more efficient and robust approach to
reduced modeling than GPSNet.

In terms of computational speed, CGNet and GPSNet are expected
to have similar performance. A typical configuration of GPSNet models
will give larger but sparser systems than CGNet. Which is the more
efficient to solve will depend strongly on the linear solver. In our MRST
implementation, the network models discussed herein typically run
within 20–60 s because the computational overhead of MATLAB and
the general prototyping framework is significant for so small models.
Preliminary experiments performed with a compiled simulator (written
in Julia), show that the same simulations run within a few seconds at
most and that the training may take minutes and be significantly faster
than in MATLAB.

Herein, we have used the L-BFGS-B method for the misfit mini-
mization, which is quite efficient in reducing the initial mismatch but
experiences slow convergence once the mismatch has been reduced a
few orders of magnitude. Nonlinear least-square problems are tradi-
tionally solved with Gauss–Newton, Levenberg–Marquardt, or variants
of these (see e.g., Nocedal and Wright, 2006). Experience from Lie
and Krogstad (2022) shows that switching to Levenberg–Marquardt can
accelerate the misfit reduction and speed up the training significantly.
This confirms previous observations by Li et al. (2003) from his-
tory matching. A drawback with Gauss–Newton/Levenberg–Marquardt
methods is that they require a representation of the sensitivity matrix
𝑱 = 𝑑𝒚∕𝑑𝜽. In a simulation setting, this implies either 𝑛𝑦 (number of
data points) linearized forward simulations or 𝑛𝜃 (number of parame-

ters) adjoint simulations. Accordingly, for large-scale models with many
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Fig. 13. Bottom-hole pressures and liquid rate for four of the producers for Brugge with well controls optimized by CGNet. Results are shown for the reference case (solid lines),
retrained CGNet model (dashed lines).
Fig. 14. Bottom-hole pressures and liquid rate for four of the producers for Brugge with well controls optimized by GPSNet. Results are shown for the reference case (solid lines),
etrained GPSNet model (dashed lines).
ata points and/or parameters, these methods become computationally
ntractable. For the (low-order) network-type models considered here,
owever, multiple linearized-forward/adjoint simulations can be exe-
uted simultaneously, which ensures their high efficiency. If neither
evenberg–Marquardt nor L-BFGS-B can be used, another alternative
ould be to use a gradient-free method such as the ensemble smoother
ith multiple data assimilation (ES-MDA), as compared with L-BFGS-B

n Borregales et al. (2021). With ES-MDA, however, one will eventually
xperience ensemble collapse as the mismatch is driven close to zero
which is the aim for the training we consider here).
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