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Abstract. In this study, we present a parametric, non-intrusive reduced order modeling
(NIROM) framework as a potential digital-twin enabler for fluid flow around an aerofoil. A
wind turbine blade has its basic foundation in the aerofoil shape. A faster way of understanding
dynamic flow changes around the aerofoil-shaped blade can help make quick decisions related to
wind-turbine operations and lead to optimal aerodynamic performance and power production.
In this direction, a case study involving the application of the NIROM methodology for flow
prediction around a NACA 0015 aerofoil is considered. The Reynolds number (Re) is the
varying parameter, ranging from 320 000 to 1.12 million and high-fidelity CFD simulations are
performed to generate the database for developing the NIROM. The aforementioned NIROM
framework employs a Grassmann manifold interpolation approach (GI) for obtaining basis
functions corresponding to new values of the parameter (Reynolds number), and exploits the
time series prediction capabilities of the long short-term memory (LSTM) recurrent neural
network for obtaining temporal coefficients associated with the new basis functions. The
methodology involves: (a) an offline training phase, where the LSTM model is trained on the
modal coefficients extracted from the sampled high-resolution data using the proper orthogonal
decomposition (POD), and (b) an online testing phase, where for the new parameter value, the
corresponding flow field is obtained using the GI-modulated basis functions for new parameter
and the LSTM-predicted temporal coefficients. The NIROM-approximated flow predictions at
new parameters have been compared to the high-dimensional full-order model (FOM) solutions
for the high-Re aerofoil case and for a low-Re number wake vortex merger case in order to put
the performance of NIROM in perspective. The results indicate that the NIROM framework
can qualitatively predict the complex flow scenario around the aerofoil for new values of
Reynolds number, while it has quantitatively shown that the LSTM predictions improve with
the enrichment of the training space. For the low-Re vortex merger case, NIROM works very
well. Thus, it can be deduced that there is scope and potential for continued research in NIROMs
as digital twin enablers in wind energy applications.
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1. Introduction
Simulations of the flow field around wind turbines can help assess their power production
and wake dynamics performance. The wakes emanating from turbine blades can adversely
impact downstream turbines unless proper care is taken. Hence, such simulations along with
experiments provide useful information for (a) the design of turbine blades, (b) the optimal
wind turbine siting and relative placement of wind turbines, and (c) predicting the resultant
power production in wind farms. However, such high-resolution numerical simulations are
computationally intractable, particularly in the context of digital twins [1]. Moreover, the flow
around wind turbine blades resides in the turbulent regime, which involves non-linear dynamics
with a wide range of spatio-temporal scales, further increasing the complexity and cost of the
simulation process.

The Reynolds-Averaged Navier-Stokes (RANS) strategy has become popular due to its
ability to account for turbulence in a computationally efficient way. Nevertheless, such RANS
simulations are still infeasible in real-time applications in the context of emerging technologies
like Digital Twins. An alternative to the existing techniques, reduced order modeling (ROM)
is increasing in popularity due to its ability to reduce the computational burden of the existing
high-fidelity simulators. In general, ROM methods attempt to accurately approximate the high-
dimensional, complex dynamical models by constructing a system of significantly lower degrees
of freedom [2].

Proper orthogonal decomposition (POD) decomposes the flow field into a set of basis functions
that optimally describes the original system, i.e. it captures the highest-energy modes to
represent the system [3, 4]. However, it has been observed that discarding low-energy modes,
viz. modes that correspond to smaller scales, results in instabilities and modeling errors in the
ROM approximation [5, 6]. In complex systems, such as turbulent flow, the truncated modes
contribute to the dynamics of the flow structures and the energy dissipation. Moreover, the
Galerkin-projection based reduced order models (GP-ROMs) require knowledge of the governing
equations of the full order model (FOM) solvers. This can prove to be a significant hurdle in
developing digital twins, especially when different proprietary software is involved with no access
to those governing equations.

To address these two hurdles, we propose a non-intrusive ROM (NIROM), which exploits
the strengths of Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNN) in
accurately predicting time-series. The current work differs from the previous NIROM related
works (e.g., [7, 8, 9, 10]) in two regards. Firstly, it involves using a test case (NACA 0015
aerofoil) that consists of highly turbulent flow structures at high Reynolds number with complex
physics. The previous works considered cases such as forced isotropic turbulence [7], magneto-
hydrodynamic turbulence [7], Burgers equation [8, 9] or building-induced turbulence [10] at
much lower Reynolds number values than the ones in the current work. The present study on
high-Reynolds flow over an aerofoil offers a challenging and industrially-relevant test case for
assessing the approximative power of the presented NIROM methodology. Secondly, our work
considers the Grassmann manifold interpolation [11] to account for the changes in the bases
when the flow dynamics change drastically with the parameter (Reynolds number).

The structure of the paper is as follows: Section 2 provides an overview of the methodology
and its implementation. Then, in Section 3, we evaluate the predictive performance of the
proposed ROM framework with respect to the FOM solutions. Finally, Section 4 provides a
summary and conclusions drawn from the study.

2. Non-intrusive reduced order methodology (NIROM)
This section describes the NIROM methodology for predicting the flow fields for new parameter
values. Given the non-intrusive nature of the presented framework, no knowledge of the exact
FOM is required. Instead, a solely data-driven neural network approach will be used to predict
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the time coefficients, coupled with the Grassmann manifold interpolation for the basis functions.
As is generally the case with ROMs, this methodology comprises of a computationally heavy
offline training phase to build the NIROM and an efficient online phase for reconstructing flow
fields for any valid particularisation of the parameters.

The following section outlines the key steps of the NIROM framework (see Fig. 1). More
precisely, the offline phase is detailed in sub-sections (2.1-2.3) where NIROM is trained with
flow field database from known Reynolds numbers, and the online phase is described in sub-
sections (2.4-2.6) where flow-fields for new Reynolds numbers are reconstructed.

Online
Prediction :

Step 1: Data Generation Step 2: Basis Construction

Offline
Training :

Project snapshot data to the basis functions:
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Figure 1: Workflow of the NIROM framework.

2.1. Database generation as the first step in offline phase

Reynolds number

Training Test
160 000

320 000
480 000
550 000

640 000
750 000
820 000
960 000
1 120 000

Table 1: Training and
test parameter values.

The first step in the offline phase consists of generating the database
for known parameter values. In this work, the test case consists of the
flow around a 2-dimensional NACA 0015 aerofoil with parameterized
Reynolds number. The sampling procedure solves the FOM and
collects 100 snapshots of the fully developed transient velocity fields
for each Reynolds number value in the training set at regular time-
intervals. Table 1 shows the values of Reynolds numbers used for
training the NIROM in the offline stage and testing its performance
in the online phase.

The Reynolds number range was chosen such that a significant
change in the flow characteristics can be observed. Initially, a constant
interval of Re = 160 000 was chosen with intermediate values added
to enrich the training space and better identify alterations in the flow
regime.

The FOM required for generating the snapshots solves the RANS
equations using OpenFOAM’s [12] finite-volume solvers. The exact
transient solver throughout this work is the pressure-implicit with
splitting of operators (PISO) algorithm [13]. The aerofoil floats in an O-domain with radius
20c, where c = 1 m is the chord length of the aerofoil, and its centre is the quarter-chord of
the aerofoil (c/4). The domain is discretised using 130 000 hexahedral cells. On the inlet a
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parameterized freestream velocity datum is imposed, while a free traction is imposed on the
outlet. Finally, a no-slip condition is imposed on the aerofoil walls. Finally, the kinematic
viscosity of the fluid is set to ν = 1.56 · 10−5 m2/s. The time step is set to 1 · 10−5 s, resulting
in a maximum CFL number of approximately 0.5. It should also be noted that the temporal
term is discretised using the Crank-Nicolson scheme and all spatial differential operators are
discretised with second order schemes. Each simulation is run for a total of 4 s, while the flow-
field from 2 s to 4 s, is used for training and testing. The flow-field is saved with a time-step of
0.02 s, thus generating a database of around 100 snapshots per value of the parameter. Figure 2
clearly depicts the unsteady flow dynamics and flow pattern. Moreover, changes to the Reynolds
number introduce significant alterations to the boundary layer and wake structures.

(a) Re = 320 000 (b) Re = 640 000 (c) Re = 1 000 000

Figure 2: Velocity magnitudes depicting the flow structure around a NACA 0015 aerofoil for
various Reynolds numbers at t = 3 s.

2.2. Construction of the reduced bases in the offline phase.
The second step in the offline phase consists of generating the basis functions (spatial modes)
for the fields of interest for each Reynolds number in the training set and their corresponding
temporal coefficients. Without loss of generality, let us examine the case for velocity. Using the
POD, we compute R spatial modes Φ = [φ1,φ2, . . . ,φR] for velocity at each parameter value.
Figure 3 shows the first three velocity basis functions associated to the Re = 320 000.

(a) φ1 (b) φ2 (c) φ3

Figure 3: POD-constructed velocity spatial modes associated to Re = 640 000.

The time-coefficients are evaluated via projection of the solution matrix on the generated
reduced basis

αk = 〈U(x, t), φk(x)〉 , (1)

where k ∈ [1, R] denotes the mode and U is the ensemble of velocity snapshots.

2.3. Training of the LSTM network in the offline phase
The third step in the offline phase involves training an LSTM model to predict the temporal
coefficients on reduced order snapshots for any valid lookback time-window σ,

M :
{
α
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1 , . . . , α
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R ; . . . ;α
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1 , . . . , α
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R
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R
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The training dataset comprises of an input 3D matrix to LSTM containing the POD-evaluated
time-coefficients and it has dimensions of N×σ×R+1, corresponding to the number of samples
(N), the lookback time steps (σ) and the number of features (R+ 1). The number of features is
equivalent to R + 1 as the input data comprises of temporal coefficients values associated with
R spatial basis function (modes) plus the value of the relevant Reynolds number (parameter).
Moreover, an output (target) database of 2D array of the temporal coefficients for time t is
provided with dimensions N × R for training the LSTM. Using the aforementioned data, the
LSTM aims to map the inputs (σ previous timesteps) to the output, i.e. the time-coefficients
for time t. Table 2 describes the parameters used for training the LSTM model, as obtained by
the hyperparameter optimization routine optuna[14]. Figure 4 plots the loss performance of the
LSTM model while training for the dynamics of the temporal coefficients of the velocity field.
The loss stabilizes after about 300 epochs and training is completed.

Parameters Values

Number of hidden
layers

3

Number of neurons
in each hidden layer

85

Batch size 60
Epochs 350
Activation func-
tions in the LSTM
layers

tanh

Validation data set 20%
Loss function MSE
Optimizer ADAM

Table 2: Hyper-parameters Figure 4: LSTM performance.

2.4. Online phase: Generating spatial modes for new parameter values
In this step, the basis functions for the new parameter value are approximated. This is the
first step in the online phase. Starting from the existing POD-calculated reduced bases, the
Grassmann manifold interpolation approach is employed to approximate new reduced bases for
any unseen parameter value. Each of the R computed reduced bases Φi, i = 1, 2..., R resides
on a non-flat Grassmann manifold. The interpolation is carried out on the flat tangent space
at a selected point on the Grassmann manifold. Hence, we start by selecting a reference point
S0 corresponding to a parameter value and its computed set of basis functions Φ0, followed
by finding the tangent space at this point. Then, all neighboring points, Si, on the manifold
corresponding to the sub-spaces spanned by basis functions {Φi} are mapped onto this tangent
space using logarithmic mapping. For a new test parameter, µk, the corresponding point Sk is
obtained in the tangent space using Lagrange interpolation of known points in tangent space.
Finally, the POD basis Φk corresponding to the test parameter µk is computed using the
exponential mapping. Readers can refer to [11] for more in-depth information on Grassmann
interpolation (GI) and equations.

2.5. Online phase: Generating temporal coefficients
This is the second step in the online phase and consists of generating the new time-
coefficients. Using the trained LSTM model M, the time-coefficients of each basis function,
i, for the test parameter µk, αik(t), are predicted recursively, given σ initial values
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{aik(tn), aik(tn−1), . . . , a
i
k(tn−σ)}.

2.6. Online phase: Approximation of the new flow fields
The final step in the online phase consists of reconstructing the flow fields for the new parameter
value by inverse transformation.

u(x, t;µk) =
n∑
i=0

αik(t)φ
i
k , (3)

where n ≤ N is any valid subset of basis functions.

3. Numerical results
In this section, the proposed methodology is applied to a two-dimensional test case, namely
the transient flow around a NACA 0015. The varying feature/parameter of this work is the
Reynolds number, which ranges from Re = 160 000 to Re = 1 200 000. It is significant to state
that all numbers reside in the turbulent regime and the changes in the flow structure w.r.t.
the parameter are extensive, increasing the complexity of the problem. Table 1 shows both the
training and test Reynolds number values for this specific case. It should also be noted that
Re = 640 000 is used to test the methodology’s interpolation ability, while Re = 160 000 for its
extrapolation ability.

The following sections will display the results of this methodology. Significant focus will
be on the effect of enriching the training space, while also putting the complexity of the case
into perspective by comparing the accuracy of the methodology when applied to low-Reynolds
problems.

3.1. Performance of the LSTM model and Grassmann-Interpolation method
Following the training part of methodology above, i.e steps 2.1 - 2.3, we assemble the full-order
snapshots for all Reynolds number cases in the training set, construct the respective reduced
bases and time-coefficients, and use them to train the LSTM model.

First point of interest is the LSTM performance in predicting temporal coefficients for new
Reynolds numbers. Figure 5(b) plots the time-coefficients for the first 4 most significant
modes for Re = 640 000. It is easy to discern that even though the trained LSTM model
can qualitatively identify patterns, it still contains significant errors. However, the influence
of further enriching the training space becomes apparent when plotting the same coefficients
as predicted from an LSTM model that was trained with fewer samples, namely 2 instead of
7 (Fig. 5(a)). On the other hand, the prediction for Re = 160 000 which resides outside the
training space remains poor regardless of the training dataset (Fig. 6). But, this is along the
expected lines as extrapolation has been an issue with machine learning applications.

Contrastingly, the influence of the training database on the Grassmann interpolation (GI) of
the spatial basis behaves better with fewer training samples, but concentrated around the test
point, e.g. two samples Re = 550 000 and Re = 750 000, respectively, when the test point is
Re = 640 000 (as seen in figure 7). Due to the significant change of the flow structures with
Reynolds number, interpolating becomes challenging for a wider parametric space.

3.2. Approximation of flow field
With GI producing a new reduced basis and LSTM predicting the time-coefficients, the flow
fields can be approximated. This section considers the velocity field, however the results hold
true for pressure and eddy viscosity.

Figures 8-10 show the approximation/reconstruction of the velocity field for the two test
points Re = 640 000 and Re = 160 000, respectively. They also show the error between NIROM
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(a) LSTM trained with database from two Reynolds
numbers

(b) LSTM trained with database from seven Reynolds
numbers

Figure 5: Interpolation : Comparison of LSTM-predicted (NIROM) and POD-calculated (true)
time-coefficients for Re = 640 000. The first 4 significant modes are plotted. As seen in the figure
on right (b), the influence of richer training data-set is leading to better LSTM performance.

(a) LSTM trained with database from two Reynolds
numbers

(b) LSTM trained with database from seven Reynolds
numbers

Figure 6: Extrapolation: Comparison of LSTM-predicted (NIROM) and POD-calculated (true)
time-coefficients for Re = 160 000. The first 4 significant modes are plotted. The influence of
a richer training data-set is clear especially for mode 1, but the predictions are not so good for
extrapolation case.
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(b)

Error when GI-based basis from 2 Re database.
(Mode 1)                                     (Mode 3) 

Error when GI based basis  generated from 7 Re database
(Mode 1)                                       (Mode 3) 
. 

(a)

Figure 7: (a) A comparison of first 3 modes of velocity for Reynolds number of 640 000 as
obtained by (1.) GI using two-Reynolds numbers database (550k, and 750k), (2.) GI using
seven-Reynolds database and (3.) the POD generated basis functions using actual FOM CFD
data, and (b) the corresponding error between POD-generated basis on actual FOM data and
the GI basis (obtained with two-Reynolds database and with seven-Reynolds database) as shown
for two mode 1 and mode 3. The error is less with two Reynolds database than for 7 Reynolds
database because these two Reynolds numbers lie near to 640 000.

and FOM in figures 8-10. It can be seen that for the interpolation case, i.e. for Re = 640 000,
the NIROM methodology is capturing the qualitative trend, viz. the wake structure and flow
pattern are similar to that observed in the FOM. Quantitative errors can be observed, mainly in
the wake, concentrated approximately 1 chord length downstream from the trailing edge (as seen
in figures 8-9). The relative error reaches a maximum of nearly 100% in regions further than 1
chord length downstream as seen in figure 9. For the extrapolation case, NIROM struggles to
capture the wake structure both near the wall and farther downstream in the wake region (figure
10). Such results are expected, based on the observations of Section 3.1 and the complexity of
the case, with such extensive range of alterations in the flow structure as the Reynolds number
changes.

3.3. Putting LSTM performance in perspective
In this section the performance of the proposed NIROM model as applied to the high-Reynolds
case in Section 3 is put in perspective by comparing it with a low-Reynolds vortex merger
application. The complexity associated with the high-Reynolds case (Re ∈ [320 000, 1 120 000])
becomes apparent when we consider the variation of the time-coefficients associated with the
first spatial mode w.r.t. the Reynolds number (figure 11(a). In comparison, the same plot for
the low-Reynolds case (Re ∈ [200, 800]) (figure 11(b)) shows an easily discernible pattern.

It is therefore easy to comprehend the requirement for more rigorous training in the first case.
Moreover, figure 12 shows how in the vortex merger case, the LSTM is able to learn the pattern
and predict it more accurately for the new unseen Reynolds number of 500 and the NIROM
can accurately approximate the dynamics of the problem. As such, it is expected that with a
richer training dataset, or an adaptive parametric mode, both the LSTM and the GI procedures
will improve in accuracy. So, the NIROM method has shown potential and scope for continued
research as a good alternative method for ROMs at high Reynolds number applications.

4. Conclusions
In this paper, a fully non-intrusive parametric ROM framework has been developed and used to
capture the aerofoil-induced flows for high-values of Reynolds numbers from 320 000 to 1 120 000.
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Figure 8: Re = 640 000 Case: Velocity comparison between FOM (left-most) and NIROM
approximation (middle) at times t=3s and t=4s. The error (UFOM − UNIROM ) is plotted in
right-most figure.

Figure 9: Re = 640 000: Relative error at t = 4s in percentage, (error/Ufom)*100.

Figure 10: Re = 160 000 Case: Velocity comparison between FOM (left-most) and NIROM
approximation (middle) at t = 3 s. The error (UFOM −UNIROM ) is plotted in right-most figure.
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(a) High Reynolds Airfoil, Re 320,000-1120,000 (b) Low Reynolds vortex merger, Re 200 to 800

Figure 11: Variation of the time-coefficient associated with the first spatial mode over time with
Reynolds number. A comparison between the high-Re aerofoil case and the low-Re vortex-merger
case.

(a) LSTM prediction of time-coefficients (b) Comparison of flow field between NIROM
approximation true flow field for Re = 500

Figure 12: The proposed NIROM strategy applied to a low-Reynolds number vortex-merger
case.
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The case study is characterised by high complexity with major changes in the flow pattern
(boundary layer separation and wake) with the Reynolds number variation.

Based on our findings we can conclude that the proposed methodology has shown potential
by obtaining qualitatively similar wake structure and velocity field predictions for new values
of Reynolds number as compared to the full order CFD model. We also experienced significant
improvement in the approximative power of the NIROM as we refined the training space. Thus
there is much room for improvement. The quantitative errors indicate that the methodology
works better for interpolation applications, whereas extrapolation results were characterised by
relatively high errors.

Finally, the performance of the presented NIROM methodology when applied to the complex
high-Reynolds aerofoil case is put into perspective by comparing it with a low-Reynolds number
vortex merger case. Hence, in this case the pattern of variation in the temporal coefficient profile
is easily discernible. For this low-Reynolds number vortex-merger case, the NIROM managed
to identify the pattern and accurately approximate the dynamics. Thus, the study reveals that
NIROMs have good potential and there is scope for improvement of NIROMs for complex high
Reynolds number flows with more training data.
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