
Context-driven Policies Enforcement for Edge-based
IoT Data Sharing-as-a-Service

Huu-Ha Nguyen, Phu H. Phung
Intelligent Systems Security Lab

Department of Computer Science, University of Dayton
Dayton, Ohio, USA

Phu H. Nguyen∗
SINTEF

Oslo, Norway
phu.nguyen@sintef.no

Hong-Linh Truong
Aalto University
Espoo, Finland

linh.truong@aalto.fi

Abstract—Sharing real-time data originating from connected
devices is crucial to real-world intelligent Internet of Things (IoT)
applications, i.e., based on artificial intelligence/machine learning
(AI/ML). Such IoT data sharing involves multiple parties for
different purposes and is usually based on data contracts that
might depend on the dynamic change of IoT data variety and
velocity. It is still an open challenge to support multiple parties
(aka tenants) with these dynamic contracts based on the data
value for their specific contextual purposes.

This work addresses these challenges by introducing a novel
dynamic context-based policy enforcement framework to support
IoT data sharing (on-Edge) based on dynamic contracts. Our
enforcement framework allows IoT Data Hub owners to define
extensible rules and metrics to govern the tenants in accessing
the shared data on the Edge based on policies defined with static
and dynamic contexts. We have developed a proof-of-concept
prototype for sharing sensitive data such as surveillance camera
videos to illustrate our proposed framework. The experimental
results demonstrated that our framework could soundly and
timely enforce context-based policies at runtime with moderate
overhead. Moreover, the context and policy changes are correctly
reflected in the system in nearly real-time.

Index Terms—IoT, Access Control, Edge Computing, IoT Hub,
Data sharing-as-a-service, Policy Enforcement, Dynamic Context

I. INTRODUCTION

One of the significant aspects of the Internet of Things (IoT)
is to provide data sharing to connect organizations, customers,
suppliers, or other stakeholders, bringing greater added value
to different stakeholders in the IoT’s ecosystems [1], especially
with AI/ML applications. Therefore, it is essential to support
stakeholders to securely and efficiently share the live stream,
real-time or near real-time IoT data based on data context.
Such IoT data sharing can unleash great potential when
stakeholders in different sectors can use the data for their
context-specific business and applications, e.g., in smart cities
scenarios [2], [3].

A. Background
Typically, IoT data is shared among multiple parties based

on data contracts, implicitly or explicitly documented with-
/without machine-readable policies. For many of today’s sce-
narios, data sharing must happen at the Edge [4], [5] to

∗Author Accepted Manuscript version of the paper by Phu Hong Nguyen. in
2022 IEEE International Conference on Services Computing (SCC), Vol 2022
Page 221-230, DOI Distributed under the terms of the Creative Commons At-
tribution License (CC BY 4.0)https://doi.org/10.1109/SCC55611.2022.00041

facilitate Edge analytics and avoid complex data security
and privacy issues. Furthermore, the Edge-computing level
will allow tenant applications, especially cross-sector IoT AI
services, to effectively operate and enable trustful on-demand
data acquisition. A well-known challenge in this data sharing
at the Edge is real-time, context-sensitive data access control
for different stakeholders. Each stakeholder has a different
contract, which may be based on the context of the data that is
dynamically changed at runtime. Moreover, the operations in
these services are normally automated in real-time; therefore,
the access control must also be adapted dynamically in real-
time. Existing approaches for IoT data marketplaces, such
as [6], [7] provide mechanisms to share data; however, they
have not addressed the challenges mentioned above for access
control based on dynamic IoT contexts. Indeed, IoT context
sharing platforms have been surveyed in detail in [8]. However,
no existing approaches provide Edge-based enforcement solu-
tions for controlling data sharing driven by dynamic contexts.
To the best of our knowledge, no previous access control
framework supports dynamic context IoT data sharing for
cross-sector IoT smart services.

B. Our Work and Contributions

This work proposes a framework that allows dynamic
context-driven IoT data sharing at the Edge based on contract
agreements changeable at runtime. We design and develop a
set of Edge-based dynamic context policies representing real-
world data sharing scenarios with access control changes at
runtime. Furthermore, these dynamic policies can be enforced
and updated in (near) real-time based on the data contexts.
With this policy enforcement framework, we enable Edge-
based IoT Data Hubs, which allow real-time data to be
collected from various sources regardless of the protocols and
data formats, to share data based on context-specific contracts.

Our main contributions to contract-based dynamic context
IoT data sharing on the Edge are:

• We introduce tenant-specific access control policy spec-
ifications and the enforcement mechanism on the Edge
level. The policies and their enforcement are based on
data contracts between the Hub provider and tenants,
initialized and centrally stored on the Cloud;

• We support context-driven IoT data sharing through the
access control policies in flexible ways according to

application-level IoT contexts, which are dynamically
updated by context-sensing services, i.e., using AI/ML
on the Edge;

• Our Edge-based framework can enforce tenant-specific
access control policies to the data being shared dynami-
cally according to IoT context changes in the Edge and
contract changes in the Cloud.

In the remainder of this paper: We provide a motivating
example in Section II. Section III presents our approach, which
is evaluated in Section IV. We discuss related work in Section
V. Finally, we give our conclusions in Section VI.

II. A MOTIVATING EXAMPLE

Let us take the position of the IoT Data Hubs service
provider X , who owns Edge-based IoT Data Hubs (Edge
servers) deployments distributed in a smart city. We note that
in practice, Edge servers can be powerful1, although, in the
Edge, we cannot have elastic resources as much as we want.
Each Hub deployment is close to IoT devices, the primary data
sources considered in this work, and other data systems that X
does not necessarily own, but instead are owned by different
data providers. Each data provider P has its own fleet of IoT
devices and systems but offers part or all of its data to the IoT
Data Hubs. Here, we assume that X has made agreements with
any P that wants to sell their IoT data via the X’s system and
“onboard” P ’s IoT data streams to X’s Data Hubs. P trusts
X to find the best way to sell data value through monetary
means and social incentives (e.g., support emergencies and
health safety enforcement). Then, many IoT data consumers
want to use P ’s IoT data for their businesses. Each consumer
C subscribes to the data they want using e-contracts in the
Cloud-based system of X where all the IoT data streams from
different Hubs are listed for the subscription. Such a hub can
be an essential part of the ecosystem of sensing as a service
[2] and data marketplaces [9]. Currently, how X , P , and
potential consumers establish their market relationships have
been discussed in the literature in terms of marketplaces [1].
However, the issues of dynamic access control are still open
and challenging.

Let us take an example of video camera data with various
scenarios to elaborate on such challenges of dynamic access
control. Assume that camera systems from a street have
been “onboarded” to make live video data available to the
Hub in that street. Such camera systems might be owned by
shopping malls, parking houses, city administration, or other
stakeholders. Consumers can sign contracts with X and any
P to subscribe to their data but not necessarily get video
images because of different contract constraints. The city
administration can subscribe to the X’s system to receive the
number of people gathering in a specific location by an AI
service without accessing the video. In the other scenario, the
local police will be alerted if more than a certain number of
people gather, e.g., during the COVID-19 lock-down period.

1e.g., see https://www.ibm.com/docs/en/cloud-private/3.2.0?topic=servers-
preparing-install-edge-computing

For example, if more than twenty people were gathering
simultaneously in one place, the local police might get access
to the live video images on the Hub. Otherwise, they can only
get the number of people gathering. The number of people
gathering in these examples is the context generated from the
data, and the context value is changing dynamically. Assume
that the privacy rule of the city only allows the police to watch
live camera images on the Hub if, e.g., the COVID-19 lock-
down policy enforcement saying no more than twenty people
can gather in one place override privacy rights. The police
department may also want to automatically access the camera
system to recognize wanted criminals using AI. X supports
such cases by allowing some tenant (AI) applications to be
deployed in X’s Hub to get close access to data. Note that the
camera video images are not transferred outside of the Hub.

The camera system mentioned earlier is just one specific
example of IoT data that can be shared. In practice, many other
IoT data resources from different sectors can also be shared.
This means that direct sharing one-to-many is not suitable
for realizing the vision of cross-sector smart services where
different data sources may even be combined for new service
models. There are also security and privacy challenges that
must be addressed. Data and data processing must stay as close
to the data source as possible for privacy and performance.
For example, in the camera system discussed above, each
geographical area needs a local Edge server to receive all data
from the cameras in that specific area and control how camera
data can be shared for different stakeholders from the Edge.

Note that intelligent Data Hubs can infer the context of
data and can even provide AI data filtering and pre-processing
before sending data to the end-users. Thus, multiple data
sources can be merged to become new, high-quality data
sources.

III. EDGE-BASED DYNAMIC CONTEXT POLICIES

The key challenge we address in this work is how to define
and enforce data-sharing policies based on dynamic contexts.
To this end, we first present our proposed service model and
its architecture in this section. We then introduce our data-
sharing contract specification and its corresponding enforce-
ment policies. Finally, based on the policy specification, we
will demonstrate how the system and application-level contexts
can be used for dynamic policy enforcement.

A. Edge-based Data Sharing as a Service Model

In our primary service model, the Hub owner has made
agreements and integration in advance with data providers so
that the Hubs have capabilities to extract and sense specific
characteristics of the data from providers. We note that such a
hub-based model exists and is common in practice [10], [11]
Moreover, the Hub has already pre-calculated the max load
it supports for IoT data providers. This means that IoT data
providers, once onboarded to the IoT Hub, must have already
signed a contract with a technical detail agreement with the
Hub, e.g., the range of data and the frequency being sent. On
the other hand, the Hub has the ability to monitor and detect

the violations of data sent by IoT providers in a way that
malicious attackers cannot cause the Hub any harm.

Based on these assumptions, our service model mainly
focuses on how the Hub can control data sharing as a service
for different data consumers (called tenants) based on dynamic
contexts.

Context-based policies define contracts between the Hub
and tenants. Edge-based IoT data sharing as-a-service carries
out the enforcement of such policies. The conditions within
contracts, and the contract itself, can be changed based on
contexts. The Hub can sense data in the Hub to extract
relevant generic context and application-specific context based
on the predefined metadata and data from monitoring/sampling
techniques for each data source. There are two reasons for this.
First, modern IoT Data Hubs can leverage AI/ML techniques
to infer specific data-specific contexts for different applications
through plugin and sampling techniques. Second, intelligent
IoT data sources can share metadata about provided data to
the Hub. The critical business model allows tenants from cross-
sectors to get data (driven by IoT contexts) from various data
sources managed by the Hub.

B. System Architecture

Fig. 1 depicts the architectural design for an Edge-based IoT
Data Hub. A single Edge IoT Data Hub has a Data Service
that allows data providers to publish their data and enables
tenants to subscribe to the provided data. A tenant should use
a portal or an API to subscribe to available data and agree to
a set of conditions, establishing data contracts to access the
data. In this work, to simplify the process, we assume that
the contract has been predefined using a template described in
§III-C, which includes dynamic parameters based on context
information from the IoT data source. A set of such policy
templates is stored in a Contract Database (DB). Once a
contract is in place, our framework will transform it into a
low-level tenant-specific policy format and send the low-level
policy to the Policy Decision Point (PDP) in the Edge. The
PDP will trigger the policy enforcement process to monitor the
tenant’s access to the subscribed data. Our framework contains
the following vital components:

• Data Service gets data from multiple data sources and
provides data access for tenants based on the authoriza-
tion from the PDP.

• Policy Decision Point (PDP) receives the tenant’s request
from the Data Service and returns the corresponding
permission based on tenant-policy policies and runtime
contexts.

• Context Sensing monitors the real-time data to extract
the context value based on metadata from a data source.
The sensed context data from a hub is synchronized with
our central messaging system, deployed on the Cloud, to
update the policy in real-time.

• Messaging System synchronizes IoT context data and
policy updates between the Edge-Data Hubs and the
Cloud-based contracts management system. This scalable

messaging system serves many synchronization tasks
between multiple Hubs and the Cloud.

• Context Interpreter receives context data from Edge and
looks up the tenant contracts (from Contract DB) that
depend upon the context data to generate the tenant-
specific context data. Note that the tenant-specific con-
text data is calculated on the context data from Edge
(even sent from multiple Hubs) according to the tenant
contract(s). For each tenant having contract(s) affected
by the received context data, tenant-specific context data
and the low-level tenant-specific policy (in Rego for-
mat [12]) generated by the policy generation component
are synchronized back to the corresponding PDP(s) for
authorization decisions.

• Tenant-specific Policy Generation transforms high-level
policies defined as contracts in the Contract DB to the
low-level policy format (we use the Rego policy format)
for enforcement.

• Edge Synchronizer receives the low-level policy and the
tenant-specific context data from the messaging service
and synchronizes the updated values to the PDP for
enforcement.

C. Data Contracts and Enforcement Policies

1) Contracts: There are many models for data contracts of
IoT services in the literature. In our work, we leverage and
extend the common Identify and Access Management (IAM)
concept [13] to define the contract model with the following
aspects.

• Principal/Id represents the identification of the tenant.
• Name describes the overview of the contract.
• Effect specifies the permission of a given resource such

as Allow and Deny.
• Resource indicates the list of the IoT resource ID that the

contract affects.
• Actions specifies the tenant requests such as publish and

subscribe.
• Conditions specifies constraints based on some attributes

that are dependent on runtime inputs such as system-wide
or application-level contexts. We support two types of
conditions: AnyOf and All that can be combined to in-
clude multiple specific conditions based on the attributes.

We use JSON to define the contract model. Listing 1
illustrates a shortened example of a tenant-specific contract,
i.e., Tenant 1’s. In this example, city surveillance video data
is only visible to Tenant 1’s users if more than 30 people show
up at the same time or any violent behaviors are detected at the
last minute [14]. For another tenant, e.g., a fire department–
Tenant 2, the contract for viewing city surveillance video data
is defined for rescue missions only when fire alarm A triggered
(Listing 2).

2) Tenant-specific enforcement policy: Once the Hub owner
establishes a tenant contract, a specific instance of the contract
for the tenant is generated and stored in our Contract DB. The
contracts in JSON format will be transformed into a low-level

Fig. 1. Our proposed framework with an Edge IoT Data Hub

1{ "tenant":"tenant-1",
2 "contracts":[
3 {"Name":"Allow streaming camera based on people

count threshold OR violence detected",
4 "Action":["subscribe"],
5 "Effect":"Allow",
6 "Resource":["/smartcity/camera/stream/country_x

/city_y/store_z/city_surveillance"],
7 "Conditions": {
8 "AnyOf":[
9 {"object":"people_count","location":"

store_z",
10 "max_5mins": {"gt": 30}},
11 {"object":"violence_detection","

location":"store_z",
12 "violence_last_1mins": {"gt": 0}}
13],
14 "All":[
15 {"object":"data_amount","protocol":"mqtt

",
16 "lasthour_mb":{"lt": 3000}},
17]...
18}

Listing 1. Tenant 1’s contract example

1{ "tenant":"tenant-2",
2 "contracts":[
3 {"Name":"Allow streaming camera when fire alarm

triggered",
4 "Action":["subscribe"],
5 "Effect":"Allow",
6 "Resource":["/smartcity/camera/stream/country_x

/city_y/store_z/city_surveillance"],
7 "Conditions": {
8 "AnyOf":[{"object":"fire_alarmA","location

":"store_z",
9 "alarm_last_5mins": {"gt": 0}}

10],
11 "All":[
12 {"object":"data_amount","protocol":"mqtt

",
13 "lasthour_mb":{"lt": 2000}},
14]...
15}

Listing 2. Tenant 2’s contract example

policy format that can be used for the PDP in the Hub to make
decisions per data access request.

There are two main approaches to the logic code for
checking the permission and making the decision at a PDP.
The first approach is to have an all-in-one code to evaluate

the permission based on the contracts of all tenants. However,
this approach might require a complex implementation that can
cover all cases that can happen in the contracts. So the second
approach is to generate logic code for each tenant from the
contract information, making the code has smaller footprints.
We chose the second approach because of the benefits of
lightweight decision points, such as the ease of changing the
logic code and the speed when evaluating the permission.

To demonstrate the second approach, we use OPA [12] for
policy enforcement with runtime parameters and leverage its
Rego policy language to define the policy. In OPA, the Rego
policy is employed to evaluate the runtime context. While the
runtime data changes frequently, the Rego policy is created
during the initialized process and only re-created/updated
when the contract is updated. Listing 3 shows the Rego
policy example used in our framework. This Rego policy is
transformed from and corresponds with the contract described
in Listing 1.

The Rego policy must be updated to the PDP, e.g., im-
plemented using OPA in the Hub when a tenant contract
is established or changed. Therefore, we need an automated
process to synchronize a tenant contract to the PDP as a
Rego policy. To this end, we have developed a method to
transform the contract defined in the management side (in
JSON presented previously) on the Cloud to the logic code
in the decision points (Rego file) on the Hubs. The generation
process is triggered independently per tenant at the first
deployment time or when the tenant’s contract changes at any
point in time. We describe this transformation process below.

3) Generation and synchronization of tenant-specific en-
forcement policy: The process involves four components in
both Cloud, and the Hub (Fig. 1). First, the Policy Generator
component contains the primary logic to transform the low-
level policy into the Rego policy. Next, the Messaging System
transmits the generated Rego policy from the Cloud to the
Edge Hub, and the Edge Synchronizer component listens to
the corresponding event from the Messaging System to update
the Rego policy to the PDP, i.e., the OPA component.

The Policy Generator component is the most critical and
challenging in this flow. Typically, a tenant has multiple

1package app.iot
2
3default allow = false
4default whitelist = false
5allow{ whitelist }
6
7whitelist {
8 #Validate-Action
9 some i

10 actions := ["subscribe"]
11 actions[i] == input.action
12
13 #Validate Resource
14 some j
15 resources := ["/smartcity/camera/stream/country_x/city_y/

store_z/city_surveillance"]
16 regex.match(resources[j], input.topic)
17
18 #Validate Condition AnyOf
19 var_any_c_0 := data["context_data"]["people_count"]["

store_z"]["max_5mins"] > 30
20
21 var_any_c_1 := data["context_data"]["violence_detection"]

["store_z"]["violence_last_1mins"] > 0
22
23 conditions_anyof := [var_any_c_0,var_any_c_1]
24 some k
25 conditions_anyof[k] == true
26
27 #Validate Condition AllOf
28 var_all_c_0 := data["context_data"]["data_amount"]["mqtt"

]["lasthour_mb"] < 3000
29 conditions_allof := [var_all_c_0]
30 conditions_allof_negative := {value | value =

conditions_allof[_]; value == false}
31 count(conditions_allof_negative) == 0
32}

Listing 3. A tenant-specific policy example in Rego language transformed
from the contract in Listing 1

contracts that define their permissions to various IoT data
sources in different context-based conditions. We implement a
set of rules as a template engine that supports converting the
meta-model and the context structure into a Rego policy. The
template engine in the Policy Generator component is exten-
sible with new conditions and context information. Therefore,
our system can handle a new type of contract without changing
the entire framework. The Policy Generator transforms each
tenant contract separately into a final Rego file (tenant-specific
policy) using the white-listing and black-listing approach. This
approach requires an operation, i.e., a resource access request
must meet the action, the resource, and the conditions specified
in the policy before checking the decision between allowing,
denying, and neutral. Beyond that, the final decision is made
after going through all policies. Resource access from a tenant
is only authorized if at least one allowed policy matches while
no one is detected.

Because there are many Hubs connected to the Cloud
system, we need a scalable mechanism to synchronize data
contexts and enforcement policies between the Cloud and
the Edge. As a demonstration, we use the Apache Kafka
framework [15] to implement the Messaging System for syn-
chronization. We note that the Kafka framework might not be
sufficient in large-scale Edges; however, we assume that the
Hub with context sensing is a part of the network where a
Kafka consumer/producer will be executed. Therefore, it can

1 "All":
2 [{"object":"data_amount","protocol":"mqtt","lasthour_mb":{

"lt": 3000}},
3 {"object":"data_amount","protocol":"mqtt","last24hour_mb":

{"lt": 30000}}]

Listing 4. Volume-based policy configuration

reduce the technical challenges due to network configuration
and consensus protocols between Edge and Cloud. The Policy
Generator component will send the generated tenant-specific
policy to the Messaging System as a Kafka topic with the
payload of the Rego policy and the tenant’s identification.
The Messaging System will send the message topic to the
corresponding Edge Synchronizer in the Edge for updating
the Rego policies in the PDP for that specific tenant.

D. Context Sensing

The Context Sensing component generates context data
based on metadata and real-time data of IoT data sources.
Our framework supports two primary IoT contexts: system
and application-level contexts.

1) System-wide contexts: This context category is about
typical, well-understood attributes of data usage [16] such as
data amount, times, and duration. These contexts are real-time
but independent of the data values. For example, the daily
volume limit to access camera data is a system-wide context.
We define these system-wide contexts in the high-level policy
specification for tenant contracts. Listing 4 is an example of a
system-wide context policy with a volume-based context that
limits hourly data access to 3, 000MB and daily access to
30, 000MB. The context sensing component will update the
context data based on relevant system events to synchronize
with the OPA enforcement component.

2) Application-level contexts: There are different types of
real-time data from a data source that can generate contexts
for the policies. These include raw data from sensors such
as temperature or data generated by AI services from IoT
devices such as the number of people or an accident captured
in a camera [17]. We also leverage these application-specific
contexts for our policy specification, similar to system-wide
ones. For example, Listing 5 illustrates such an application-
specific context policy that involves a threshold policy with
the number of people.

1"AnyOf":
2[{"object":"people_count","location":"store_z","max_5mins":

{"gt": 35}},
3{"object":"fire_alarm","location":"store_z","alarms_last_5

mins":{"gt": 0}}],

Listing 5. An example of application-specific context: people count

There are two main approaches to implementing context
sensing. The first approach allows both raw and context data
to go through a proxy or gatekeeper as a context sensing before
forwarding it to end-users. The second approach is to fan out
two data flows, one used for context-sensing, the other data
flow going to be forwarded to the end-users via a Virtual Hub
if the PDP approves it. In this work, we employ the second

approach by developing a plugin API for each type of context
data. By doing so, we can add new plugins to generate new
context data when there is a new context type from a new data
source.

A common principle of a context-sensing plugin in the
Context Sensing component is to listen to the fan-out data flow
in the Data Gateway to capture the selective IoT data used as
context data. To generate runtime context data as a context-
based variable described above, the plugin can use an aggre-
gation method (e.g., average, sum, max, min) for system-wide
contexts or employ an AI component (e.g., for people count)
for application-level contexts. The Context Sensing component
will send these runtime generated values to the Messaging
System on the Cloud as Kafka topics. Upon receiving a context
data message, the Messaging System will trigger the Context-
based Integration Worker component to generate the tenant-
specific context data based on tenant contracts of relevance.
The tenant-specific context data are synchronized back to the
Edge for enforcing the corresponding context-based policies.

E. Tenant-specific Context Data Generation& Synchronization

Fig. 2 depicts the entire data flow and process of using
context data from a data source to generate and update the
corresponding tenant-specific context data for runtime policy
enforcement.

In the first step, the Context Sensing component listens to
the Data Service to capture the selective IoT data to be used
as context data. Then, we develop aggregation methods (i.e.,
average, sum, max, min) for some given windows such as 5
minutes, 15 minutes, last hour, and last 24 hours to create
context-based variables as described in §III-D. Finally, we
transmit these variables to a communication channel via a
Kafka topic to deliver the context data from the Edge Hubs
to the Cloud. Table I shows the samples of the existing
window-specific variables that are selected to be used as the
tenant-specific context variables later on. Note that this list
is extendable with new contexts. We implement the method
manually, but it can be replaced or integrated with another
solution, e.g., Apache Flink.

The vital component in this process is the Context-based
Interpretation Worker that listens to context data from the
Messaging System component to generate tenant-specific con-
text data based on tenant contracts. In addition, the Context-
based Interpretation Worker listens to the corresponding Kafka
topic to create a global context database. Based on each tenant
contract of relevance, only selected context variables are used
to generate an updated version of the tenant-specific context
data, as described in pseudo-code in Algorithm 1.

Finally, each generated tenant-specific context data, together
with tenant identification, will be wrapped in a payload as a
Kafka topic to be sent back to the Data Hub via the Edge
Synchronizer component in the Hub. Similar to the policy syn-
chronization process presented previously, this synchronizer
also captures related Kafka topics for tenant-specific context
data and updates them to the PDP for tenant-specific policy
enforcement. Our demonstrated PDP implementation using

Data: Context data, Contracts
Result: Tenant-specific context data are selected for all

tenants
forall tenant’s contracts in Contracts do

read current contract;
initialize tenant context;
forall policy rows in current contract do

read current contract policy row;
forall context variables in the policy row do

read current context variable;
if context variable does not exist in

tenant context then
extract context variable value from
Context data;

append the read current context variable
and it’s value to tenant context;

end
end

end
end

Algorithm 1: Illustration of the Context-based Interpreta-
tion Worker component

OPA needs both Rego policy (static) and inputs from this
context data (runtime) for each tenant to decide the access
permission, e.g., allow or deny a given access request.

IV. EVALUATION

In this section, we present our prototype implementation
and the experimental results to demonstrate the soundness and
effectiveness of our proposed framework.

A. Prototype Implementation

In the previous section, we have partly shown the im-
plementation choices for our framework in Fig. 1. For the
Data Service at the Hub, we support and implement the
MQTT, RTMP, and HTTP Live Streaming protocols. We
use MongoDB to store our contracts. We use Node.js to
implement the Tenant-specific Policy Generation and Context-
based Interpretation Worker components. In addition, we
employ PugJS (https://pugjs.org) as a template engine that uses
static predefined template files to generate the final Rego files
within this component. The static template files contain static
strings and variables, including many functions, using their
own defined markup language. The prototype is available on
GitHub2.

B. Experiment Settings

We evaluate the effectiveness of our proposed enforcement
framework by validating the following significant factors:
i) the correctness of tenant contracts transformed into en-
forcement policy; ii) the synchronization of tenant-specific
context data captured and updated in the enforcement system

2https://github.com/isseclab-udayton/scc22-prototype

Fig. 2. Sequence diagram of tenant-specific context data generation

TABLE I
DATA HUB CONTEXTS VARIABLES

Attribute Primary Index Context variables Description

data amount rtmp lasthour mb , last24hour mb The data throughtput
mqtt lasthour mb , last24hour mb accumulated.

people count store z
max 5mins , min 5mins, The aggregated
avg 5mins ,max 15mins people count.
min 15mins, avg 15mins

fire alarm store z
alarm last 5mins Alarms in the last

alarm last 10mins X minutes
alarm last 15mins

violence detection store z
violence last 1min Violences in the last
violence last 5mins X minutes

violence last 15mins

Fig. 3. Evaluation scenario of a camera system in a store department

at runtime; iii) the soundness of the enforcement of dynamic
policies with runtime contexts for each tenant.

For this experiment, we use a real-world IoT sharing sce-
nario mentioned in the motivating example in §II. In particular,
we consider a store with a surveillance camera, as illustrated
in Fig. 3. In this system, the store camera video can only
be viewed by the surveillance team within that store. The
store will be a data provider in our system with the data
source of the video publishing to the Hub using the RTMP
protocol. This scenario has three tenants: an AI company, a

local police department, and a local health department. These
tenants connect to the Data Hub to subscribe to the data from
the store data provider. Each tenant establishes a different
contract with specific runtime contexts. For example, the AI
company (tenant-A) can only use video data to perform AI
analysis during office hours. The health department (tenant-B)
can only view the camera stream from the Data Hub if the
number of people in the video is, e.g., more than or equals 30
at a time. Finally, the police department (tenant-C) can only
view the camera stream from the Data Hub if the number of

people in the video is, e.g., more than or equal to 15 in the last
5 minutes. In this example, tenant-A has a dynamic contract
with a system-wide context, i.e., office hours; tenant-B has a
dynamic contract with an application-level context, i.e., the
number of people; and the contract of tenant-C consists of
both application-level context (people count) and system-wide
context (last 5 minutes).

We have set up the Cloud, and the Hub infrastructure
on Amazon AWS with m5.xlarge instances using Docker.
All cloud-related services, such as the Kafka cluster and the
database (MongoDB) cluster, are deployed in an EC2 instance
to simulate the Cloud infrastructure. On the other hand, we
leverage four m5.large instances to set up the MQTT clusters
and hub-related services.

C. Experiments and Validation

In our experiments, we simulate the scenario described in
§II by developing corresponding applications representing the
data providers and tenants in the system. Besides the key
components developed and described in §III, we have devel-
oped context sensing plugins, including an AI-based plugin
extracting people count (application-level context) from video
and an aggregation service generating system contexts such as
average, sum, max, and min. We deployed the applications and
service components to an m5.xlarge instance on Amazon using
Docker Compose. In the Cloud, we use a Docker Compose
cluster to deploy the Messaging System (Kafka), and another
Docker Compose cluster for the Context-based Interpretation
Worker and Tenant-specific Policy Generation components.

We performed the experiments on two Raspberry Pis with
an attached camera to validate runtime performance and func-
tionalities. To validate runtime contexts such as people count,
we need actual data, i.e., real people in the video. Therefore,
we use a recorded video showing many variations of people
as a data source in our system instead of live camera data.

We discuss validated features of our framework as follows.
1) Dynamic policy enforcement with runtime context data:

We have tested our system in two levels of data amount: 1) a
recorded video as a data source and 2) a simulation of 20,000
sensors that produce one message per second. We observed
that runtime context data from our context sensing component
is generated correctly and synchronized in real-time with the
PDP through our cloud-based services to enforce the dynamic
policies properly.

In particular, in our experiments, the health department can
watch the video through the Data Hub only when the number
of people detected in the video is 30 or greater. The video
permission is denied/revoked if the threshold does not reach.
Similarly, according to the contract, the police department
(tenant-C) can only access the video if the number of people
in the video in the last 5 minutes is equal to or greater than 15.
Our experiment showed that the runtime context data of people
count within the last 5 minutes are adequately generated and
updated. As a result, this tenant has access permission when
the context variables reach the threshold.

TABLE II
CONTEXT CHANGE PROPAGATION TIME (IN MS)

Earliest
Receiving
Time

Last
Receiving
Time

Extra propa-
gation time for
a new tenant

Maximum 103 275 2.3
Minimum 36 155 1.05
Average 46 210 1.64

2) Performance and Overhead: We set up two four-instance
MQTT clusters to evaluate the performance and overhead of
our framework. The first cluster has only the authentication
mechanism. The second one integrates with our policy en-
forcement mechanism and the OPA module for authorization
per event of publishing a message, subscribing to a topic,
and forwarding a message to a subscriber. We also set up
an instance for benchmarking two clusters using an MQTT
stress testing tool. To compare the overhead in two clusters,
we used the tool to publish to both clusters with the frequency
of 20,000 messages per second by simulating 20,000 MQTT
clients publishing one message per second in a minute. On
the other hand, 20,000 MQTT clients subscribe to fetch all
messages. It is noticeable that the publishing rate is static, and
both clusters can handle that rate. We measured the overhead
by evaluating the receiving rate. The median receiving rate
times without and with our policy enforcement are 82,969
messages per second and 70,801 messages per second, respec-
tively, resulting in 17.2% in the overhead of the enforcement
mechanism.We noticed some outliers in the result produced
by the cluster with OPA integrated. In our observation, the
overhead is acceptable for the cost of authorizing the tenants
on every single request.

We also performed experiments to evaluate the response
times of our system when a policy or a context value is
changed at runtime. We measured the time from the policy
update to the database to when it is propagated to the OPA
module. We also performed the test 10 times to get the
average numbers. For rendering the Rego policies update in
the database, it responded almost immediately without delay.
However, the average time to deliver the policies over the
network to update to the OPA took around 18.5 ms.

In the third experiment, we evaluate how the system scale
with a larger number of tenants when a context is changed. We
tested with 100 tenants in propagating the context value from
the data source to the OPA policy module. In this context-
change scenario, we set a timer starting when the context
changes until it is evaluated and published to the OPA. Since
a context change may affect many tenants, we measured the
propagated time of the first and the last tenants among 100 of
them. Table II describes the times we measured. On average,
for over 100 tenants, it took about 1.64 ms to process and
update the new context to an OPA instance.

D. Discussions on Edge-based Services & Policies Evolution
1) Policies evolution: Our proposed framework can support

the (co-)evolution of Edge-based services and policy enforce-
ment. When a new IoT data provider partners with the IoT
Hub, their data schema and protocols will be “synchronized”
with the IoT Hub system. In other words, the onboarding
process for new IoT data providers is done in the background.
The IoT data provider can work closely with the IoT Hub
provider to ensure their data are adequately available to
the Data Hub. Our focus is on the process of new tenants
subscribing to new data sources and can access new data
according to tenant-specific dynamic contexts. For example,
let us consider an updated scenario when Tenant 1 is updating
its contract (Listing 1) for its system can access surveillance
cameras’ data in case of fire. For this existing tenant, the
additional context is the status of the fire alarm triggered.
This means that there will be an updated policy in the contract
database that extends the existing policy with the newly added
context based on the fire alarm status (Line 4, Listing 6).

1"AnyOf":
2[{"object":"people_count","location":"store_z","max_5mins":

{"gt": 30}},
3{"object":"violence_detection","location":"store_z","

violence_last_1mins": {"gt": 0}}
4{"object":"fire_alarmA","location":"store_z","alarms_last_5

mins":{"gt": 0}}],

Listing 6. An example of an updated policy

The rest of the enforcement is propagated from the new
contract in the Cloud for generating the updated Rego policy,
which is then synchronized into the OPA engine in the Edge.

2) Advanced contexts and trustable data sharing: Nowa-
days, there are many advanced and dynamic contexts avail-
able in practice that can be deployed and integrated into
our proposed framework. For example, we can have many
dynamic contexts in emergencies such as fire alarms, floods,
and traffic accidents [17]. These contexts can also be imported
from or provided by machine learning applications (in today’s
deployment, such applications can be executed within the IoT
devices, e.g., smart cameras and drones).

Especially, our framework can lay a foundation for end-to-
end dynamic industrial data sharing with traceability, trust, and
security. In advanced scenarios where supply chain stakehold-
ers call for an innovative way of trustable data sharing across
companies, the dynamic contexts of data sharing (used in OPA
for authorization) and another key (business critical) trans-
action data can be stored in a traceability layer. Distributed
ledger/blockchain and smart contract technologies will be used
to ensure traceability and integrity of the data (including data
quality [18]), enabling trustworthy and secure data exchanges.
Our framework can be extensible with such a traceability layer
by implementing a secure proxy/connector integrated with the
data service to allow all stakeholders to contribute to the same
ledger/blockchain of the supply chain/ecosystem.

Our framework uses OPA for policy decisions, which is
very popular in the industry, including OPA for the Cloud and
network. Therefore, our proposed framework is compatible
and can be integrated into existing industrial ecosystems.

V. RELATED WORK

The sensing as a service model presented in [2] shows
the vision of utilizing (cross-sector) multi-parties IoT (data)
resources to accommodate large numbers of consumers, which
makes more sense in smart cities nowadays. However, it is
still a long way to fulfill the vision, with few works that have
barely made it any further. Nevertheless, our work on context-
specific policy access controls can contribute to such sensing-
as-a-service scenarios.

In [19], the authors present a context-aware security (con-
ceptual) framework with the context management that makes
use of context information and access control policies (e.g.,
XACML [20]) for secure data sharing decisions. They propose
a secure data sharing mechanism for groups of smart objects
according to contextual data. However, their framework does
not address Edge-based enforcement solutions for controlling
cross-sector data sharing driven by dynamic contexts. In the
same direction, the authors of [21] propose an Edge-centered
context sharing architecture. This study described an archi-
tecture that makes security decisions based on shared context
information from multiple domains. However, this architecture
is only a conceptual model without any concrete enforcement
solutions.

D. Preuveneers et al. [22] make use of the UMA OAuth
2.0 extension that extends OAuth 2.0 from only authorizing
applications to access on a subject’s behalf (person-to-self),
to allowing person-to-party (person-to-person and person-to-
organization) authorization by delegating access to third par-
ties such as other individuals or organizations [23]. To define
and enforce access policies in [22], the policy execution engine
Open Policy Agent (OPA) [12] is used. OPA uses a JSON
based policy language named Rego that is efficient in terms
of parsing and policy size [22]. Even though the approach
in [22] follows the same direction as our work and also uses
OPA for the policy enforcement engine, it does not yet show
the support for utilizing (cross-sector) multi-parties IoT (data)
resources to accommodate large numbers of consumers.

Nguyen et al. [5] uses the gatekeeper design pattern that
deploys a policy enforcement instance for each tenant appli-
cation in the Edge. The gatekeeper works as a gateway by
intercepting all incoming requests, decoupling access control
logic from the application’s business logic, and enabling real-
time policy updates by redeploying the gatekeeper. However,
no dynamic IoT context is supported in their approach.

There are quite some IoT Data Marketplace approaches such
as [7], [24], [25] that focus on using blockchain technology
and/or smart contracts to enable IoT data sharing. Perez and
Zeadally [3] discussed issues and proposals to use smart
contracts in crowdsensing. Overall, these works, e.g., [7], [24]
adopted blockchain/smart contracts for IoT data sharing for
no trusted parties. However, these approaches do not touch
upon IoT data sharing for trusted parties in which shared data
is based on contracts via an intermediary and with dynamic
contexts that can bring significant value to the involved parties.
The approach in [24] also employs an efficient proxy re-

encryption mechanism, ensuring that the data is only visible
to the data owner and the person in the contract. Similarly,
by employing the blockchain as an auditable and distributed
access control layer to the data layer, the authors of [25] enable
secure data sharing and resilient access control management.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a framework that allows dynamic con-
text IoT data sharing on the Edge based on contract agreements
for multiple parties. Our work is a significant step toward
realizing the vision of utilizing (cross-sector) multi-parties IoT
(data) resources to accommodate large numbers of consumers.
We have tackled one of the most challenging problems in this
direction by proposing an Edge-based security enforcement
framework that enables multi-parties IoT (data) resources
to be shared based on contracts, especially with dynamic
IoT contexts. Our proof-of-concept prototype has shown how
the proposed framework can be implemented and adequately
enforce dynamic context-based policies for accessing IoT data
on the Edge for different tenants.

Future work includes doing more experiments with the
scalability of our framework implementation for possible
refinement. The framework design allows the deployment of
tenant applications executed inside the Hubs. This means that
the Hub controls IoT data being shared with tenants (exter-
nally) and tenant applications being deployed and executed
right in the Edge for better real-time data usage. Further-
more, our proposed framework can also be combined with
Data Marketplace approaches using blockchain and/or smart
contracts technology to record the provenance of context-
based IoT data sharing transactions. This way can fortify
the trustworthiness of the framework for all the involved
parties because the critical data of every transaction, such
as application-level contexts, system-level contexts, and data
quality, can be recorded securely by design.

ACKNOWLEDGMENTS

The research leading to this publication has partially re-
ceived funding from Novobi, LLC research contract M8J000,
the National Science Foundation (NSF) EAGER award
2025234, and the European Union’s Horizon 2020 Research
and Innovation programme under Grant Agreement 958363
(Dat4.ZERO).

REFERENCES

[1] S. Jernigan, D. Kiron, and S. Ransbotham, “Data sharing and analytics
are driving success with IoT,” MIT Sloan Management Review, vol. 58,
no. 1, 2016.

[2] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Sensing
as a service model for smart cities supported by internet of things,”
Transactions on Emerging Telecommunications Technologies, vol. 25,
no. 1, pp. 81–93, 2014.

[3] A. J. Perez and S. Zeadally, “Secure and privacy-preserving crowd-
sensing using smart contracts: Issues and solutions,” Computer Science
Review, vol. 43, p. 100450, 2022.

[4] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A
survey on the edge computing for the internet of things,” IEEE Access,
vol. 6, pp. 6900–6919, 2018.

[5] P. H. Nguyen, P. H. Phung, and H.-L. Truong, “A security policy
enforcement framework for controlling iot tenant applications in the
edge,” in Proceedings of the 8th International Conference on the Internet
of Things, ser. IOT ’18. New York, NY, USA: Association for
Computing Machinery, 2018.

[6] K. Mišura and M. Žagar, “Data marketplace for Internet of Things,”
in 2016 International Conference on Smart Systems and Technologies
(SST), 2016, pp. 255–260.

[7] K. R. Özyilmaz, M. Doğan, and A. Yurdakul, “IDMoB: IoT Data
Marketplace on Blockchain,” in 2018 Crypto Valley Conference on
Blockchain Technology (CVCBT), 2018, pp. 11–19.

[8] E. de Matos, R. T. Tiburski, C. R. Moratelli, S. Johann Filho, L. A.
Amaral, G. Ramachandran, B. Krishnamachari, and F. Hessel, “Context
information sharing for the internet of things: A survey,” Computer
Networks, vol. 166, p. 106988, 2020.

[9] T.-D. Cao, T.-V. Pham, Q.-H. Vu, H.-L. Truong, D.-H. Le, and S. Dust-
dar, “Marsa: A marketplace for realtime human sensing data,” ACM
Trans. Internet Technol., vol. 16, no. 3, may 2016.

[10] M. Blackstock and R. Lea, “Iot interoperability: A hub-based approach,”
in 2014 International Conference on the Internet of Things (IOT). IEEE,
2014, pp. 79–84.

[11] M. Bajer, “Building an iot data hub with elasticsearch, logstash and
kibana,” in 2017 5th International Conference on Future Internet of
Things and Cloud Workshops (FiCloudW). IEEE, 2017, pp. 63–68.

[12] “Open policy agent,” https://www.openpolicyagent.org/.
[13] I. Security, “Designing a modern IAM program for your business,” https:

//www.ibm.com/downloads/cas/9YBEK41O, 2020, whitepaper.
[14] M. Ramzan, A. Abid, H. U. Khan, S. M. Awan, A. Ismail, M. Ahmed,

M. Ilyas, and A. Mahmood, “A review on state-of-the-art violence
detection techniques,” IEEE Access, vol. 7, pp. 107 560–107 575, 2019.

[15] “Apache Kafka,” https://kafka.apache.org/, (Accessed on 08/21/2021).
[16] P. H. Phung, H.-L. Truong, and D. T. Yasoju, “P4SINC-an execution

policy framework for IoT services in the Edge,” in Proceedings of the
2017 IEEE international congress on Internet of Things (ICIOT’2017),
Honolulu, HI, USA. IEEE, 2017, pp. 137–142.

[17] X.-D. Nguyen, A.-K. N. Vu, T.-D. Nguyen, N. Phan, B.-D. D. Dinh,
N.-D. Nguyen, T. V. Nguyen, V.-T. Nguyen, and D.-D. Le, “Adaptive
multi-vehicle motion counting,” Signal, Image and Video Processing,
pp. 1–9, 2022.

[18] P. H. Nguyen, S. Sen, N. Jourdan, B. Cassoli, P. Myrseth, M. Armendia,
and O. Myklebust, “Software engineering and ai for data quality in
cyber- physical systems - sea4dq’21 workshop report,” SIGSOFT Softw.
Eng. Notes, vol. 47, no. 1, p. 26–29, jan 2022. [Online]. Available:
https://doi.org/10.1145/3502771.3502781

[19] J. L. Hernandez Ramos, J. B. Bernabe, and A. F. Skarmeta, “Managing
context information for adaptive security in iot environments,” in 2015
IEEE 29th International Conference on Advanced Information Network-
ing and Applications Workshops, 2015, pp. 676–681.

[20] O. Standard, “extensible access control markup language (xacml)
version 3.0,” A:(22 January 2013). URl: http://docs. oasis-open.
org/xacml/3.0/xacml-3.0-core-spec-os-en. html, 2013.

[21] E. de Matos, R. T. Tiburski, L. A. Amaral, and F. Hessel, “Providing
context-aware security for iot environments through context sharing
feature,” in 2018 17th IEEE International Conference On Trust, Se-
curity And Privacy In Computing And Communications/ 12th IEEE
International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE), 2018, pp. 1711–1715.

[22] D. Preuveneers and W. Joosen, “Towards multi-party policy-based access
control in federations of cloud and edge microservices,” in 2019 IEEE
European Symposium on Security and Privacy Workshops (EuroS PW),
2019, pp. 29–38.

[23] “User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization,”
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html.

[24] A. Manzoor, M. Liyanage, A. Braeke, S. S. Kanhere, and M. Ylianttila,
“Blockchain based proxy re-encryption scheme for secure iot data
sharing,” in 2019 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), 2019, pp. 99–103.

[25] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, “Towards
blockchain-based auditable storage and sharing of iot data,” in Proceed-
ings of the 2017 on Cloud Computing Security Workshop, ser. CCSW
’17. New York, NY, USA: Association for Computing Machinery,
2017, p. 45–50.

