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Abstract. To get a better understanding of the highly nonlinear pro-
cesses driving the ocean, efficient and informative sampling is critical.
By combining robotic sampling with ocean models we are able to choose
informative sampling sites and adaptively change our path based on mea-
surements. We present models exploiting prior information from ocean
models as well as real-time information from in situ measurements. The
method uses compact Gaussian process modeling and objective func-
tions to locate informative sampling sites. Our aim is to get a better
understanding of ocean processes and improve real-time monitoring of
dispersal dynamics. The case study focuses on a fjord located in Norway
containing a seafill for mine tailings. Transportation of the deposited
particles are studied, and the sampling method is tested in the area. The
results from these sea trials are presented.

Keywords: Adaptive sampling, Gaussian processes, AUV, Oceanogra-
phy

1 Introduction

There has been a steady increase in both knowledge and awareness concerning
the environmental impact and potentially harmful effects of the discharge of drill
cuttings, mud and mine tailings in the sea. Cold-water coral reefs and sponges,
found in abundance along the Norwegian continental shelf, are two examples of
sensitive species that may be negatively impacted by such sea floor deposition
[Trannum et al., 2010]. This prompts the need for both dispersion modelling in
the planning phase, and monitoring of the sedimentation, turbidity and other
variables in the execution phase, and is a motivation for developing information-
driven sampling methods of particle dispersal, which is the focus of this paper.
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Creating models describing the ocean dynamics is challenging because of
its large scale nonlinear processes and high spatio-temporal variability. Exist-
ing models continuously refine numerical methods towards improving accuracy,
[Griffies et al., 2000]. But still the existing models are prone to errors; simplifi-
cations are done, errors can occur because of the numerical implementation and
so on. Model verification and data assimilation continues to be a challenge that
prompts the need for in situ measurements. Such data is commonly obtained
using either remote sensing, ships or buoys. This data is usually expensive to
acquire and process, making it hard to observe the entire environment in detail.
Hence, the ocean tends to be undersampled, leading to large gaps in our un-
derstanding of the ocean [Stewart, 2008]. Thus, when designing an experiment
or observation system, we need to address the problem of when and where to
sample. By thoroughly planning a mission, using all information available, sam-
pling locations can be chosen such that they maximize the information retrieval
during a survey. Planning should therefore exploit prior information from e.g.
ocean models, satellite data, stationary buoys and data from previous missions.
In addition, real-time in situ measurements can be used to adapt an ongoing
mission such that a best possible sampling strategy is obtained.

Mobile robotic platforms, like autonomous underwater vehicles (AUVs), have
recently become more affordable, robust and viable for scientific exploration,
thus providing an efficient platform for autonomous collection of in situ oceano-
graphic data. In this paper we focus on a method using an AUV for sampling
in situ turbidity data with the goal of tracking suspended material plumes, and
being able to adjust the mission in real-time. To obtain real-time adaption, a
faster-than-real-time particle dynamics model onboard the AUV is required. The
numerical ocean models have a high computational load, making them unfit for
running on embedded robotic systems with both data processing and storage
constraints. Hence, a simpler, more compact model approximating the processes
is built based on Gaussian processes (GP). This simplified low-complexity proxy
model represents the state of the ocean at the time, and can be updated when
new information is available. Two existing numerical models, SINMOD (ocean
model) and DREAM (particle dynamics model), are used to train the GP proxy
model creating a prior proxy model of the particle concentration. Sensor readings
on the AUV can then be used to update the proxy model onboard in real-time.
To maximize the value of information from the samples from the AUV, an ob-
jective function for path planning is presented. The objective function assures
that the area is explored by choosing locations assumed to be information rich,
and also considers the limitations of the AUV.

As a case study, the proposed algorithm is tested in Frænfjorden (Norway)
which contains a seafill for submarine mine tailings. The goal is to track the
particle dispersal near this seafill, aiming to improve real-time monitoring of
dispersal dynamics.

The paper is organized as follows. Section 2 provides definitions and back-
ground information on modeling, methods and data assimilation. Section 3 ex-
plains our approach and the implementation of the developed methods. Section
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4 shows the results from the field experiment. Lastly, section 5 concludes with a
summary discussion and future work.

1.1 Related work

GPs [Cressie and Wikle, 2011],[Eidsvik et al., 2015] are powerful for creating non-
parametric, simple and computationally efficient models. They are widely used
when creating a data-driven spatial model, and are popular within environmental
sensing. This is among others explored in [Krause et al., 2008], where a method
for static sensor placement is suggested using GPs and maximization of mutual
information. Others use GPs in combination with robotic vehicles as in [Zhang
et al., 2012] where an AUV is used to track an upwelling front or in [Das et al.,
2015] which use an AUV to collect samples for ex-situ analysis, selecting the
sampling locations based on previous missions and maximizing a utility function.

When introducing robotic vehicles for sampling, path planning is required
to obtain the optimal sampling path. Finding the optimal path is among others
discussed in [Binney et al., 2010] which use the measure of mutual information
to optimize information gain along a 2D path for a marine glider. This is further
elaborated and tested with a surface vehicle in [Binney et al., 2013], where a
comparison of greedy vs. recursive greedy approaches is explored for a similar
problem.

A common approach when building a GP model is to assume stationary
variance, but when modeling particle transportation there is reason to believe
that some sites vary more than others. In this paper an approach using non-
stationary variance is suggested, using empirical variance from numerical models
as training data for the model variance. A similar approach is explored in [Fos-
sum et al., 2018], which uses temperature as an information utility and trains a
GP model using the ocean model SINMOD with the goal of tracking an ocean
front. Our paper is based on the ideas discussed in [Berget et al., 2018], where a
low-complexity GP model of particle concentration is built and the sampling al-
gorithm is tested with simulated data. This paper presents results of this method
using experimental oceanographic data from a sea trial.

2 Background

This section presents definitions and background information on modeling and
data assimilation.

2.1 Ocean models

In this paper, we use numerical oceanographic models to build a prior belief of
the state of the ocean. Ocean models are models that describe the state of the
ocean at a given time, providing information on temperature, salinity, currents,
density and pressure. The models are based on a set of thermodynamic and hy-
drodynamic equations, commonly called the primitive equations, and these are
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solved using numerical techniques. Running of these models is a computer inten-
sive task, since it involves solving a large set of equations. Thus, we get a trade-off
between the resolution of the model and the available computer resources. Be-
cause of these limitations a high-resolution model can only be computed for small
areas. A common technique is nesting, where the model is run at a large scale
producing boundary conditions for smaller scale models with higher resolution.

Input to ocean models typically includes tides, sea-level pressure, wind, heat
exchange, bathymetry and freshwater runoff. Errors in the input data as well as
numerical errors can affect the quality of the output data. Hence, there is a need
to develop enabling technology that performs efficient and targeted sampling
of the ocean. Observations from different platforms such as buoys, ship-based
sampling or robotic sampling from for example AUVs can be used to evaluate
the performance of the models. In addition to such hindcast model validation
and correction, the information can be used in real-time to improve the ocean
model using data assimilation.

In the case study, we use two specific models to build our prior belief, SIN-
MOD and DREAM. SINMOD describes the ocean dynamics and data from this
model is used as input to DREAM, which is our particle transportation model.
These are typical examples of ocean models.

SINMOD - The ocean model SINMOD is a numerical ocean model sys-
tem that connects and simulates physical and biological processes in the ocean
[Slagstad and McClimans, 2005], [Wassmann et al., 2006]. The model is based on
the Navier-Stokes equations, and uses a nesting technique where high resolution
models obtain their boundary conditions from larger model domains with lower
resolution. SINMOD is established in configurations with horizontal resolutions
ranging from 20 km to 32 m. Input to the model includes atmospheric forcing,
freshwater run-off, and boundary conditions (density, tidal forcing, currents).

In our experiments, SINMOD has been set up with 32 m horizontal reso-
lution. For input, the bathymetry data is based on DMB Sør-Norge, supple-
mented by OLEX data recorded by SINTEF Materials and Chemistry. The at-
mospheric input data is produced using the Weather Research and Forecasting
(WRF) (https://www.mmm.ucar.edu/weather-research-and-forecasting-model)
model simulated with boundary values from the ERA - Interim reanalysis, and
climatologic data for freshwater run-off is used.

DREAM - The particle transportation model DREAM is a Lagrangian
particle transport model which can be used to simulate behaviour and fate of
marine pollutants, including particulate discharges from drilling operations [Rye
et al., 1998, Rye et al., 2008]. It provides time series of concentrations of released
materials in the water column, as well as deposition of these materials onto the
sea floor. Input to the DREAM model includes hydrodynamic data, in our case
delivered by SINMOD, as well as information about the release (amount, rate,
densities, grain size distribution). DREAM is often used as a decision support
tool for management of operational discharges to the marine environment.
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For Frænfjorden DREAM was set up to use input data from the ocean model
SINMOD. The horizontal resolution was set to 38 m.

2.2 Low complexity data-driven spatial models

To be able to adjust a mission based on real-time measurements, a low complex-
ity data-driven model that can be updated relatively quickly is needed. Since
numerical ocean models, like SINMOD, are computer intensive, it is currently
not feasible to run these onboard a robotic platform. Still, it is desirable to have
a representation of the spatial conditions, and a common solution is to use a
stochastic proxy model based on GPs.

A GP is a collection of random variables having a multivariate normal prob-
ability density function. When the variables are allocated to spatial locations,
the spatial dependencies can be modeled through the covariance of the density
function. A definition of a GP representing a 2-D spatial process is given by:

Consider a real-valued stochastic process {X(s), s ∈ Ω}, where Ω ⊂ R2 is
a set of locations. This is a GP if, for any finite choice of N distinct locations
s1, . . . , sN ∈ Ω, the random vector x = [x(s1), . . . , x(sN )] has a multivariate
normal probability density function:

p(x) = N (µ,Σ) =
1

(2π)
N
2 |Σ| 12

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (1)

defined by the mean vector µ = E(x), and the symmetric positive definite
covariance matrix Σ = cov(x,x).

A GP is a popular stochastic model, especially for environmental processes,
and this is often attributed to two essential properties. First, as can be seen from
equation (1), a GP is fully expressed by its mean and covariance. Thus, only the
first- and second-order moments need to be specified when building the model.
Second, the procedure for prediction and assimilation is uncomplicated since it
is inherent to the fundamental equations of the model.

In this work, a GP is used to represent the spatial dependencies of the particle
concentration in the ocean, and hindcast and prediction data from the numerical
model DREAM is used to specify the GP model parameters.

3 Methods

In this section we present the onboard spatial GP model, the sampling algorithm
used in our survey and the implementation of the algorithm.

3.1 Gaussian process specification

In this paper only one depth layer within our survey area is considered, although
the concepts are general and can be extended to 3D and also temporal dimen-
sion. Our 2-dimensional domain is divided into a regular grid with N grid points
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[s1, . . . , sN ], and the particle concentration in location si is assumed to be Gaus-
sian with mean µi and variance σ2

i . Hindcast data and prediction data from the
DREAM model is used to specify the parameters (the mean and the covariance)
in our GP model. The prior mean particle concentration µ0 = [µ1, . . . , µN ] is ap-
proximated by computing the empirical mean concentration µ∗

i in each location
si, i = 1, . . . , N . Assuming M data [y∗i,1, . . . , y

∗
i,M ] in location si, this is given by

µ∗
i =

1

M

M∑
m=1

y∗i,m, (2)

and the prior mean of the proxy model is obtained as the vector µ0 = [µ∗
1, . . . , µ

∗
N ]T .

As the GP is specified only in two dimensions, the mean values constitute a 2D
particle concentration surface.

The prior covariance matrix Σ0 is given as

Σ0 =


Σ11 Σ12 . . . Σ1N

Σ21 Σ22 . . . Σ2N

...
...

. . .
...

ΣN1 ΣN2 . . . ΣNN

 , (3)

where Σij = σiσjRij and Rij is the correlation function. Hence, the diagonal of
the covariance matrix contains the variances σ2

i , and the off-diagonal elements
describe the covariance between the locations. The fundamental concept of mod-
elling spatial correlation needs to fulfill two main properties: i) that correlation
decays with distance and ii) that the covariance matrix is positive definite. To
achieve this, it is common to use generic correlation functions or kernels. By
comparing covariance functions with the empirical covariance of the training
data, Matern (3/2) kernel [Matérn, 2013] is chosen. The function is given by

Rij = (1 + φhij) exp(−φhij), (4)

where hij = |si − sj | is the Euclidian distance between two locations si and sj
and φ > 0 is a constant meta-parameter regulating the correlation decay with
the distance. The best value for φ is estimated using training data by choosing
the best fit of the covariance function to the empirical covariance in the data.

When modeling ocean processes, factors such as bathymetry, currents, wind
patterns, and freshwater run-off in coastal areas imply that some locations will
have elevated variability. Thus, we choose a non-stationary model where the
prior variance of the state in each location is chosen to be the empirical variance
from the DREAM data [Jun and Stein, 2008]

σ∗2
i =

1

M − 1

M∑
m=1

(y∗i,m − µ∗
i )

2. (5)

To model the temporal changes, a first order Markovian process is suggested

xt = xt−1 + qt, (6)
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where qt ∼ NN (0, VΣ0) is a N -dimensional normally distributed vector with
zero mean and covariance matrix VΣ0 where V > 0 is a constant parameter. This
temporal model assumes that the current step in time is similar to the previous
with an increase in variance proportional to the prior covariance matrix Σ0. In
this way, parts of the spatial correlation between the locations is maintained,
and the increase in variance due to the dynamics of the particle transportation
is modeled. The constant value V determines the size of the increase in variance,
and this value was tuned to fit the modelled domain.

This is a simplified temporal model that only increases the variance in each
time step, and does not consider the temporal dispersal dynamics. Hence, we
rely on the observations from the AUV to catch the changes in the particle
distribution.

3.2 Data assimilation

The observation model is given by

yt = Gtxt + εt. (7)

Here, Gt is the sampling design at time t, a matrix of size (M × N) that con-
tains 1 at the entries that correspond to the sampled locations at time t, and 0
otherwise. εt ∼ NM (0,Ω) is a normally distributed error term with zero-mean
and covariance Ω, assumed to be Gaussian, describing the measurement noise.
In our experiments M = 1 and Gt will be a vector of size N .

Since a GP is fully represented by its mean and covariance matrix, these are
the only parameters that needs to be updated in each time step. Exploiting the
properties of the Gaussian distribution, the conditional updated mean and co-
variance matrix at time step t: µt = E(xt|y1, . . . ,yt) andΣt = cov(xt|y1, . . . ,yt)
can be found by [Rasmussen and Williams, 2005], letting Σ∗

t represent the in-
creased covariance after applying the temporal model in (6)

Kt = Σ
∗
t−1G

T
t (GtΣ

∗
t−1G

T
t +Ω)−1

µt = µt−1 +Kt(yt −Gtµt−1)

Σt = Σ
∗
t−1 −KtGtΣ

∗
t−1

Σ∗
t = Σt + VΣ0.

(8)

3.3 Objective function

To obtain an informative path for the AUV, an objective function is suggested.
The function is created based on three criteria, as in [Berget et al., 2018]

1. Locations with high variance are preferred
2. Locations with high predicted concentration are preferred
3. Locations leading to a suitable travel length for the AUV are preferred
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The first criterion is chosen because observing in areas with high variance
leads to a reduction in total variance, hence creating a more accurate model.
This criterion also ensures that the AUV travels to areas that are unexplored.
The second criterion makes the method adaptive. When studying the simulation
results of the particle transport from the complex model, it is clear that the
variability is highest where there is a high concentration of particles. Hence, the
criterion is inspired by this observation, and assumes that locations with high
predicted concentration will be rich with information. The last criterion comes
from the travel length limitations of the AUV. When choosing the next sample
location, it is also essential that the AUV does not travel too far, assuring that
the risk of the vehicle drifting outside the survey area is kept low.

The suggested objective function is then created by having a term for each
of two first criteria. At time step t for location si, the objective function is given
by

ft(si) = θ1σ
2
i,t + θ2µi,t (9)

where the constant parameters θ = [θ1, θ2] defines the weighting for each criteria.
These parameters together with the parameter V in the updating equations (8)
are tuned by trial and error in simulation to obtain the desired behavior of
the AUV. Especially, the tuning of V is important to maintain the balance
between the terms in the objective function (9). As seen from equation (8), the
assimilation of data results in decreased covariance near the observation sites.
Thus, a small V would result in low covariance values as more observations are
taken, making the second term in the objective function dominating. On the
other hand, a large V would result in the covariance growing out of bounds
which would make the first term dominating.

3.4 The algorithm

The sampling location St at time step t is chosen as the location that maximizes
the objective function ft(si) for si ∈ [s1, . . . , sN ]. So given the previous sampling
location St−1, we choose the next sampling location as

St = argmax
si

ft(si) (10)

s.t. |St−1 − si| ≥ dmin

|St−1 − si| ≤ dmax.
(11)

The constraints on the objective function ensures that the third criterion in
the objective function is adhered to, by choosing dmin and dmax such that a
suitable travel length is obtained. |St−1 − si| is the Euclidian distance between
the previous sampling location and si. Details of the sampling method are given
in Algorithm 1.

This is a greedy method that chooses the best next sampling location at each
step. First, the low-complexity GP model is initialized using training data from
the numerical particle transportation model DREAM. The sampling then begins
by evaluating the objective function and choosing the location which maximizes
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Algorithm 1 Sampling method
1: procedure sampling
2: Initialize GP according to (2) and (3)
3: for t = 1, . . . , T do
4: for s = s1, . . . , sN do
5: Evaluate the objective function ft(s) (9)
6: Choose next sampling location St according to (10)
7: Go to location St

8: Retrieve observations yt from St

9: Assimilate data according to (8)

it. After reaching the desired location and observing there, data assimilation is
done and the GP model is updated such that the variance is increased in the
unobserved locations.

3.5 Implementation

Figure 1 shows the layout of the agent architecture used in the experimental
survey. The Unified Navigation Environment (DUNE) [Pinto et al., 2012] is run-
ning onboard the AUV, and is used for control, navigation, vehicle supervision,
communication, and interaction with actuators. On top of this sits the agent
architecture T-REX (Teleo-Reactive EXecutive) [Rajan and Py, 2012], which
enables an adaptive mission. T-REX allows the embedding of multiple complex
decision processes (including planning). The communication between DUNE and
T-REX was handled by the LSTS toolchain (Pinto et al., 2013), which provides
the back-seat driver API to DUNE. This allows external controllers, such as
T-REX, to provide desired tasks for our platform while also receiving progress
updates on the current state.

Our sampling algorithm was written as python-code, and was implemented
as a reactor in T-REX. A reactor is a component of T-REX acting as an internal
control loop in the framework, and is capable of producing goals that the planner
integrates in to a series of actions (e.g., Goto, Arrive_at and so on). The set of all
those actions forms a plan which was built while ensuring operational constraints
of the mission (e.g. the vehicle should never dive deeper than a certain depth, or
leave a defined area.) The plan is then sent to DUNE, which handles low level
control and execution.

Before deploying the AUV, our method was tested and the parameters in the
objective function was tuned in a simulated environment as similar as possible
to our embedded system. The layout of the simulator is shown in Figure 1. In
simulations, sensor readings from the AUV was replaced with data from SIN-
MOD and DREAM, and an AUV simulator in DUNE was used to simulate the
behaviour of the AUV.
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Fig. 1: Block diagram showing the layout of both the embedded system and the
simulator environment.

4 Field experiments

The aim of the field experiment is to verify the sampling algorithm’s ability to
construct an informative adaptive mission based on in situ observations. The
experiment was carried out on October 19, 2018 in Frænfjorden, Norway. Figure
2 shows the chosen operational area together with the executed adaptive AUV
path. The location of the outlet and the location of a stationary buoy equipped
with a CTD sensor and a turbidity sensor is also marked in the figure.

Fig. 2: Map of the chosen operational area. The location of the stationary buoy
and the location of the outlet is marked in red in the figure, and the path of the
AUV is drawn as a red line inside the survey area.

4.1 Experimental setup

Frænfjorden is a fjord with shallow water, fishing nets and boat traffic, and is
therefore a risky place for an AUV mission. This led to limitations when choosing
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the operational area. Considering the risk, and also assuring that the survey area
was fairly close to the outlet of particles, we ended up with the fairly small area
(550 m × 250 m) shown in Figure 2. The waypoint grid was chosen inside this
area, so that the AUV would not operate outside. A drifting margin of 50 m
was allowed. The grid cell size was set to 32 × 32 meters, and the parameters
constraining the travel length of the AUV (see Eq. (11)) was set to dmin = 250 m
and dmax = 400 m.

The implemented algorithm only considers one depth layer, and the layer
used in the mission (approximately 22-27 meters depth) was chosen as the layer
with most variation in the simulation data from DREAM. A mission was run
for 110 minutes, starting 8 am on 19th October 2018.

Fig. 3: NTNU’s Light AUV platform (Harald) used in our work.

Our robotic platform (see Figure 3) consisted of a Light AUV from Ocean-
Scan equipped with a Wetlabs EcoPuck sensor measuring chlorophyll a con-
centration, color dissolved organic matter (cDOM) and total suspended matter
(TSM). The sensor reading used for our algorithm was the TSM. Due to lack of
calibration of the TSM and turbidity data with the actual sediment concentra-
tions from the site, a direct comparison is not possible. However, we choose to
compare relative increases in the signals and assume a linear relation between
the values. In this way, we can compare and evaluate the model.

In order to avoid vehicle drift outside of the safe operation area, the AUV
was surfaced every time it reached a waypoint. When diving, the AUV followed a
Yoyo path which can be seen in Figure 4 showing the path in depth direction for
the first 20 minutes of the mission. The sensor value used in the algorithm was
chosen as the maximum TSM value in a span of 10 seconds near the waypoint.
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Fig. 4: Plot showing the yoyo path in depth direction of the AUV for the first 20
minutes of the survey.

(a) Prior mean (b) Prior standard deviation (c) Prior objective

Fig. 5: The prior states of the survey area.

4.2 Results and evaluation

This section presents the results related to the proposed algorithm. Figure 5
shows the prior mean, the prior standard deviation and the prior objective func-
tion. This was found using the empirical mean and variance from the DREAM
data in the area, as explained in section 4.

Figure 6 shows the updated state at selected time steps during the mission.
The estimated mean, the model variance and the objective function is plotted
together with a red line showing the path of the AUV for the last 5 waypoints.
The sampling locations are shown as red dots, where the largest disk represents
the most recent sampling location.

It can be seen that the AUV chooses sampling locations according to the
objective function, but also takes into account the travel length criteria. The
western region of the survey area is never explored due to its low objective
value. This region is far from the outlet of particles and the model data from
DREAM shows both low variance and low concentrations in this area. Thus, this
is by our model considered a less interesting area to sample in. However, since
our model increases the variance with time in unsampled sites, there is reason
to believe that this area would have been explored if the mission ran for a longer
time period.
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(a) Estimated mean at
t = 30 min.

(b) Standard deviation at
t = 30 min.

(c) Objective function at
t=30 min.

(d) Estimated mean at
t = 50 min.

(e) Standard deviation at
t = 50 min.

(f) Objective function at
t=50 min.

(g) Estimated mean at
t = 70 min.

(h) Standard deviation at
t = 70 min.

(i) Objective function at
t=70 min.

(j) Estimated mean at
t = 90 min.

(k) Standard deviation at
t = 90 min.

(l) Objective function at
t=90 min.

(m) Estimated mean at
t = 110 min.

(n) Standard deviation at
t = 110 min.

(o) Objective function at
t=110 min.

Fig. 6: Updated state at selected time steps during the mission. The estimated
mean, the model standard deviation and the objective function is plotted to-
gether with a red line showing the path of the AUV for the last 5 waypoints.
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At the end of the mission the variance in our GP model is highly reduced
compared to the prior variance. This indicates that the sampling algorithm works
according to the model. The predicted mean particle concentration is generally
higher near the outlet of particles, which is what we expected from theory and
from our numerical model DREAM.

4.3 Buoy data and tidal effects

To get a better understanding of the area and the ground truth, data from
other marine platforms are considered. In the fjord there is also a moored buoy
equipped with a turbidity sensor. The buoy is located about 200 m from the
survey area (see Figure 2). Data from the buoy is presented in Figure 7b, which
shows the turbidity data for the whole day of the mission. A plot of the tidal
effects of the same day is included in Figure 7a. Comparing the turbidity data
with the tidal effects, it can be seen that the turbidity measurements seems to
be highest close to a tidal low. During a tidal low, the water is flowing westward,
out of the fjord. Because the outlet lies to the east of the buoy this is when
the highest concentration of particles is transported towards the buoy. The dif-
ferences between the measured turbidity values are quite large depending on
where in the tidal cycle we are, indicating that the transportation of particles in
the fjord are highly affected by the tidal effect. Thus, adding this effect to our
onboard model would likely lead to an improvement.

(a) Tidal levels on the day of the survey. (b) Turbidity measurements from the
day of the survey.

Fig. 7: Turbidity measurements from the moored buoy.

5 Closing remarks

This work suggests a method for adaptive sampling of ocean processes with an
AUV. The method utilizes prior information from ocean models and combines
this information with in-situ observations to obtain a best possible sampling
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strategy. A low-complexity onboard model using GPs with a non-stationary co-
variance function is built based on data from numerical ocean models, and an
objective function that is rewarding locations with high uncertainty and high
predicted particle concentration in the model, is used to collect samples in in-
formative locations. The method is implemented on an AUV, and tested near
a seafill for mine tailings in Frænfjorden, where the objective is to map the
concentration of particles around the seafill.

The field trial shows that the variance in the model is reduced and that the
locations are chosen according to the objective function. The sampling seems
to cover the area such that more samples are collected near the outlet than
further away from the outlet. Verification of the predicted particle distribution
is hard since there is no easy way to know the ground truth. Still, the trends
are as expected from common sense and from the numerical ocean and particle
transportation models.

Future work includes expanding the model to 3D, such that it considers more
than one depth layer. Also by considering our numerical models and the data
from the stationary buoys it is clear that the temporal variability is large, and
that our onboard model should include this. Especially, the tidal effects seem
to have a high effect on the dynamics, and the tidal cycle can be fairly reliably
predicted by a prior ocean model run. Other improvements include an extended
path planning method which optimizes for a sequence of points instead of one
single sampling location at a time.
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