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Abstract—In this article, we present the first large-scale data
set for underwater ship lifecycle inspection, analysis and con-
dition information (LIACI). It contains 1893 images with pixel
annotations for ten object categories: defects, corrosion, paint
peel, marine growth, sea chest gratings, overboard valves, pro-
peller, anodes, bilge keel and ship hull. The images have been
collected during underwater ship inspections and annotated by
human domain experts. We also present a benchmark evaluation
of state-of-the-art semantic segmentation approaches based on
standard performance metrics. Consequently, we propose to use
U-Net with a MobileNetV2 backbone for the segmentation task due
to its balanced tradeoff between performance and computational
efficiency, which is essential if used for real-time evaluation. Also,
we demonstrate its benefits for in-water inspections by providing
quantitative evaluations of the inspection findings. With a variety
of use cases, the proposed segmentation pipeline and the LIACI
data set create new promising opportunities for future research in
underwater ship inspections.

Index Terms—Data set, semantic segmentation, supervised
machine learning, underwater inspection.

I. INTRODUCTION

ANNOTATED data sets of underwater ship hull inspections
for semantic segmentation are scarce. In this section, we

present our motivation for creating such a publicly available data
set by describing how in-water ship inspections are conducted
and how semantic segmentation would make the process more
efficient.

The rest of this article is organized as follows. Section II de-
scribes the collection of data and the creation of the data set used
for the training of the selected semantic segmentation models.
Section III presents and discusses the experimental results of the
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benchmark evaluation. Section IV points out future directions in
improving the data set and how a semantic segmentation model
could aid other research topics in underwater computer vision.
Finally, Section V concludes this article.

A. Underwater Ship Inspections

Visual inspections are rigorously applied in different domains
of our lives. With increasing exploitation of marine resources,
significant attention is being drawn to the importance of under-
water ship inspections. As of today, the monitoring and inspec-
tion of marine vessels is performed based on recurrent visual
observations and assessments of structural condition either in
dry-dock or underwater. The main purpose of these inspections
is to assist with the examination of the external coating, as well as
detection of corrosion or marine growth. Inspections in dry-dock
are significantly costlier than in-water inspections in addition to
longer downtime of the ship. Therefore, ship hull inspections
performed underwater are increasing in popularity. With the
technological advances in the field of autonomous underwater
vehicles, the need for automated data processing becomes in-
evitable as the manual reviewing and processing of collected
videos, images, and other nondestructive inspection data (e.g.,
ultrasonic thickness measurements) becomes unfeasible [1].

B. Semantic Segmentation

The advances in computer vision provide ways for increasing
reliability and effectiveness for acquiring, managing, integrat-
ing, and interpreting the acquired inspection data at a minimum
cost while reducing the need for tedious and often unreliable data
analysis by a human expert. Specifically, automated processing
of image and video data is a great source of quantitative insight
that can complement the largely qualitative information obtained
from conventional visual inspections. In contrast to land images,
however, the underwater environment poses several challenges
for automated image processing. The images may be deterio-
rated by different artifacts, such as water turbidity, floating par-
ticles, severe absorption, reflections, scattering of light, nonuni-
form illumination, various noises, low contrast and monotonous
colors. See Fig. 1 for some examples of mentioned artifacts.

This work focuses on semantic image segmentation in the
domain of underwater ship inspections and how it can aid the
inspection procedure by providing additional insight from the
acquired underwater video data. Semantic segmentation refers
to pixelwise classification, a class label is assigned to each pixel
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Fig. 1. Common artifacts in underwater imagery. (a) Light beam. (b) Light scattering. (c) Reflections. (d) Scratches on lens. (e) Floating particles. (f) Water
turbidity.

Fig. 2. Current inspection workflow is performed in three separate steps: 1) planning, 2) data acquisition, and 3) report creation.

of the image. It is a well-studied problem as it is a key for scene
understanding. It decomposes the scene into objects or cate-
gories, which are significant semantic regions. Recent methods
involving a deep learning approach have achieved outstanding
results [2], [3], [4]. The current state-of-the-art segmentation
networks have been mostly proposed for and applied to medical
image analysis, driver-less cars or other surface applications.
It remains to be shown that those successful networks can be
successfully applied to underwater segmentation tasks. In this
work, we aim at closing this gap through a benchmark evaluation
on our data set.

C. Available Data Sets

Currently, manually labeled data sets such as ImageNet [5],
ADE20K [6], PASCAL [7], and COCO [8] play a significant role
in improving machine vision tasks and driving research in new
directions. Data sets with underwater imagery such as SUIM [9]
or Seagrass [10] exist that aim at the semantic segmentation task
or the classification of fish [11] or marine growth [12] species.
Although works related to the detection and segmentation of
relevant classes and objects in the domain of visual surface
inspections as marine growth, corrosion, and cracks exist, the
underlying data sets remain undisclosed or are inaccessible [13],
[14], [15], [16], [17], [18], [19].

We wanted to create a publicly available data set that aims at
the task of semantic segmentation of underwater ship inspection
images. This data set is meant to be used as a starting point for
underwater scene understanding and improved machine vision
in the domain of in-water ship inspections.

D. Lifecycle Inspection, Analysis and Condition Information
(LIACI) Use Case

Here, we worked with a combination of commercial hardware
and software for conducting underwater ship inspections. Sev-
eral experts were involved and the inspections were performed
in different steps as depicted in Fig. 2: 1) planning, 2) data
acquisition, and 3) report creation. The software and hardware
involved is named the LIACI system. The introduced use case
is from two Norwegian companies: VUVI AS,1 which is a
commercial provider of underwater ship hull inspections, and
Posciom AS,2 which is the provider of the video tagging and
management platform Seekuence.

The current data acquisition setup consists of the underwa-
ter remotely operated vehicle (ROV) and two separate video
streams. One stream is used for the navigation of the ROV and

1[Online]. Available: vuvi.no
2[Online]. Available: www.posicom.no
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Fig. 3. ROVs that were used for data collection during underwater ship inspections. (a) JM Robotics BlueROV2. (b) JM Robotics JM HD1. (c) VideoRay Pro 4.
(d) Blueye Pioneer.

TABLE I
NUMBER OF IMAGES COLLECTED BY DIFFERENT ROV TYPES

the second one for video frame annotation, where interesting
frames in the video are marked to be further evaluated. The
ROVs are supplied by different commercial vendors (see Sec-
tion II-A on data collection for further details). After the video
data are acquired, the annotated video snippets are screened in
a postprocessing step and snap shots are extracted for a final
inspection report. The acquired and annotated data are archived
for later reference.

The current workflow is tedious and time consuming and does
not incorporate any automated data processing. We propose to
use semantic segmentation to identify and quantify different
metrics relevant for the ship inspection procedure. By automatic
annotation and quantitative analysis of video data, the inspection
report can be created without human interaction. Hence, the
effort in the third step in the current workflow can be significantly
reduced.

II. LIACI DATA SET

This section describes the collection of inspection video data
and the image extraction process. It illustrates the difficulties
specific to labeling underwater inspection data and explains the
classes that were chosen as labels for the annotation task. Further,
it shows how the images were annotated, and the resulting sta-
tistical properties of the images. We also included an evaluation
on the similarity of the images in the data set.

A. Data Collection

Videos from 16 underwater ship inspections were collected
by the commercial inspection provider VUVI AS using two
different ROVs from JM Robotics AS3 and one ROV from

3[Online]. Available: www.jmrobotics.no

VideoRay4 with an in-built filter from LYYN.5 The names of
the vessels remain secret due to nondisclosure agreements with
the ship owners. Additionally, at the research vessel Gunnerus,6

one video of the hull was acquired with the Pioneer drone
from Blueye.7 Fig. 3 shows the drones that were used for data
collection, and in Table I, the individual image count that was
chosen for the data set. The videos were recorded at different
locations in the Norwegian Sea off the Norwegian coast. From
these videos, a representative collection of images was extracted
by the ROV operator during the video recording and in the
postprocessing step preparing the inspection report.

Imaging tasks in an underwater environment are challenging.
Even though some of characteristics are generalizable, many
are dependent on the location and its situation. The underwater
visibility is mainly affected by the penetration of the light and
the water turbidity. Because of this, it is important that the pro-
posed data set presents image diversity in terms of underwater
scene conditions. This makes it possible to reduce the classwise
water condition specific overfitting when training a model. Even
though the data were acquired only at the Norwegian coast, we
can observe a range of visibility conditions. The variety of ships
presents different feature combinations, which is an important
aspect to further improve the robustness.

The images were extracted by the ship inspector during video
recording and in the postprocessing step to reflect the status
of the inspected areas. These images were used to train an
image classifier to find images in similar classes to ramp up the
image count. In the first sweep, the inspector usually extracted
approximately 50–100 images from the video. We trained a
vision transformer multilabel classifier with Microsoft Custom

4[Online]. Available: videoray.com
5[Online]. Available: www.lyyn.com
6[Online]. Available: www.ntnu.edu/gunnerus
7[Online]. Available: www.blueye.no
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TABLE II
OVERVIEW OF ANNOTATED CLASSES WITH ASSOCIATED DESCRIPTION AND MASK COLOR

Vision8 [20] and indexed the videos to find images for the classes
of interest. This way we could ramp up the image count to a
total of 1893 images and also mimic the inspectors’ choice for
the data from the research vessel Gunnerus where no inspector
was involved. Fig. 11 summarizes the steps visually.

B. Data Labeling

A total of ten different labels divided into two categories
were proposed. They were selected to provide relevant and
detailed information that could be used for an automated or aided
inspection. The first category corresponds to the physical parts
of a ship that can be found underwater, while the second category
is about what can be found on the surface of the ship that is not
originally part of it. The latter category is called inspection cri-
teria because it corresponds to what the inspector is looking for
when performing an inspection. These are often subject to evolve
over time, e.g., disappear after maintenance, change over time,
and reappear again. We have often noncanonical viewpoints and
only some iconic images, thus we focus mostly on categories
with clear boundaries. However, due to natural water turbidity
that increases with the distance from the camera, the ship hull
and other relatively big ship parts do not have clear boundaries.

8[Online]. Available: https://www.customvision.ai/

An overview of the classes is given in Table II with a
description for each class. The colors are used to differentiate
the labels in the processed scenes. In the majority of cases, these
two categories overlap each other, providing information about
the location of the inspection criteria.

The selected classes cover a large part of the image while
minimizing the “blank” part of the image, i.e., without an-
notation. These parts frequently correspond to the underwater
background.

We created guidelines for labeling to have consensus among
the annotators to mitigate some of the annotation difficulties.
Specifically, it is not a trivial task separating marine growth, paint
peel, and corrosion, as can be seen in Fig. 4. Here, it is extremely
difficult to separate the different classes as they usually appear
overlapping each other and rarely on their own.

The annotation task was performed by two annotators us-
ing the Microsoft Azure Machine Learning Studio9 web-based
platform. The annotation method consisted of layered polygons
that when combined should cover the entire underwater scene
without the background. After completion of the data set, all
the images and associated annotations were reviewed again and
corrected where necessary by the same annotators to guarantee

9[Online]. Available: https://ml.azure.com
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Fig. 4. Example of an image where separating the labels for paint peel and marine growth is challenging due to overlaps. The raw image is shown on the left and
the same image with overlapped segmentation results on the right.

Fig. 5. Samples of annotated images in the LIACI data set for each class.

high fidelity annotations. The samples of annotated images for
each class are depicted in Fig. 5, with one class per row.

A representative sample of the data set consisting of 100
images was sent to a professional ship inspector to assess the
quality and precision of the annotations. The inspector had
access to the labeling tools, allowing him to update the masks

based on his knowledge. We used his review as ground truth to
compute the precision, recall, and F1 score for each class and
to determine if there was any action to be taken. The results are
given in Table III for each class and metrics. The “ship parts”
category is very accurate, this was expected since all the subparts
are very easily recognizable and can hardly be confused. For

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
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TABLE III
ANNOTATORS LABEL EVALUATION WITH TWO SCORE METRICS, PRECISION, AND RECALL FOR ALL CLASS CATEGORIES, INCLUDING WHERE MARINE GROWTH

AND PAINT PEEL WERE CONSIDERED AS ONE SINGLE CLASS IN THE “COMBINED” COLUMN

Fig. 6. Overview over the image and label statistics. (a) Number of annotated images per class. (b) Average proportion of annotated pixels in images for each
class. (c) Distribution of the pixel intensities in each channel. (d) Pairwise correlation of the labels occurrences in the data set based on the Pearson method.

the “inspection criteria,” however, the distinction between the
subparts is not as easy, especially with marine growth and paint
peel, and sometimes corrosion. Based on the inspector’s review,
some were misclassified, but overall, the three metrics remain
acceptable and indicate the quality of the data set labels.

C. Data Set Presentation

The proposed data set contains 1893 RGB images alongside
their pixelwise annotations for semantic segmentation. Images
with different aspect ratio and resolution are included, e.g.,
1920 × 1080, 1280 × 720 and 640 × 480. Detailed statistics of
the images and labels are shown in Fig. 6. Since pixel intensity
value is the primary information stored within pixels, it is the
most popular and important feature used in computer vision.

The intensity value for each pixel consists of three values for
the color images. In the presented data set, we observed that the
blue channel is over-represented compared to the red and green
colors that is easily explained by the underwater domain where
the images were collected.

The pairwise correlations of the labels are calculated using
Pearson’s correlation coefficient r. It quantifies the linear rela-
tionship between two distributions based on the covariance and
standard deviation

rX,Y =
cov(X,Y )

σXσY
(1)

with the two distributionsX andY . r ranges from−1, the perfect
negative correlation, to +1, the perfect positive correlation.
Therefore, since the correlation matrix presented shows a good

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
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Fig. 7. Similar images of a sea chest grating and an overboard valve with corresponding pairwise Cosine similarity index.

diversification of classes in images, there is no single combi-
nation that makes it possible to find a class based on another.
There is then a good distribution/representation of classes in the
data set imagewise. There are no strong correlations but some
still exist, for example, with the pair propeller/sea chest grating,
which is negatively correlated with a value of −0.31. We could
think it should be stronger since sea chest gratings are never
present on propellers, but some images in the data set contain
both at different locations because of the viewpoint of the ROV.

We extracted the images from videos. Therefore, we had
grounds to assume that similar images might be among the
images in the data set. To quantitatively evaluate how many
similar images there are, we calculated a feature vector by
extracting the last fully connected layer from the ResNet101
classifier pretrained with ImageNet as provided by PyTorch.10

We chose ResNet101 as recommended in [21] and an initial
naive evaluation provided good results. The calculated image
vectors were then used to calculate pairwise Cosine similarity,
where an index of 1 means that images are exactly the same
and 0 a complete orthogonality. The similarity index follows
a normal distribution with a mean and standard deviation of
0.64 ± 0.07, indicating that we have similar images in our data
set since the closer the values are to 1, the higher the similarity.
Fig. 7 shows example similar images of a sea chest grating and
an overboard valve. For different cut-off values for the Cosine
similarity measure, Fig. 8 shows the number of unique images in
the data set. If we were to choose a cut-off at 0.90 and consider
the same labels are present, the data set will still have 1561
images left. Thus, this is the value we recommend to filter out
images that are too similar as also confirmed by a qualitative
visual evaluation.

III. BENCHMARK EVALUATION

This section describes the motivation behind the chosen seg-
mentation models for the benchmarking evaluation and presents
the results of the evaluation in detail. It is done using multiple
combinations of encoders and decoders to prove the capability

10[Online]. Available: https://pypi.org/project/img2vec-pytorch/

Fig. 8. Number of remaining images after filtering at different thresholds of
the Cosine similarity metric and same classes being present on the image.

of the data set to be used for training and converge at a reasonable
rate.

A. Semantic Segmentation Models

For the benchmark evaluation, multiple state-of-the-art deep
convolutional neural network (CNN) models were considered.
Often, CNN models can be divided into two parts: an encoder
and a decoder. The way the layers are arranged in the encoder
network corresponds to the architectural element called back-
bone. For example, a model such as MobileNetV2 can be used
as an encoder for the UNet model, which retains the decoding
layers [22]. During the evaluation, backbones based on other
models were often included instead of vanilla CNNs; these were
pretrained on ImageNet [5]. Also, some segmentation models
were utilized multiple times but with different backbones. The
complete list of models is displayed in Table IV.

All the models were implemented in Python using the Ten-
sorFlow libraries [30]. The same hardware setup is used for all
models: NTNU IDUN computing cluster [31], with an NVIDIA
Tesla P100 GPU for training, and a laptop with an NVIDIA
Geforce GTX 1060 for testing. For the training, the data set
was augmented by applying random image transformations

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
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TABLE IV
LIST OF SEGMENTATION MODELS AND THEIR BACKBONES USED FOR THE BENCHMARK ALONG WITH THEIR NUMBER OF PARAMETERS, INPUT RESOLUTION, AND

AVERAGE INFERENCE FRAME RATE AS COMPUTED ON A SINGLE NVIDIA GTX 1060 GPU

from a defined list. They consisted of rotation, shear and zoom
effects, as well as, horizontal flip and slight brightness shift. This
augmentation was done in addition to image removal based on
the similarity measure. This might have made the models less
accurate but able to generalize better.

After filtering the data set based on the similarity metric
presented in Section II-C with a threshold of 0.90, we divided the
remaining 1561 images into a training subset composed of 1370
(87.8%) images and a testing subset with 191 (12.2%) images.
These numbers are the result of ensuring a uniform distribution
of classes in the training and testing subsets.

B. Evaluation Criteria

To measure the performance of the models, multiple criteria
were considered. To evaluate the correctness of the pixelwise
classification, two supervised evaluation methods were utilized:
the Intersection over Union (IoU) and the F1 Score. The former,
also known as the Jaccard Index, is one of the most used metrics
for semantic segmentation tasks. It consists of the area of overlap
between the predicted masks and the ground truth divided by the
area of union between the prediction and the ground truth

IoU =
Area of overlap
Area of union

=
True Positive

True Positive + False Positive + False Negative
. (2)

It is also regarded as a region similarity metric.
The latter is also called the dice coefficient and provides the

contour accuracy F1

F1 =
2× P ×R
P +R . (3)

It is defined as the harmonic mean of the precision P and
recall R of the model.

Also, for the considered applications, time constraints are
present. Therefore, the inference time needs to be taken into
account. For real-time capabilities, a minimum of ten frames
per second (FPS) are required. Also, because the segmentation
task needs to be performed during data acquisition, it needs to

Fig. 9. Training loss over epochs of the considered models until epoch 60.

be possible to run it on the operator laptop which might contain
a low-cost GPU or sometimes rely just on the CPU.

C. Quantitative and Qualitative Analysis

A benchmark evaluation with state-of-art deep learning seg-
mentation models showed that good results can be obtained with
all of the selected models. Also, all models show similar con-
vergence behavior, with SegNet converging fastest, as depicted
in Fig. 9. Table V lists the results of the benchmark evaluation.
SegNet with the ResNet50 backbone provides the best results
for the class of ship parts with a mean IoU of 86.07 and a
mean F1 score of 88.17. The inference time for the PSP model
with the MobileNetV2 backbone showed the best time of 25.68
FPS. Over all models, the segmentation accuracy for marine
growth and paint peel is not as good compared to other classes.
Several reasons could be the cause of this effect. Annotating
the classes of marine growth and paints peel is challenging due
to high variability of shapes and structures. Also, these label
classes tend to naturally overlap as marine growth usually starts
growing in areas with paint defects where the antifouling coating
is missing. Corrosion also usually appeared on areas with paint

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
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TABLE V
BENCHMARK FOR SEMANTIC SEGMENTATION WITH TWO SCORE METRICS F1 SCORE AND IOU FOR ALL CLASS CATEGORIES

peel but is less difficult to label resulting in better prediction
results. Therefore, we performed another model training and
evaluation round where the classes of marine growth and paint
peel were merged. The results show that the accuracy of the
merged label class could be increased for all models by almost
ten points.

Another observation was that small objects disappeared due to
downsampling of the images to the model resolution. Therefore,
labels are reduced to only few pixels such that some models are
no longer able to detect such areas, e.g., marine growth and paint
peel. Dark areas on ship hulls in overboard valves, as well as,
ship hull areas that were further away from the camera are not
correctly identified by the models. Such qualitative observations
are depicted in Fig. 10.

IV. FUTURE WORK

Image quality plays a major role in the performance of com-
puter vision algorithms. Hence, seeking to improve image qual-
ity retrospectively would improve the results of automated image
processing as suggested in [32]. The ULTIR data set [33] or the
UIEB [34] could also be used as a starting point for identifying a
method to prospectively guide the data acquisition to collect only
images with sufficient quality. Image enhancement can be used
as a preprocessing task before using it in the model. However, it is
computationally expensive and not necessary to reach satisfying
results, and hence was not included in this work but remains
important for generalization purposes and more robust results.
For these reasons, it will be considered in future work.

Our data set was solely collected off the Norwegian Sea.
The visibility in waters differs significantly depending on the
geographical location and light conditions. Hence, we believe
that the data set would benefit from including videos from
various waters.

There are several promising directions for future annotations
on our data set. We currently only label few ship parts but this
could be extended to other parts as the manoeuvring thruster,
rudder or box cooler. Also, quantitative evaluation of potential

defects inside the vessel water cooling system, which contains
the impressed current antifouling anodes and should be mon-
itored closely, could be a target for automated image process-
ing algorithms. Further classes for defects (dents, cracks, rope
around parts, scratches, etc.), paint peel (adhesion, blistering,
cracking, cold flow, delamination, polishing-off, grounding),
and marine growth (soft corals, sponges, hydroids, anemones,
algae, tunicates, barnacles, mussels, tube worms, bryozoan,
oysters, etc.) could be included in the annotations to follow the
guidelines from the International Chamber of Shipping and The
Baltic and International Maritime Council [35].

To improve the segmentation results further, the model could
account for class correlation, i.e., overboard valves and anodes
can only be on a ship hull and not on a propeller. Sea chest grating
has to be surrounded by ship hull as well as overboard valves. In-
troducing such additional constraints would potentially improve
model performance and reduce classification errors.

Future work will focus on propagating the segmentation
masks onto the whole video to achieve thorough video indexing
and to possibly aid algorithms for the calculation of structure
from motion, simultaneous localization and mapping, and sub-
sequent 3-D reconstruction of the inspected structures from the
video data [36]. Here, the feature extraction step would benefit
from adapting its calculation to the segmented object and use
different features (e.g., ORB, SIFT) for objects with different
semantic and visual properties.

V. CONCLUSION

Semantic understanding of videos in in-water ship inspec-
tions is critically important to facilitate quantitative analysis
of collected image and video data. The existing solutions are
application- and domain-specific as dedicated to the medical do-
main or autonomous driving for terrestrial vehicles and drones or
industrial surface inspections in manufacturing. In this work, we
attempt to address these limitations by presenting the first large-
scale annotated data set for semantic segmentation of underwater
ship inspection images. We described and made available a new

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
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Fig. 10. Qualitative segmentation results for selected classes and models.

data set for detecting and segmenting objects in the domain of
visual underwater ship inspections with ROVs. Involving two
annotators and a reviewer, a collection of category instances
was gathered, annotated, and organized to drive the advancement
of object detection and segmentation algorithms. The proposed
LIACI data set contains 1893 images with pixel annotations for
ten object categories. The benchmark evaluation showed that
the UNet segmentation model with the MobileNetV2 backbone
provides the best overall performance in terms of segmentation
results and inference time making it a good candidate for further
investigations. Also, its architecture makes it possible to run the
model on a consumer laptop without a GPU with an acceptable
frame rate of up to 12 FPS. This is twice the frame rate that can
be achieved with the SegNet model with ResNet50 backbone
that has a frame rate of 5 FPS on average.

In comparison to humans, it is harder for segmentation models
to extrapolate shapes, e.g., ship hull in the shade. The segmen-
tation boundary of the target is not clear enough, the contour is
incomplete, and the feature information is insufficient. Here, the
annotations would benefit from other data sources as for example

sonar or stereovision cameras. Also, having a 3-D model of the
vessel could help to estimate and extrapolate the shape of the
seen object. Therefore, enhancing the images with additional
data from other sources would improve not only the quality of
the annotations but also the model training process.

We also have to conclude that it is very difficult to annotate ma-
rine growth, paint peel, and corrosion separately. These classes
often appear together and overlap. Therefore, we propose to fuse
those classes and run unsupervised segmentation algorithms in
a postprocessing step for further refinement.

Also, we deliberately did not exclude blurry images as we
would like the data set to reflect the natural quality differences
that appear during the data collection. We extracted the images
from inspection videos which provided a natural augmentation
of the data by providing different views of the objects. For
example, the illumination conditions and the water turbidity
were naturally changing when the ROV was capturing the object
from different distances and angles.

The data set is made available for noncommercial use on
https://liaci.sintef.cloud.
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Fig. 11. Steps that were performed to create the data set.

APPENDIX

Fig. 11 shows the steps that were performed to create the
data set.
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