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a b s t r a c t 

In railways, the long-term strategic planning is the process of evaluating improvements to the rail- 

way network (e.g., upgrading a single track line to a double track line) and changes to the composi- 

tion/frequency of train services (e.g., adding 1 train per hour along a certain route). The effects of dif- 

ferent combinations of infrastructure upgrades and updated train services (also called scenarios), are 

usually evaluated by creating new feasible timetables followed by extensive simulation. Strategic Train 

Timetabling (STT) is indeed the task of producing new tentative timetables for these what-if scenarios. 

Unlike the more classic train timetabling, STT can often overlook (or at least give less importance to) 

some complementary aspects, such as crew and rolling stock scheduling. On the other hand, the different 

scenarios are likely to lead to very different timetables, hindering the common and effective practice of 

using existing timetables to warm start the solution process. We introduce the concept of quasi-periodic 

timetables, that are timetables where certain subsets of trains need to start at almost (rather than pre- 

cisely) the same minute of every period. The additional flexibility offered by quasi-periodic timetables 

turned out to be crucial in real-life scenarios characterized by elevated train traffic. We describe a MILP 

based approach for strategic quasi-periodic train timetabling and we test it on 4 different realistic what- 

if scenarios for an important line in Norway. The timetables produced by our algorithm were ultimately 

used by the Norwegian Railway Directorate to select 3 out of the 4 scenarios for phasing the progressive 

expansion of the J Ȫ ren line. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

As railway networks become busier and as the cost of improv- 

ng/extending the infrastructures becomes higher, it is crucial to 

e able to exploit them to their fullest potential. To achieve this, 

t would be important to develop both an automatic rail-time dis- 

atching system (which reduces load on train dispatchers, allowing 

hem to handle more trains at the same time) and a more sophisti- 

ated optimization-based timetabling tool (which increases the uti- 

ization of the network). Sometimes, investments in the infrastruc- 

ure are unavoidable if a relatively ambitious train service is de- 

ired. In this case, it is crucial to carefully investigate all available 

ptions and choose the most appropriate one. The most common 
� This manuscript was processed by Associate Editor Kis. Edited by Prof. Benjamin 

ev. 
� This work was partially funded by the Norwegian Research Council (projects 

267554, #237718) and by the Norwegian Railway Directorate (project StraTi) 
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ay of evaluating such options is indeed to first create a tentative 

imetable that satisfies the desired train service requirements with 

he new infrastructure, and then use off-the-shelf simulation tools 

o establish a score that is based not only on the money expendi- 

ure (e.g., of building the new infrastructure or purchasing more 

rains) but also on several social aspects (passenger satisfaction, 

O 2 emissions, etc.). This is commonly called strategic planning, 

nd it is part of a three-level process that is used by almost all na-

ional railway authorities to create feasible timetables for the daily 

perations. Here is a brief summary of the different planning lev- 

ls: 

• Operational (daily, maximum precision): it consists of com- 

puting the exact times trains are actually planned to leave 

and arrive at stations with second-precision, taking into ac- 

count all microscopic train operations that ultimately guarantee 

the safety of passengers (running times between signals, safety 

margins, exact routing in stations, speed profiles, etc.). An oper- 

ational timetable is always a refinement of the current tactical 

timetable. 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. The Jæren line. 
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• Tactical (once a year, good precision): based on the service 

requests of the train operators and on the planned mainte- 

nance/upgrades of the infrastructure (both dependent on pre- 

vious strategic planning), the planners produce once a year a 

timetable that is as close as possible to being operational. Given 

the uncertainty regarding some of the inputs (e.g., weather con- 

ditions, weights of freight trains), the tactical timetable does 

not need to be as precise as the operational one and may 

require some small adjustments on a daily basis. The public 

timetable is directly derived from the tactical one and pre- 

sented to the passengers once a year in a simplified fashion. 
• Strategic (varying intervals and precision, but focused on the 

long-term): this consists of creating a tentative timetable used 

in the strategic planning and development of railway networks. 

While the operational timetable is an actual and detailed plan 

of operations and the public timetable is a promise to the cus- 

tomers, the strategic timetable is a tool for determining neces- 

sary investments in infrastructure and rolling stock, and for as- 

sessing the viability of service improvements. Strategic timeta- 

bles are subject to more uncertainty and require less precision 

than the tactical ones. Consequently, they may initially overlook 

some of the microscopic aspects of the train operations. How- 

ever, it is crucial that each strategic timetable can be refined, 

without significant changes, to a feasible operational timetable. 

Unlike tactical and operational, strategic timetables are often 

built from scratch and may be completely different from previ- 

ous or existing ones, making the entire process quite different 

and the solution space much larger. 

Jernbanedirektoratet (Norwegian Railway Directorate), the gov- 

rnment agency responsible for managing the Norwegian railway 

ector on behalf of the Norwegian state, performs strategic plan- 

ing with time horizons spanning from 4 to 15 years. In this pa- 

er, we study the task of creating strategic timetables based on 

he alternative train service requirements and infrastructure up- 

rades currently under evaluation by Jernbanedirektoratet. We fo- 

us on the J Ȫ ren line, a busy stretch of railway line in southern

orway that runs between Stavanger and Egersund accomodating 

round 150 trains a day (see Fig. 1 ). The section from Stavanger

o Sandnes is double track, while the rest is single track. The cur- 

ent train service consists of 4 trains per hour from Stavanger to 

andnes, one every 15 minutes; of these, half continue onwards 

o N Ȫ rb ȹ with a 30-minute headway; finally, only one train per

our continues all the way to Egersund. These are what we call lo- 

al trains . Fig. 2 schematically summarizes how the (periodic) local 

rains’ services should be distributed within every hour. The min- 

tes on the dial are only for reference; in fact, the pattern can be

rotated” to achieve feasibility or satisfy other preferences (more 

n this later). A particular periodic pattern together with a possi- 

le infrastructure upgrade will constitute a test scenario. 

This railway line also accommodates up to 16 long-distance 

rains a day and a few freight trains, whose schedules extend sub- 

tantially after Egersund. We call these non-local trains . The plan- 

ing of local trains happens usually at a different stage than the 

lanning of non-local trains, but we decided to try to plan all the 

rains at the same time (although for the non-local trains we will 

onsider only a partial schedule). As per request of Jernbanedirek- 

oratet, we also slightly extended the investigated railway line of 

ew stations after Egersund up to Sira. 

Finding feasible and optimal solutions for each alternative sce- 

ario is a complex and time-consuming task, combining micro- 

copic resource allocation and conflict solving on the one hand 

ith macroscopic strategic decision-making on the other. To over- 

ome the resulting complexity, the number of scenarios must be 

ept to a minimum, and the planners rely on experience to select 

he most promising avenues of exploration. 
2 
A few infrastructure managers have been working (and are 

till working) on developing decision support tools for timetabling, 

oth at strategic and tactical level (see, for example, [1] ). 

owever, to the best of our knowledge, we are not aware of any 

ommercial tool that is able to automatically generate optimal or 

ear-optimal strategic timetables from scratch for given concep- 

ual service requirements and/or specific infrastructures. Currently 

vailable commercial tools such as TPS [2] or TRENOplus [3] mainly 

llow for manual interaction and they have little to no automatic 

ecision support. A bit of an exception is the OptDis module of 

UKS [4] that claims to be able to automatically produce a conflict- 

ree timetable that minimizes the deviation from a given roughly 

lanned timetable and maximizes robustness. However, this mod- 

le is not listed in their website anymore and we are not aware of 

t being used in commercial applications. While this is definitely 

ot an exhaustive list of railway planning tools, we believe it is a 

epresentative one in the sense that shows the lack of an automatic 

trategic timetabling tool. 

Having an automatic decision support tool for generating strate- 

ic timetables would allow for the task of the planners to be 

hifted away from detailed conflict resolution towards higher-level 

trategic considerations. This change will in turn enable the plan- 

ers to study scenarios that currently have to be left out due to 

ime or human resource constraints. In this paper, we present an 

pproach based on mixed-integer programming that provides the 

oundations for a tool useful to the Norwegian railways, and it rep- 

esents another research step towards practical tools. Moreover, we 

resent the results of a prototype that implements this approach 

nd applies it to the J Ȫ ren line on the scenarios that are currently

nder consideration by Jernbanedirektoratet. 
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Fig. 2. The actual periodic pattern for 2020. 
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Finally, it is important to remark that our model does not in- 

orporate variables and constraints to allow for infrastructure de- 

isions, such as, e.g., a new track or platform. The infrastructure is 

ndeed specified by the input, and alternative configurations will 

orrespond to different input scenarios. 

.1. Related work 

Despite of the substantial lack of software tools to generate 

imetables, the literature on train timetabling is quite rich, as also 

estified by a conspicuous number of surveys and tutorials on the 

ubject, e.g. [5–11] . Basically, all modern approaches are based on 

ixed Integer Linear Programming (MILP) models, which are then 

olved by some standard available solver or by ad-hoc algorithms. 

or the main stream of works the reference model is the job-shop 

cheduling problem with no wait and blocking constraints intro- 

uced in [12] , which also applies to the on-line version of the 

imetabling problem, namely the train dispatching problem [13] . 

he basic model is a disjunctive program, and different approaches 

iffer in the way scheduling variables and disjunctive constraints 

re represented. In particular, the two main representations are 

he big- M formulation and the time-indexed (TI) formulation (see 

5] and, for theoretical insights, see [14] ). In the first approach, the 

cheduling variables are continuous variables and every disjunc- 

ive constraint is represented by a binary variable and two con- 

traints containing a large coefficient (the big- M). In the second 

pproach, the time horizon is discretized, where time variables are 

inary and disjunctive constraints are represented through packing 

onstraints. TI formulations are generally preferred for timetabling 
3 
roblems, whereas big- M formulations are more often adopted for 

ispatching. 

Time-indexed formulations are typically stronger and return 

etter bounds then big- M formulations, but solving each relaxation 

s much more costly - which in turn significantly slows down the 

olution search (in [15] a direct comparison of the two formula- 

ions on certain on-line train scheduling instances shows a clear 

dvantage for big- M formulations). Moreover, time discretization 

ntroduces approximations which may make the returned solu- 

ions impossible to implement in practice (see [16,17] ). Neverthe- 

ess, probably due to their ductility in representing various con- 

traints, many authors adopt TI formulations in their approaches 

o train timetabling (e.g. [16,18–23] , among many others). On the 

ther hand, big- M formulations are also quite exploited in the liter- 

ture, for instance in [24–31] . These lists of references are far from 

eing exhaustive and we refer the reader to the above mentioned 

urveys for more comprehensive discussions. 

There is another relevant class of MILP models for timetabling, 

pecifically introduced to represent and solve periodic schedul- 

ng, namely the Periodic Event Scheduling Problem (PESP) intro- 

uced in the seminal paper [32] by Serafini e Ukovich. In a pe- 

iodic timetable train departures repeat during the time horizon 

fter a period T . PESP formulations have been used to produce 

eriodic timetables in several papers (and some real-life applica- 

ions), as for instance in [33–37] . One interesting feature of PESP 

ILP formulation, described by Nachtigall in [38] , is that it can 

e reformulated in a compact and effective way by some variable 

ransformation. This transformation allows to formulate the prob- 

em by a compact family of constraints associated with a basis of 

ycles of the event graph. The reformulation can be strengthened 
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urther by several classes of strong inequalities [39] . Although el- 

gant and quite effective, PESP models seem to have some major 

imits that make them not practical for our problem. In [33] , it is

laimed that the PESP model can only represent a subset of the 

onstraints which are necessary to model trains dynamic and in- 

eraction (for a list of manageable constraints, see [35] ). Indeed, we 

re not aware of any work that includes in the PESP model spe- 

ific microscopic constraints and routing alternatives. In [33] this 

s tackled by adding a second stage after the solution of a PESP 

odel, where a non-PESP model is solved to tackle the additional 

onstraints. This second stage problem may be even infeasible and 

n [33] the authors try to mitigate this issue by introducing some 

exibility in the first stage PESP model. Finally, we are not aware of 

ESP models that can handle the quasi-periodic timetables which 

re indeed relevant in the case described in this paper. 

Finally, it is worth mentioning that a certain number of papers 

evelop approaches to generate robust timetables in order to tackle 

he uncertainty inherent in any schedule. This is not the focus of 

his paper, so we refer the reader to the survey paper by Cacchi- 

ni and Toth [8] . Instead, we treat uncertainty in the same way it

s currently treated by Jernbanedirektoratet, that is by simply con- 

idering suitable supplements in running times and buffer times 

etween trains, which are provided as input data. 

The model introduced in this work has its roots in [28] , where 

 big- M formulation of the strategic train timetabling problem is 

aired with a decomposition approach and an effective row-and- 

olumn-generation solution method. The scope of [28] was limited 

o adding a single freight train at a time to an existing timetable, 

ith some restrictions on the periodicity. Our work shares the de- 

omposition approach and the solution method with [28] , but it 

xtends its scope and model in several significant ways. In par- 

icular, our model considers the planning of all train services, 

oth passenger and freight, at the same time, without an existing 

imetable to start from. This requires additional constraints, and a 

ore careful formulation of the periodicity requirements. In addi- 

ion, we extend the concept of periodicity to the more generic and 

seful concept of quasi-periodicity, providing more flexibility in the 

onstruction of a timetable while guaranteeing a perfectly periodic 

imetable for the customers. Our contribution. 

• We introduce the concept of quasi-periodic timetables and its 

mathematical formulation. 
• We extend an already efficient and effective train scheduling 

MILP formulation to generate a quasi-periodic timetable from 

scratch for a full set of train services. 
• We report results using real data on real strategic scenarios. 
• We discuss how the timetables that we produced were used 

to select and validate some of these scenarios for the future 

developments of the J Ȫ ren line in Norway. 

. The quasi-periodic train scheduling problem 

We plan a set T of trains on a line, which consists of an ordered

et of stations S connected by tracks. Trains travel through the sta- 

ions even according to the station ordering (or direction ) or in re- 

erse order (or opposite direction). Every pair of adjacent stations 

s connected by one or two tracks. In the first case ( single-track sec- 

ion ), trains in both directions will share the available track. In the 

econd case ( double-track section ), one track is reserved for trains 

n one direction and the other track for the other direction. 

In a given day, every train t ∈ T runs through a sequence S(t) ⊆
of consecutive stations. The timetabling problem amounts to find- 

ng an arrival time a s t and a departure time d s t for all t ∈ T and

 ∈ S(t) , which are expressed in minutes from midnight . Note that, 

he arrival time at the first station - where the train is originated 

 and departure time from the last station - where the train is ter- 
4 
inated - are not defined, and the corresponding variable should 

ot be introduced. However, to simplify the notation, we just as- 

ume that in the first (and last) station of S(t) , the arrival time 

quals the departure time. Since the planning horizon H is one 

ay, that is 1440 minutes, we have that 0 ≤ a s t ≤ d s t ≤ 1440 , and we

et H = { 0 , . . . , 1440 } . In the sequel, for a departure (arrival) time

 ∈ H, we also use the notation hh.mm(d), where hh = � d/ 60 � is

he departure (arrival) hour, whereas mm = (d mod 60) is the de- 

arture (arrival) minute. 

To be feasible, the schedule (a, d) must not imply conflicts in 

he use of rail resources, neither in the line tracks nor in the sta- 

ions - the exact definition of conflict will be given later. 

We can now introduce the concept of a periodic subset of trains. 

iven a periodic identifier c ∈ { 1 , . . . , n } , all trains of a periodic sub-

et T c ⊆ T share a non-empty set of stations S c , and, for any station

n S c , the trains in T c leave the station at the same minute but at

ifferent (not necessarily consecutive) hours (for instance train 1 

t 10.22 and train 2 at 12.22). In other words, if q, r ∈ T c and s ∈ S c ,

hen mm (d 
q 
s ) = mm (d r s ) for all q, r ∈ T c . There exist in general sev-

ral (not necessarily disjoint) periodic subsets T c ∈ { T 1 , T 2 , . . . , T n } .
e also let mm c be the departure minute associated with T c at 

 ∈ S c , namely mm c (s ) = mm (d 
q 
s ) for any q ∈ T c . Finally, with each

eriodic subset T c we associate a reference station r c ∈ S c and for 

ach train in t ∈ T c we define a reference hour h r c t ∈ { 0 , 1 , . . . , 23 } ,
hich is the hour h c t = hh (d r c t ) at which the train must depart

rom r c . 

In Fig. 3 we show an example of periodic timetable. The blue 

haded train schedules with the same periodic id depart at the 

ame minute of each hour, while the orange shaded train sched- 

les are not associated to any periodic id and they can start any- 

ime during the hour. Note that train schedules with different 

outes may have the same periodic id. 

In our approach, we extend the above definitions and introduce 

he concept of quasi-periodic subset of trains. In this case, trains in 

he same (quasi-)periodic subset are not bound to depart at exactly 

he same minute, but they deviate moderately. First, we redefine 

he departure minute at station s ∈ S c as mm c (s ) = min q ∈ T c mm (d 
q 
s ) .

hen we introduce a flexibility constant γc ≥ 0 which defines the 

aximum delay a train can depart from s w.r.t. mm c (s ) , namely

m c (s ) + γc ≥ mm (d 
q 
s ) , for all q ∈ T c . If needed, γc can of course

epend on s as well, but we avoid the extra notation for simplicity. 

We can now state our Quasi-Periodic Timetabling Problem (QPTP) 

ore formally: 

roblem 1. Given a railway line with set of trains T and stations S. 

or c = 1 , . . . , n , we are given quasi-periodic subsets T c and stations

 c , flexibility constant γc and reference station r c ∈ S c , and, for each 

 ∈ T c , reference hour h r c t ∈ H. Then we want to find a conflict-free

uasi-periodic timetable. 

In the next section we describe our MILP formulation for the 

PTP in more detail. We can identify two blocks of constraints: the 

rst corresponds to the basic train scheduling problem, which is 

he standard model also for the generic non-periodic train schedul- 

ng problem (see, for instance, [40] ). The second group of con- 

traints corresponds to the quasi-periodic requirements. 

. A MILP formulation for the QPTP 

Train timetabling (periodic or non-periodic) is an off-line vari- 

nt of the basic train scheduling problem (whereas train dispatching 

s the on-line version). Given a railway network and a set of trains, 

rain scheduling consists in finding a schedule for all trains that 

atisfies all operational constraints (e.g., safety constraints, station 

apacity constraints, blocking constraints, etc.). 

The versions of train scheduling problem differ for specific 

dditional constraints and for the objective function. In train 
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5 
ispatching, given the current position of the trains and a reference 

chedule (i.e., the public timetable), the goal is to find a near-future 

from now to the next few hours) schedule that minimizes a mea- 

ure of the overall delay, i.e., a schedule that is (loosely speaking) 

s close as possible to the reference schedule. Train timetabling 

s somehow more intricate because one must produce a sched- 

le that satisfies additional and more complicated constraints (e.g., 

here should be 4 trains per hour during peak hours and 2 per 

our during non-peak hours). 

We start by discussing a (classic) MILP model for the basic 

cheduling problem and then we present the additional constraints 

ecessary to model the quasi-periodic timetabling. 

.1. The basic train scheduling constraints 

In any classical train scheduling model, the movement of 

he train through the network is segmented into a sequence of 

tomic movements. For each atomic movement the minimum run- 

ing time is given, and a feasible solution ( schedule ) is the time 

n which each train begins each of its atomic movements. The 

imetable (a, d) corresponds to the components of the solution as- 

ociated with atomic movements of entering and leaving the sta- 

ions. Note that the timetable is only a sub-vector of the entire 

olution, which must also specify the schedule of all other micro- 

copic movements, for instance those inside the stations. 

In order to build and solve our MILP model, we follow the de- 

omposition approach presented in [41] . Since the approach is de- 

cribed in full detail in [41] and in other papers [28,40] , we only

resent here the main features. 

We consider the railway line as a sequence of alternating track 

nd station resources and we decompose the problem into a line 

roblem and a station problem . The optimal timetable (a ∗, d ∗) is

omputed by solving the MILP associated with the line problem. 

n the line problem, the micro-movements of the trains inside the 

tations are neglected and we only consider (explicitly) the po- 

ential conflicts on the tracks between successive stations. Specific 

easibility cuts ensure that the timetable (a ∗, d ∗) is also feasible for 

he stations, namely that there exists a conflict-free schedule of 

he train movements inside the stations which is compliant with 

he timetable. As we will see, the number of these cuts can grow 

xponentially with the size of the problem, and so they are intro- 

uced iteratively by delayed row generation. The row generation 

roblem is precisely the station problem, which amounts to find a 

chedule (and routing) for the trains in a station which is compat- 

ble with the arrival and departure times of trains - or prove that 

t does not exist. 

Next, we describe the two problems in our decomposition, 

tarting with the line problem and then the station problem. In 

articular, we will introduce and discuss the main variables and 

onstraints, as they appear in our reference application context 

rovided by Jernbanedirektoratet. 

.1.1. Line problem 

A railway line is an alternating sequence of stations and tracks. 

etween each pair of consecutive stations we assume we have at 

ost two tracks. When two tracks are available, one is reserved 

or the trains running in one direction while the other track is as- 

igned to the opposite direction. If only one track is available, then 

rains in both directions alternate on the track. In any case, trains 

ave no alternative routing options and the path through the line 

s fixed. 

Minimum running time For each train t ∈ T we let �s 
t be the 

inimum running time from s ∈ S ( t ) to the next station and we let 

f t ∈ S ( t ) be the final station for t . The following constraints ensure 

hat trains do not travel faster than they can: 

 

s +1 
t − d s t ≥ �s 

t , t ∈ T , s ∈ S(t) \ { f t } , (1)
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here a s +1 
t denotes the arrival time of train t at the station next 

o s on the path of t . 

Minimum dwell time If �s 
t is the minimum dwell time at station 

 for train t , we have: 

 

s 
t − a s t ≥ �s 

t , t ∈ T , s ∈ S(t) . (2) 

ote that the dwell time also factors in the time necessary for the 

rain to travel through the station. 

Track conflict We say that we have a conflict (between two 

rains) whenever, according to some schedule, two trains are 

lanned to occupy simultaneously the same track. Conflicts are 

ot allowed and any schedule implying conflicts is infeasible. In 

ther words, in any feasible schedule, for any two trains sharing a 

rack, one must precede the other one on the track. Therefore, the 

rst train must exit the track before the second train enters the 

rack. To model this we introduce, for every ordered pair of trains 

 

q, r ) ∈ T × T with a common track e in their routes, variable p e q,r 

hich is 1 if and only if q precedes r on e . Then we have: 

p e q,r + p e r,q = 1 . (3) 

his equation and one of these two variables are of course redun- 

ant, since one could simply use (1 − p e rq ) in place of p e qr , but it

elps the reading of subsequent constraints to have both of them 

xplicitly. The same motivation applies to similar constraints that 

ill appear later in the description of the model. 

Assume 1 now that track e between two adjacent stations is 

ravelled by train q from station u to station u + 1 , and by train

from station v to v + 1 . In double track sections, q and r can

hare a track e only if they run in the same direction, and thus

tation u = v and u + 1 = v + 1 . In single track sections, the trains

ay also run in opposite directions on the same track, in which 

ase we have that u = v + 1 and u + 1 = v . In any case, if q pre-

edes r on e , then q enters station u + 1 before r leaves station v
o, we have 

 

v 
r − a u +1 

q ≥ −Mp e r,q . (4) 

ndeed, if q precedes r on e , then p e rq = 0 , which in turn implies

 

v 
r ≥ a u +1 

q . 

Station conflict We introduce now the constraints ensuring that 

 timetable (d, a ) is feasible for the stations. To this end, we say

hat two trains q, r ∈ T meet in s ∈ S(q ) ∩ S(r) if they are simul-

aneously in s , i.e. d s q ≥ a s r and d s r ≥ a s q . For all unordered pairs

 q, r} ⊆ T , and s ∈ S(q ) ∩ S(r) , we introduce a binary meet variable

 

s { q,r} which is 1 if q and r meet in s and 0 otherwise. Similarly,

or all ordered pairs (q, r) ∈ T × T , and s ∈ S(q ) ∩ S(r) we introduce

he binary variable p s q,r which is 1 if and only if q arrives in s be-

ore r. Note that if trains q, r do not meet in station s , then either q

eaves the station before r arrives, or r leaves the station before q 

rrives. This disjunctive requirement can be expressed by the fol- 

owing linear constraints: 

p s q,r + p s r,q = 1 , 

 

s 
r − a s q ≥ −M 

(
1 − m 

s 
{ q,r} 

)

 

s 
q − a s r ≥ −M 

(
1 − m 

s 
{ q,r} 

)

 

s 
r − d s q ≥ −M 

(
m 

s 
{ q,r} + p s r,q 

)

 

s 
q − d s r ≥ −M 

(
m 

s 
{ q,r} + p s q,r 

)
. 

(5) 

In [41] it is showed that, under some mild assumptions, station 

easibility only depends on the meeting vector m . Moreover, the 

easibility constraints for a station s have the form 

∑ 

 q,r}∈ K 
m 

s 
{ q,r} ≤ | K| − 1 (6) 
1 With some abuse of notation, if s is a station on the path of a train, we denote 

y s + 1 the next station. 

 

6 
or K ∈ K 

s where, for a station s , K is a set of train pairs such that

t least one pair of trains cannot meet in s and K 

s is the set of all

uch subsets for s . 

Safety margin These constraints model a safety requirement for 

rain operations. When two crossing trains meet in a station, the 

econd train may be required to enter the station only some time 

fter the tail of the first train has fully entered the station. This is 

sually called safety margin, and its value �s 
q depends both on the 

rain and the station. Then, for every ordered pair of trains ( q, r ) ∈ 

 × T meeting in a station s ∈ S, we write the following constraints:

 

s 
r − a s q ≥ �s 

q − Mp s r,q 

 

s 
q − a s r ≥ �s 

r − Mp s q,r . 
(7) 

.1.2. Station problem 

The family K 

s of infeasible subsets of train pairs for station s ∈ S

an (in principle) grow exponentially with the number of trains. 

o we generate the set and the associated family of constraints dy- 

amically. In particular, given a station s and the arrival and depar- 

ure times ( ̄a s , d̄ s ) at s , along with the associated meet vector m 

s ,

he station problem for station s is the separation problem [42] for 

onstraints of type (6) . That is, it establishes if m s is feasible for s

r finds one set K̄ of train pairs such that at least one pair of trains

hould not meet in s but 
∑ 

{ q,r}∈ K m 

s 
q,r = | K | . 

Depending on the layout of the stations, one can apply different 

odels to solve the station problem (see [41] ). For our reference 

est instances, we adopted the list coloring model [41] . Stations are 

haracterized by the set of platforms where trains can hold for 

mbarking and disembarking passengers or just to wait for other 

rains to meet. Typically, in small stations, there is only one path 

rom the incoming track to a given platform, and from a given plat- 

orm to the outgoing track. In this situation, the route of the train 

hrough the station only depends on the platform assigned to that 

rain (also if the train does not stop). We may also assume that the 

unning time through the station is approximately the same for all 

outes. In general, not all platforms can be assigned to every train. 

ecause two trains cannot occupy the same platform at the same 

ime, the station problem reads as: 

Given meet vector m 

s , assign to every train a feasible platform such 

hat q, r ∈ T get different platforms whenever m 

s 
r,q = 1 , or prove that

uch assignment does not exist. 

In [41] we describe a MILP model for the station problem, and 

e also give sufficient conditions for when the separation of vio- 

ated inequalities (6) can be carried out in polynomial time. Since 

he station problem is not the focus of the paper, and all details 

f our approach can be found in [41] , we prefer to delve resolutely 

ith the new contribution. 

.2. The quasi-periodic timetabling constraints 

The previous section described how to model the (main) con- 

traints of a basic train scheduling problem. In this section, we 

escribe instead the additional constraints that characterize the 

uasi-periodic timetabling problem. These constraints are based 

n the desires of Jernbanedirektoratet for a feasible and ideal 

imetable. Many of them are implicitly derived from the specifics 

f a particular scenario (see, for example, Fig. 2 ), such as ensuring 

 “uniform” distribution of train services throughout each hour of 

he day. There are 4 basic types of constraints that we want to con- 

ider in a quasi-periodic timetable, some of which are highlighted 

n 3 . 

1. Single train time window. Each train t ∈ T c , c = 1 , . . . , n , will

depart from the reference station r c in the one-hour time inter- 

val [ h r c t , h 
r c 
t + 1) , where h r c t ∈ { 0 , . . . , 23 } is the given reference

(starting) hour. 
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2. Intra-hour separation. Trains travelling in the same direction 

within a particular reference hour should be scheduled at reg- 

ular intervals across the hour. This is generally the preferred 

option for passengers and was required in our scenarios. This is 

achieved by requiring a certain time separation between pairs 

of trains. Note that different pairs of trains may have different 

separation requirements. For example, we may want a pair of 

long-distance trains to be separated by at least half an hour, 

while a pair of local trains to be separated by at least 15 min-

utes. 

3. Inter-hour separation. The intra-hour separation rules should 

apply also to each pair of trains that travel in the same direc- 

tion but on two consecutive reference hours. For a particular 

pair of trains, the desired separation is the minimum intra-hour 

separation required by each train in its corresponding reference 

hour. 

4. Quasi-periodicity. All trains in the same periodic subset T c 
must leave station s at (approximately) the same minute after 

the reference hour of the train, for all s ∈ S c . 

As discussed in Section 2 , our model in principle allows for 

rains belonging to the same periodic subset T c to run through 

ifferent sets of stations. However, they all must share a set of 

tations S c 
 = ∅ from which the railway infrastructure manager can 

hoose a reference station r c ∈ S c . For trains that are not required

o be quasi-periodic, the reference station will simply be the first 

tation in their route. For instance, in the J Ȫ rbane, in the direc-

ion “away” from Stavanger, all local and long-distance trains de- 

art from Stavanger. In the direction “towards” Stavanger, all local 

nd long-distance trains stop in Skeiane. 

All the constraints above can be modeled using the variables 

ntroduced in the previous section plus a few extra ones. In the 

ollowing, for ease of description, we represent variables and con- 

traints only associated with trains travelling in one direction (e.g., 

way from Stavanger). In fact, the constraints described below are 

elevant only for trains travelling in the same direction. Moreover, 

e assume that departure and arrival times at stations, as well as 

ll other relevant time constants, are expressed in seconds. 

Single train time window For a train t ∈ T c with given reference 

departure) hour h r c t ∈ { 0 , . . . , 23 } at its reference station r c ∈ S c , we

an write: 

600 h 

r c 
t ≤ d 

r c 
t ≤ 3600 

(
h 

r c 
t + 1 

)
− 1 t ∈ T c , c = 1 , . . . , n. (8) 

Intra-hour separation For a fixed hour h ∈ { 0 , . . . , 23 } and a sta-

ion s ∈ S, let T s 
h 

be the set of trains with reference hour h at

tation s . Recall that with every ordered pair of (distinct) trains 

 

q, r ) ∈ T s 
h 

× T s 
h 

, we associate a binary variable p s q,r which is 1 if and

nly if q precedes r in station s . 

The separation between trains with same reference hour ensure 

 certain distribution within the hour. Our objective is to distribute 

ocal trains along the entire reference hour and place non-local 

rains between them. For ease of explanation, consider the parti- 

ion T s 
h 

= L s 
h 

∪ N 

s 
h 
, where L s 

h 
, N 

s 
h 

are the subsets of local and non-

ocal trains, respectively. 

Local trains. For h ∈ H and s ∈ S, consider the local wavelength 
s 
h 

= � 3600 ∣∣L s 
h 

∣∣ � . Let ( q, r ) ∈ L s 
h 

× L s 
h 

be an ordered pair of distinct

rains, where s is a relevant shared stop. Then we have: 

 

s 
r − d s q ≥ �s 

h − l q,r − Mp s r,q (9) 

here 0 ≤ l q,r ≤ l̄ q,r is a (bounded) slack variable which measures 

he intra-hour separation constraint violation, and M is a large con- 

tant. Note that the inequality holds only when r follows q in s , i.e.

hen p s r,q = 0 . 

Non-local trains. Since there is usually only one non-local train 

er hour, we are not interested in suggesting a specific intra-hour 

eparation between non-local trains. However, we would prefer 
7

hem to be equally spaced between a pair of local trains. Since the 

ocal wavelength is �s 
h 
, we can simply define the non-local wave- 

ength as 
�s 

h 
2 and apply it only to pairs of local/non-local trains. 

hen, for each pair of ordered trains ( q, r ) ∈ N 

s 
h 

× L s 
h 

∪ L s 
h 

× N 

s 
h 

we

ave: 

 

s 
r − d s q ≥

�s 
h 

2 

− l q,r − Mp s r,q . (10) 

Inter-hour separation We consider now two adjacent hours h 

nd h + 1 . The inter-hour margin is defined as the minimum of the

wo associated wavelengths, i.e., �s 
h,h +1 

= min { �s 
h 
, �s 

h +1 
} for local 

rains and �s 
h,h +1 

= min { �s 
h 

2 , 
�s 

h +1 
2 } for non-local trains. Then, for 

very pair of train ( q, r ) ∈ L h × L h +1 and a relevant stop we have 

 

s 
r − d s q ≥ �s 

h,h +1 − l ′ q,r (11) 

here l ′ qr is a non-negative slack variable. Similarly, for every pair 

f train ( q, r ) ∈ N h × L h +1 ∪ L h × N h +1 and a relevant stop we have 

 

s 
r − d s q ≥ �s 

h,h +1 − l ′ q,r . (12) 

Quasi-periodicity (Quasi-)Periodicity is enforced for a specific 

eriodic id, for a specific station, on a specific direction. For each 

eriodic id c ∈ C, and for each station s ∈ S c , we introduce a vari-

ble z s c ∈ R to represent the base time of this specific periodic pat- 

ern , i.e., the minute mm c (s ) of the hour in which each train t ∈ T c 
s supposed to leave from every station s ∈ S c . Then, for each t ∈ T c ,

he constraints that enforce the periodicity pattern associated with 

 ∈ C can be written as follows: 

 

s 
c ≤ d s t − h t 

 

s 
c ≥ d s t − h t − ρs 

c,t 

(13) 

here h t ∈ H is the starting hour of train t , and ρs 
c,t ∈ R + is a

lack variable that allows for a deviation from the base time. The 

lack variable cannot exceed the flexibility constant γc introduced 

n Section 2 , namely ρs 
c,t ≤ γc . In our instances, we let γc = 5 min-

tes. Note that ρs 
c,t is always non-negative. For example, if the base 

ime is h : 15 , then all the corresponding periodic trains can start at 

 h : 15 , h : 20] , but never before h : 15 . Indeed, it is usually acceptable

or a train to be delayed a couple of minutes from its base time. It

s not acceptable the opposite. 

.3. Objective function 

The (linear) objective function consists of the minimization of a 

inear combination of the following terms: 

1. A penalty δs 
t ∈ R + for the extra time spent in track (if more 

than the minimum running time), which can be modelled by 

complementing the constraints in (1) with: 

a s +1 
t − d s t ≤ �s 

t + δs 
t , t ∈ T , s ∈ S(t) \ { f t }; (14)

2. A penalty ω 

s 
t ∈ R + for the extra time spent in station (if more 

than the dwell time), which can be modelled by complement- 

ing the constraints in (2) with: 

d s t − a s t ≤ �s 
t + ω 

s 
t , t ∈ T , s ∈ S(t) ; (15) 

3. A penalty l q,r for not satisfying the intra-separation constraints 

in (9) and (10) ; 

4. A penalty l ′ q,r for not satisfying the inter-separation constraints 

in (11) and (12) ; 

5. A penalty ρs 
c,t for not satisfying the periodicity constraints in 

(13) . 

Therefore, the objective function will be (omitting the indices’ 

ets for simplicity): 

in 

∑ 

δs 
t + 

∑ 

ω 

s 
t + 

∑ 

l q,r + 

∑ 

l ′ q,r + 

∑ 

ρs 
c,t (16) 
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ach of these components (or even each single variable) can of 

ourse be weighted according to the preferences of the railway in- 

rastructure manager or, in this particular case, of Jernbanedirek- 

oratet. 

A final remark concerns the relation of this model with the 

ne presented in [28] , with which we share the decomposition ap- 

roach and the solution method, as mentioned in the introduction. 

ndeed, the model presented in paper [28] also allows for some de- 

iation from periodicity. However, in [28] the modelling of such 

elaxation - namely constraints (10) and (11) (in [28] ) - is much 

ooser and allows for timetables that are non-quasi-periodic (in the 

ense defined in the current paper). This is because the model in 

28] does not include the definition of what in the current paper is 

alled base time (minute), which must be the same for every train 

n a periodic class. Indeed, the constraints (10) and (11) were in- 

roduced in [28] for ensuring that successive trains (intra-hour pe- 

iodicity) were close to be periodic. But, by only constraining pairs 

f successive trains, small deviations could sum up and the sched- 

les of two arbitrarily distant trains in a same periodic class may 

eviate too much. It must be said that the goal in [28] was the

nsertion of a number of freight trains in a given passenger-train 

eriodic timetable, and so the risk of accumulating deviations was 

omehow mitigated. By extending constraints (10) and (11) to all 

airs of trains in a same periodic class (and not only to successive 

rains), we could enforce quasi-periodicity as defined in this paper, 

ut the number of these constraints would grow as the square of 

he number of trains in the periodic class. In contrast, only a linear 

umber of constrains (13) appear in the current model. 

. Solution algorithm 

As we have seen in the previous sections, the number of con- 

traints of the model may grow very large even for relatively small 

roblems. However, one can efficiently exploit the structure of 

he model to dynamically generate all the necessary constraints 

hrough an ad-hoc delayed-row-generation scheme built on top of 

 MILP solver, as also described in [40] and [28] . 

In particular, we apply this treatment to the constraints in (4), 

5), (6) and (7) . 

In fact, these are the ones that, loosely speaking, give rise to 

he combinatorial complexity of the model. Typically, only few of 

hose are really necessary to prove optimality (or infeasibility). 

So, in order to solve the model P defined by constraints (1) to 

15) and objective function (16) , we solve a sequence of increas- 

ngly large MILPs P 0 , P 1 , . . . , P q , where P 0 is obtained by the orig-

nal full problem P by removing some constraints, and P i is ob- 

ained from P i −1 by re-inserting some of the initially removed con- 

traints. In our approach, P 0 is obtained from P by dropping all 

onstraints of type (4), (5), (6) , and (7) . Note that all the problems

n the sequence are relaxations of the full problem P . 

At the i -th iteration we solve problem P i to optimality. 

1. If P i is infeasible, then P is infeasible (since P i is a relaxation), 

and we are done. Otherwise, let y i = (a i , d i , p i , m 

i , z i ) be the

current solution. 

2. If y i violates some of the inequalities of type (4) or (7) not in-

cluded in P i , we add these to P i (generating P i +1 ) and iterate. 

3. If y i violates some of the inequalities of type (6) not included 

in P i , we add these to P i (generating P i +1 ) and iterate. 

4. If y i does not violate any missing inequality then y i is also fea- 

sible and thus optimal for P , and we are done. 

The identification (i.e., separation ) of violated inequalities 

4) and (7) at Step 2 can be easily done by inspection. Informally, 

his corresponds to checking whether the current timetable (a i , d i ) 

mplies a conflict between two trains in some tracks between two 

tations, or any of the safety margins are violated. The separation 
8

f violated inequalities (6) at Step 3 is carried out by solving a sta- 

ion problem, for all stations in the line. 

Note that we do not necessarily need to solve each P i to op- 

imality before separating new constraints. We could simply sep- 

rate them every time a MILP solution algorithm finds an integer 

easible solution, that is in the feasible leaves of the branch-and- 

ound tree generated by the algorithm. However, we found that 

s usually more convenient to wait until a “good enough” solution 

as been found because commercial MILP solvers tend to generate 

any non-optimal feasible solutions during the beginning of the 

earch (for example, through quick heuristics), which would lead 

o the separation of constraints that are less likely to be binding 

n the final solution. Here the term “good enough” is left vague on 

urpose and it stands for a solution that it likely to be close to the

ptimal one. In fact, due to the poor dual bounds provided by this 

ype of big- M formulations, we found that it is not uncommon to 

nd what is going the be the actual optimal solution at the be- 

inning of the search tree, and then perhaps spend few millions 

odes to prove its optimality. So, an idea to speed up the solution 

lgorithm is to look for an optimal solution only after finding a 

easible solution that is good-enough (for example, if the MIP gap 

s less than 10% or more than 10 0,0 0 0 nodes have been explored

ince the last incumbent). Whenever we find a good-enough so- 

ution that does not violate any missing inequalities (i.e., feasible 

ut not necessarily optimal), then we solve again the problem to 

he optimum. If the incumbent did not change or the timetable 

ssociated with the new incumbent is feasible, then we found the 

ptimal solution. Otherwise, we add the violated inequalities and 

e start again looking for a good-enough solution. This basically 

reates a sequence of feasible good-enough solutions, until one of 

hese is proven to be optimal. In our experiments with slightly 

maller problems than the ones considered in Section 5 , we found 

hat in many cases the first good-enough solution found by algo- 

ithm was indeed also the optimal one. 

But we can do even more. Since current commercial MILP 

olvers do not support column generation within the branch-and- 

ut algorithm, postponing the separation of constraints actually 

ives us the opportunity to speed up the solution process signif- 

cantly by a couple of simple observations: the variables p e appear 

nly in (3) and (4) , while variables m appear only in (5) - (7) ; more-

ver, constraints (3) and (5) are necessary for the correctness of 

he formulation only in conjunction with the constraints (4), (6), 

7) that are included in the aforementioned row generation ap- 

roach. Therefore, not only we can delay the generation of the 

onstraints (3) and (5) until the corresponding constraints (4), (6), 

7) have been generated, but we can also delay the generation of 

he corresponding decision variables p e , p s and m . In most of the 

ases, these simple considerations significantly reduce the dimen- 

ion of the initial problem P 0 . 

. Real life experiments and future developments 

In this section, we describe the results on the experiments that 

e carried out together with Jernbanedirektoratet on real data and 

eal what-if scenarios. The base line is given by the current local 

rain services (as of year 2020) summarized in Fig. 2 . Note that the 

on-local train services do not change in our test scenarios and the 

urrent relevant railway infrastructure consists of double tracks be- 

ween Stavanger and Sandnes and single tracks afterwards (with 4 

assenger platforms in Stavanger). The what-if scenarios that Jern- 

anedirektoratet wanted to investigate were as follows (see also 

able 1 ): 

• Scenario 1 : Original railway infrastructure but the 2 short- 

distance trains per hour between Stavanger and Sandnes would 

be extended to Ganddal (see Fig. 4 ). 
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Fig. 4. The periodic pattern of the first test scenario. Compared to the original scenario, two local trains per hour are extended from Skeiane to Ganddal. 
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Table 1 

A brief description of the characteristics of the different scenarios. 

Infrastructure Train services per hour form STV 

Plat. in STV Double track to To SAS To GAN To NB To EGS 

Current 4 SAS 4 2 2 1 

Scenario 1 4 SAS 4 4 2 1 

Scenario 2 6 SAS 6 4 2 1 

Scenario 3 4 NB 4 4 4 1 

Scenario 4 6 NB 6 6 6 1 
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• Scenario 2 : Similar to Scenario 1 but we increase the 

turnaround capacity in Stavanger and we keep the exist- 

ing short-distance StavangerSandnes trains when adding the 

new short-distance trains between Stavanger and Ganddal (see 

Fig. 6 ). 
• Scenario 3 : Both the double track and the two short-distance 

trains per hour between Stavanger and Sandnes are extended 

to N Ȫ rb ȹ (see Fig. 8 ). 
• Scenario 4 : Mixing Scenario 2 and Scenario 3, we get increased 

turnaround capacity in Stavanger, double track to N Ȫ rb ȹ , and 

the 2 short-distance trains per hour between Stavanger and 

Sandnes become 4 trains per hour between Stavanger and 

N Ȫ rb ȹ (see Fig. 10 ). 

The model and the algorithm described in Sections 3 and 

 have been implemented in.NET and run on an Intel i7-7700HQ 

 2.8 GHz with 32 GB of memory using IBM CPLEX 12.8. At first 

e tried to solve the entire model as is, but we quickly found it 

o be particularly challenging, especially due to the fact that trains 

ithin the same hour do not have a fixed order. This flexibility 

dds an enormous amount of complexity and makes for very poor 

ual bounds, since each particular order of trains is likely to gen- 

rate a completely different set of conflicts (each order almost cre- 

ting an independent subproblem). In practice, strategic planners 

sually have already a good idea of the particular order of train 

ervices they want to enforce, having to take into consideration 

ther specific customer preferences. However, we decided to keep 

his flexibility and we tried to tackle the issue by mimicking a two 

tage approach that is also common in the manual timetabling pro- 

ess. In the first stage, we solve a simpler problem with only lo- 

al and non-local trains (i.e., without freight trains). While in the 

econd stage, we solve the problem with all trains, but we con- 

train the base time variables of the local and non-local trains z s c ∈ 

 ̄z s c − 3 minutes , ̄z s c + 3 minutes ] where z̄ s c is the base time found 

uring the first stage. This way, the order of periodic trains in the 

econd stage is fixed, but their departure times are still flexible. 

he main reason for following this approach has to do with the 

act that freight trains are not particularly relevant in the strate- 

ic timetabling process because: (1) they don’t have to be periodic, 

2) their departure time is much more flexible, and (3) they have 

ower priority compared to passenger trains. In other words, we 

ust need to make sure that a certain scenario is able to accommo- 

ate a certain number of freight trains. 

Feasibility is indeed the main purpose of strategic timetabling, 

aking sure that there exists a conflict-free timetable satisfying 

ertain basic requirements, such as periodicity or number of train 

ervices per hour. Notice that the objective of our model contains 

nly preferences, while all these basic requirements are encoded 

n the model as hard constraints. This means that any feasible so- 

ution could already be considered as acceptable. 

Taking into account these considerations, we solved the first 

tage with a timelimit of 12 hours, assuming a solution to be good- 

nough (see end of Section 4 ) if the gap is smaller than 10% or the

ncumbent did not change during the last 10,0 0 0 explored nodes. 

s mentioned above, these problems suffer from poor dual bounds 
10 
nd they are very difficult to solve to the optimum. For example, 

he first stage model for scenario 1 produced a feasible timetable 

fter 1 h, but then spent the remaining 11 hours (in which CPLEX 

xplored around 1 million nodes) to prove a gap of only 56%. How- 

ver, the incumbent had a small objective value and during this 

ime never changed. Our experience with these problems tells us 

hat in these conditions the solution we found was likely to be 

ither the optimal solution or close to the optimal one. Similar re- 

ults were obtained in the other scenarios as well. 

The second stage tells a different story, once the order of trains 

s fixed. We set again a time-limit of 12 hours, assuming a solution 

o be good-enough if the gap is smaller than 10% or the incumbent 

id not change during the last 10 0,0 0 0 explored nodes. Depending 

n the difficulty of the scenario, we were able to solve the prob- 

em either to optimality (Scenario 1) or to a gap of 10% (Scenario 

), with the other scenarios in between. On average, each the sec- 

nd stage problem explored a total of about 3 million nodes within 

00 iterations, solving about 10 0 0 conflicts. The size of the mod- 

ls at the first iteration was 20 to 30 thousand rows, and 13 to 21

housands columns. In the last iteration, due to row and column 

eneration, the number of rows was about 20% higher, while the 

umber of columns about 10% higher. 

The best feasible timetables are presented in Figs. 5 , 7 , 9 ,

nd 11 . Note that the only available alternative, namely manual 

imetabling, is not even close to being competitive in terms of the 

ime required to create a feasible timetable, usually ranging from 

everal days to several weeks. 

These strategic timetables were used in the following process 

o determine which scenarios to select for the future expansion of 

he J Ȫ ren line. The timetables were exported in the widely used 

ailML format, fed into Jernbanedirektoratet’s passenger transport 

odel, and used to perform a preliminary cost-benefit analysis of 

he different scenarios. The worst-performing scenario (Scenario 

) was discarded, and some manual improvements were made 

o the remaining scenarios before re-running the transport model 

nd updating the cost-benefit analysis. Even though the timetables 

ere near-optimal, these manual modifications improved the cost- 

enefit ratio. This is to be expected, since the objective function of 

ur model does not take into consideration those aspects that may 

equire a complex simulation (e.g., passenger satisfaction). In the 

nd Scenarios 1, 2, and 4 were recommended for different time 

orizons (i.e., few years, several years, and > 10 years). In other 

ords, the timetables produced by our algorithm were successfully 

sed to select and validate future scenarios for the development of 

he J Ȫ ren line. 

Interestingly, Jernbanedirektoratet was not certain that it would 

ave been possible to produce a feasible timetable for Scenario 4. 

ven with the upgraded infrastructure, the mix of freight and fre- 

uent passenger trains between N Ȫ rb ȹ and Orstad saturates the 

ine. The concern proved somewhat right. In fact, we were not able 

o find a feasible timetable for Scenario 4 when enforcing per- 

ect periodicity. The complexity and the high level of utilization 

f the railway line in Scenario 4 made it impossible to run per- 

ectly periodic trains (i.e., the corresponding instance was proven 

o be infeasible). However, inspired by the challenge of producing 
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Fig. 5. The quasi-periodic (conflict-free) timetable for the first test scenario. 
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Fig. 6. The periodic pattern of the second test scenario. Compared to the original scenario, there are two extra local trains per hour from Stavanger to Ganddal. Morover, the turnaround capacity of Stavenger has been raised from 

4 to 6 local trains. 
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Fig. 7. The quasi-periodic (conflict-free) timetable for the second test scenario. 
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Fig. 8. The periodic pattern of the third test scenario. Compared to the original scenario, the two short local trains per hour have been extended from Skeiane all the way to Nærbø. Moreover, the double track has been extended 

from Skeiane to Nærbø. 
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Fig. 9. The quasi-periodic (conflict-free) timetable for the third test scenario. 
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Fig. 10. The periodic pattern of the fourth test scenario. This is a mix of the second and third scenarios. There are now 4 local trains per hour running from Stavanger up to N Ȫ rb ȹ (plus 2 to Egersund). The double track has 

been extended until N Ȫ rb ȹ , and Stavanger now has turnaround capacity for 6 trains instead of just 4. The feasibility of this scenario was not certain, even with the upgraded infrastructure. 
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Fig. 11. The quasi-periodic (conflict-free) timetable for the fourth test scenario. Note that it did not exist a perfectly-periodic timetable for this scenario. 
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 feasible timetable for this scenario, we developed the concept of 

uasi-periodicity, which we ultimately applied to all scenarios with 

 maximum deviation of 3 minutes. Thanks to that, it is still pos- 

ible to present a perfectly periodic timetable to the public while 

unning the trains in a slightly less periodic fashion. It is interest- 

ng to note that the quasi-periodicity slack variables were almost 

ll equal to zero in all scenarios. This is of course not surprising 

or Scenarios 1–3, since perfect periodicity is feasible. In Scenario 

, we identified only a particular set of periodic trains for which 

ll the quasi-periodicity slack variables associated with the Bryne 

tation had a value between 19 and 29 seconds. Considering the 

omplexity of the train interactions in such a dense timetable, it is 

ard to say exactly why this was the case, though. 

In any case, this result demonstrates that while perfect peri- 

dicity creates very passenger-friendly timetables, it may come at 

he cost of capacity. In highly saturated areas, strict periodicity 

ill leave gaps between trains that cannot be used. By relaxing 

he periodicity constraints and adding a penalty for slight varia- 

ions in the intervals between trains, we try to balance these con- 

icting goals to provide the most benefit for the passengers. Note, 

owever, that the introduction of quasi-periodicity slightly hinders 

he computational performance. For example, the second stage of 

cenario 1 was solved to optimality in about 2 hours with quasi- 

eriodicity, but only in half an hour with perfect periodicity en- 

orced (everything else the same). 

While quasi-periodicity was a crucial addition to complement 

ur timetabling model, there are a few aspects we want to im- 

rove upon. First, on the algorithmic side, it would be interest- 

ng to consider new decomposition approaches in order to tackle 

arger instances, so as to coordinate the timetables of several lines 

t the same time (see, for example, [43] ). Next, on the modelling 

ide, it would be interesting to develop effective ways to model un- 

ertainty so as to produce timetables that are more robust against 

nwanted delays or disturbances (see, for example, [8] ). As a final 

emark, we also would like to report that the success of the proto- 

ype tool for strategic timetabling discussed in this paper, among 

ther things, inspired Jernbanedirektoratet to pursue the idea of 

ontributing to a commercial tool for strategic planning by issuing 

 public tender aimed at financing the development of such tool. 
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