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ABSTRACT Early diagnosis of gastrointestinal pathologies leads to timely medical intervention and
prevents disease development. Wireless Capsule Endoscopy (WCE) is used as a non-invasive alternative for
gastrointestinal examination. WCE can capture images despite the structural complexity presented by human
anatomy and can help in detecting pathologies. However, despite recent progress in fine-grained pathology
classification and detection, limited works focus on generalization. We propose a multi-channel encoder-
decoder network for learning a generalizable fine-grained pathology classifier. Specifically, we propose
to use structural residual cues to explicitly impose the network to learn pathology traces. While residuals
are extracted using well-established 2D wavelet decomposition, we also propose to use colour channels to
learn discriminative cues in WCE images (like red color in bleeding). With less than 40% data (fewer than
2500 labels) used for training, we demonstrate the effectiveness of our approach in classifying different
pathologies on two different WCE datasets (different capsule modalities). With a comprehensive benchmark
for WCE abnormality and multi-class classification, we illustrate the generalizability of the proposed
approach on both datasets, where our results perform better than the state-of-the-art with much fewer labels
in abnormality sensitivity on several of nine different pathologies and establish a new benchmark with

specificity > 97% across classes.

INDEX TERMS Pathology classification, wireless capsule endoscopy, fine grained, residual cues.

I. INTRODUCTION

The gastrointestinal tract, which plays a vital role in absorb-
ing essential nutrients, also exhibits susceptibility to various
intestinal pathologies such as ulcers, polyps, lesions and
inflammation, amongst others. The lack of proper manage-
ment of inflammatory bowel disease can lead to encumbering
economies with substantial costs at different stages of disease
management pipeline [2] in addition to reducing the quality
of life among patients [3], [4]. Therefore, the early diag-
nosis of such pathological occurrences as colorectal polyps
or obscure intestinal bleeding can lead to timely interven-
tion and possible prevention of further disease development
to extreme cases such as inflammatory bowel diseases and
cancers [5], [6], [7]. While standard diagnostic approaches
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like colonoscopy and gastroscopy enable visualization of the
upper and lower gastrointestinal tract, anatomical challenges
prevent satisfactory examination of the small bowel through
these techniques [8]. As a consequence, Wireless Capsule
Endoscopy (WCE) has become an increasingly preferred
non-invasive alternative, especially for small bowel exami-
nations [9].

Despite progress in WCE imaging [10], a medical prac-
titioner needs to spend reasonable time analysing frames in
excess of 60,000 [11], amounting approximately to 45 to
60 minutes [12] of the practitioner’s time for large bowel
diagnosis. Despite the substantial time requirement, the
diagnosis has susceptibility to human error [13]. Reliable
computer-aided classification tools for detecting normal
from pathological conditions can be paramount in cutting
down individual diagnostic times and associated costs [14].
A number of approaches have been proposed in the last
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FIGURE 1. An example illustration of pathological images from capsule endoscopy with different cases of pathologies from Kvasir-Capsule dataset

(referred as D1 in this work).

decade to classify the images/videos using classical tech-
niques as well as deep learning based architectures [15].
While classical approaches are carefully engineered by
understanding the structure and appearance of pathology
in images [16], deep learning architectures identify and
classify pathological appearances by learning to extract
task-beneficial features from large datasets.

Although classifying a normal image against pathology is
of great clinical significance, there are limited works that
attempt to do fine-grained classification involving different
pathologies within a single framework [8], [17], leading to a
problem of generalization in real-time. The dearth of works
in this direction can be attributed to limitations pertaining
to the private nature of this data and the scarcity of suffi-
ciently varied examples of different cases, often leading to
inadequately representative, unbalanced datasets for one or
more pathologies. While machine learning-based algorithms
enable prediction of normal against pathological conditions
with high confidence [18], [19], [20], attempts at discriminat-
ing between different pathological conditions presents a con-
siderable generalization challenge, even with large datasets,
as also noted in the multi-centric study by Ding et al. [8].
Figure 1 shows few examples of pathological images obtained
from WCE from the Kvasir Capsule Dataset [1] illustrating
the varying appearances of pathologies in different images
and the challenge in classifying them with high confidence,
especially with considerations to changing anatomy within
the gastrointestinal tract.

We present a new approach for classifying various
pathologies from normal images using a multi-channel
Convolutional Neural Network (CNN) based cascaded
encoder-decoder network with a ResNet [21] backbone.
We observe that occurrence of pathology is coupled with
tissue transitions in different directions and that these transi-
tions could provide useful cues for pathology identification.
In line with this, we propose to extract directional residu-
als based on 2D-Wavelet decomposition. We illustrate this
assertion with a toy example in Figure 2 where an image
is decomposed into three directions that capture different
directional aspects of the information contained within the
original image. Concretely, the original image (top-left) is
decomposed in horizontal (top-right), vertical (bottom-left)
and diagonal (bottom-right) directions using 2D-Discrete
wavelet transform. This directional information for each
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orientation is then subtracted from the original image to pro-
vide the corresponding residuals, which we refer to as struc-
tural residual cues. We experimentally verify that in WCE,
these directional residuals not only capture the directional
transitions resulting from an abnormality but carry additional
structural details particular to different abnormalities that
allows learning better discrimination between normal and
pathological cases (Table. 1) as well as between different
pathological cases (Table. 4).

Original Horizontal

Diagonal

FIGURE 2. A toy example illustrating the DWT decomposition where the
structural residuals can be seen along the horizontal, vertical and
diagonal directions.

In addition to structural changes, transitions in colour
across different spatial regions of an image can provide fur-
ther clues that medical practitioners often use for deciding on
the presence of a pathological condition. For instance, the red
colour is pronounced when a blood clot is observed in the tract
compared to an ulcer which appears yellowish. Motivated
by such observations, we use colour channels in addition to
structural residuals to learn the classification model robustly.
Thus, our approach works by employing six different chan-
nels consisting of both structural residuals and appearance
factors in different colour spaces.
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FIGURE 3. Proposed architecture for multi-channel CNN with cascaded Encoder-Decoders. The images are shown in colour-map for better visualization.

Finally, we propose to exploit intermediate representations
at different stages of the cascaded Encoder-Decoder network
towards obtaining a final decision to fully utilize features
of different scales and sensitivity. We do this through two
ways: (a) enforcing a symmetrical loss between different
intermediate latent representations between the encoder and
the decoder, using a standard triplet loss at the batch level.
(b) incorporating a pixel-wise reconstruction loss between
the ends, i.e., the input and the decoder output. In addition,
a standard Negative Log-Likelihood loss is employed to train
the network in a supervised manner to classify the normal
versus pathology images by taking full advantage of the
6 channel CNN.

We validate our proposed approach on the fine-grained
classification of two WCE datasets - Kvasir-Capsule dataset
(D1) [1] and the Computer Assisted Diagnosis for Capsule
Endoscopy Database (CAD-CAP) from the Giana Endo-
scopic Vision Challenge (D2) [22], with up to nine different
pathology categories. The obtained results surpass previous
baselines in per-pathology sensitivity while closing the gap in
sensitivity and specificity with other works with significantly
higher labels used in training. We demonstrate the applicabil-
ity of the proposed approach for classifying many different
pathologies (using the same network, no additional archi-
tectural changes) from normal across two datasets. In addi-
tion, we evaluate the strength of features in characterizing
challenging categories through a multi-class classification
between pathology categories. We present a detailed analy-
sis on the explainability of the network through analysis of
channel contributions. The main contributions are:

o We propose a unified multi-channel CNN based cas-
caded Encoder-Decoder network to classify multiple
WCE pathologies with consistently high sensitivity and
specificity.

o We demonstrate generalizability in challenging cross-
pathology (nine different non-overlapping classes of
datasets) and cross-dataset settings (with different cap-
sule modalities).
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o Unlike previous works in WCE, our work presents
a more comprehensive baseline for evaluating future
works, with the inclusion of multiple commonly occur-
ring pathologies in WCE.

In the rest of the paper, we present the rationale and pro-
posed approach in detail in Section II, followed by a summary
of the datasets employed for validation. Section IV presents
the detailed analysis of the results and Section V provides the
discussion on explainability. Further, Section VI provides the
results of the ablation studies with respect to the losses and
Section VIII discusses the conclusions.

Il. METHODOLOGY

The image of a healthy organ typically exhibits different
visual properties from the one with diseases/pathology as
illustrated in Figure 1. A pathological image I, can be
asserted as a corrupted version of a healthy image I;, where
the corruption refers to the specific structural irregularities
over and above normal variations, resulting from the pathol-
ogy. Thus, a pathology image I,, can be described as a
some function f of healthy image I, and corruption w(-) i.e,
I, = f(y) + w(-) (the corruption being a complex interplay
of patient related pathological and physiological variables).
Assuming that the healthy images are abundant, we formulate
pathological characteristics as outliers deviating from normal
healthy images with different abnormal appearances. Thus,
we propose an approach based on such an assertion to learn
the outliers in the presence of pathology as detailed in the
upcoming section.

A. MULTICHANNEL INPUT THROUGH STRUCTURAL
RESIDUAL CUES AND COLOUR INFORMATION

The pathological and normal images may appear very sim-
ilar in multiple cases, given the complex nature of these
images. However, some superficial deposits or patterns
can be observed in images with pathology when captured
with WCE, and using only RGB images may not neces-
sarily lead to features robust enough for learning optimal
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classifiers often leading to mis-classifications. Therefore,
we first seek to obtain crucial discriminative differences.
As the pathology characteristics can appear in all possible
orientations and shapes, it is vital to extract pathology traces
in all such directions. Although such information can be
extracted using different spatial approaches, we rely upon the
2D-discrete wavelets transforms (2D-DWT) to capture
details in horizontal, vertical, and diagonal directions as illus-
trated in Figure 2 to obtain the traces of pathology in different
orientations. The wavelets from each of the horizontal, verti-
cal, and diagonal directions provide clear transitions between
the areas of pathology and non-pathological regions. It has to
be, however, noted that such transitions can also appear due
to the tissues that are normally present without any pathology.
To deal with such a situation, we take the residual differ-
ences between the original image and each of the responses
from horizontal, vertical, and diagonal directions leading to
a set of structural residuals. We first obtain the gray-level
image I, of I and then obtain the residuals along horizon-
tal, vertical and diagonal directions 7, I, 1}, represented
as

I =1 = W(h)lg
Iy =1 - ‘/’(V)Ig
Iy =1 = ‘/f(d)lg

where ¢ represents the 2D-DWT in different directions at
level 1.

While all residual images capture structural transitions
in different orientations and discard colour information,
our approach may suffer from missing colour information.
To account for this, we combine the structural residual infor-
mation with the colour channel information to create a multi-
channel input. Thus, the RGB channels of input image [
is appended to form a final six channel input resulting in
Uy, 1), 1}, Ig, Ig, Ig} for learning the classifier.

B. LEARNING TO CLASSIFY RESIDUAL CUES

As discussed earlier, a pathological image can be consid-
ered as a corrupted variant of the healthy image given by
I, = f(y) + o(-). Thus, we assert that learning the cues
corresponding to w(-) leads to a better classification of the
pathological images from healthy images as well as within
themselves. We, therefore, propose an Encoder-Decoder
architecture to learn the cues more effectively discriminating
healthy images from pathology images.

Given the multi-channel input, we extract the fea-
tures for learning the classifier using a Residual Network
(ResNet-18) [21] backbone with 18 layers. Unlike the tra-
ditional three-channel input for a deep neural network, the
input in our case has six channels, thus we modify the
ResNet-18 architecture to process multi-channel inputs for
feature extraction. Furthermore, to account for the limited
data settings which can result in an overfitted network when
learning from scratch, especially in our case for patholog-
ical images where the data scarcity cannot be overruled,
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we use the pre-trained weights learnt on ImageNet [23] for
the last three channels (i.e., RGB) and set the weights of other
three channels corresponding to residual differences to zero.
To make the learning robust and incorporate all intermedi-
ate features, we adopt a U-Net [24] like Encoder-Decoder
architecture, where we choose four Encoder (E) residual
blocks followed by a corresponding number of Decoder (D)
residual blocks. Such an Encoder-Decoder architecture helps
us to decode the information back to generate the original
six channel input. The feature maps from each layer are
upsampled by a nearest-neighbour interpolation through a
2 x 2 convolution in each of the successive decoder blocks.
We exploit the intermediate symmetrically encoded-decoded
representations (i.e., Encoder-1 with Decoder-4) by using it
to measure the differences using a standard triplet loss by
formulating it as an anomaly problem inspired by a recent
work by Feng et al. [25].

Learned feature representations for images of the same
class must ideally lie in a compact sphere, while features
corresponding to samples from dissimilar classes lie further
away in the representation space. In an analogy, the repre-
sentation of a pathological image must be such that it drifts
away (exhibits smaller pairwise similarity) from the center
of the cluster of healthy images in the feature space. If the
input space is represented by (X € R?) and the output space
by (Z € RP), a neural network with L hidden layers and
corresponding set of weights W = {W!, ..., WL} learns
a mapping between the input space and the output space
as ¢(; W) : X — Z such that Z exhibits the desirable
properties described where Z is centered on a predetermined
point c.

Given n healthy samples (I", . . ., I,fl C X)) and k patholog-
ical samples (7, ..., I} C X), the point c in the output space
Z should lie close to healthy samples while the pathological
samples are encoded such that they lie away from this healthy
cluster.

1Y 2

mirg 2 |t ] <
1 k

max ; l¢a?; Wy—c|)? ®)

Minimizing the distance for samples from healthy class
while maximizing the distance for samples from pathological
class from c can lead to better classification. To achieve this,
we employ triplet loss L, to minimize intra-class separability
and maximize inter-class separability at the feature level [26].
Using all intermediate feature representations from the last
encoder block to the last decoder block, we create triplets
of healthy images and pathological images in each batch by
randomly choosing healthy samples as anchors and the rest
of the healthy samples as positives and pathological samples
as negative. Thus, by enforcing a triplet loss that uses 6 input
channels (residual and RGB ), the loss estimation can be fully
used to benefit from learning class separation.
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TABLE 1. Comparison of performance between different datasets and approaches for abnormality detection. All pathologies are clubbed as a single class

of abnormality and classified against the normal class.

Approach Total no. of  Sensitivity  Specificity ¥AUC  Accuracy = Abnormalities
images
Ding et. al. [8] 158 235 99.9 100 - - Inflammation,Polyps, bleeding, vascular disease,
protruding lesion, diverticulum, parasite, ulcer, lymphatic
follicular hyperplasia, lymphangiectasia Vs Normal
Iakovidis et. al [27] 1196 92.4 85.8 - 89.2 Vasular anomalies, polypoid anomalies

inflammatory anomalies Vs Normal

Ours [D1] 5489 99.3 99.6 99.4 99.42 Angiectasia, Blood, Erosion,
Lymphoid Hyperplasia Vs Normal

Ours [D2] 1812 97.63 100 98.8 99.2 Inflammatory, Vascular Lesion Vs Normal

As the pathological cues obtained from the input channels
(wavelet residuals and colour channels) can exhibit dissimilar
features compared to healthy images, one can deduce that the
encoder-decoder network shall result in an image close to the
input image for healthy classes in each of the six channels.
Thus, the difference between the input and the output image
with six channels for the normal image set is expected to
ideally result in zero difference if reconstructed pixel-wise.
Assuming zero difference for healthy images when recon-
structed, we incorporate a pixel-wise loss to boost learning
of normal image classes through explicit supervision. Given
a six-channel input image I, the final residual representation
obtained from the encoder-decoder block results in a low
pixel-wise reconstruction loss L,, which can be represented
as:

1 6
Ly=—3 > lCih. 3)

Iichy ch=1

for h healthy images in a batch of size b, ch being the
total number of input channels (i.e., ch = 6) and C; is the
channel wise difference between the input and output for
image i.

The output of the final decoder block using a Tanh acti-
vation layer provides an activation map corresponding to the
residual cues that are different in pathological images against
healthy images. We, therefore, employ it as an attention
mechanism to guide the auxiliary classifier to learn the final
classification layer for our proposed model. Figure 4 presents
a sample illustration of the cues obtained from the proposed
approach, and it can be noted that the visual cues learnt by
the network localize the regions of pathology, helping the net-
work in better classification. Finally, we employ an auxiliary
classifier to enforce supervision using the input labels in each
batch. We simply employ Negative Log-Likelihood Loss as
an auxiliary loss function L, to measure the error between the
true labels versus the predicted labels. Thus, our proposed
approach makes use of three different loss functions in the
training stage as given by Equation 4.

L=xL+% Y Lf+ML. 4)
ke{E5—D4)
where As are regularization parameters set to A| = Ay =

A= 1.
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FIGURE 4. Visual multi-channel attention cues obtained for an example
image for Lymphoid Hyperplasia (top) and bleeding (bottom) through
proposed network. The left image represents the input image, the top row
represents the cues learnt for each input channel and the bottom row
represents the corresponding inputs in multi-channel input. *Note-The
images are shown in colour-map for better visualization.

Ill. DATASETS

We employ two databases, Kvasir-Capsule dataset (D1) [1]
and the Computer Assisted Diagnosis for Capsule Endoscopy
Database (CAD-CAP) from the Giana Endoscopic Vision
Challenge (D2) [22] to demonstrate the applicability of
the proposed approach. We consider nine different classes
with different pathologies such as erythema, blood, erosion,
angiectasia, ulcer, Lymphangiectasia, polyp, in addition to
2000 randomly sampled clean images from the normal class.
(The classes reduced mucosal view (GI debris) and for-
eign body (capsule endoscope from previous examination)
have been excluded from our experiments since they rep-
resent neither pathology nor normal scenario). While the
Kvasir-Capsule dataset [1] is heavily imbalanced, Giana
Endoscopic Vision Challenge [22] provides balanced samples
for a set of two pathological conditions and one normal
class. Specifically, D2 provides 607 inflammatory images,
605 vascular lesion images and 600 normal images organized
in three classes. Irrespective of the dataset and samples for
each pathology, we employ a train-validation-test split of
40:10:50 across all experiments.

IV. EXPERIMENTS AND RESULTS

A. TRAINING DETAILS

All the training and testing was conducted on an
Nvidia 2080 Ti GPU enabled computer with Linux operating
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TABLE 2. Per-pathology sensitivity against the normal class for each of the nine classes in datasets D1 and D2.

Abnormality Sensitivity [%]  Specificity [%2] AUC[%] Accuracy [%]
D1

Angiectasia 97.8 99.6 98.7 99.1

Blood 100 100 100 100

Erosion 94.9 99.3 97.1 98.5

Erythematous 97.4 100 98.7 99.7

Lymphoid 98.9 100 99.5 99.7

Hyperplasia

Polyp 96.8 100 98.4 99.9

Ulcer 98.6 100 99.3 99.6
D2

Inflammatory 99.6 97.3 98.4 98.5

Vascular Lesion 99.3 98.3 98.8 98.8

TABLE 3. Pathology-wise performance comparison for pathology
sensitivity against normal, in comparison with other recent works with
same or similar class of pathology in WCE (metrics below are as reported
in original works).

TABLE 4. Multiclass pathology classification on Giana Endoscopic Vision
Challenge (D2) [22].

Abnormality Sensitivity ~ Specificity AUC  Accuracy
Valerio et.al (2019) [11] - - 87 93
Approach Accuracy  Sensitivity  Specificity git:set-al (202D [17] 5 15 28 5 55 952 93‘52 9518'375
Bleeding i i i .
Jia et. al (2016) [20] 99.9 99.2 -
Pan ct. a1 (2011) [18] - 931 % B. ABNORMALITY DETECTION RESULTS
Aoki et. al (2020) [28] 9989 96.63 99.96 We first perform abnormality detection as a binary clas-
Aoki et. al (2021) [29] - 100 - sification problem where all pathologies constitute a sin-
Afonso et. al (2021) [30] - 98.3 98.4 gle class of abnormality. The other class is of normal
Ours 100 100 100 images. The results can be be seen in Table 1. We compare
Erosions and Ulcerations our approach with Iakovidis et al. [27] and Ding et al. [8]
Fan et. al (Ulcer, 2018) [31] 95.16 96.8 04.79 who have also performed similar binary classification in
Wang et. al (2019) [32] 9.1 2971 9048 WCE. While a direct c.:omparison across our work and ear-
Aok ot 21 2021) [25] - 100 - lier works [27], [8] is not possible dge to the absence
A of a common dataset, our approach significantly closes
Fan et. al (Erosion, 2018) (311 95.34 9367 9598 the gap for abnormality sensitivity as well as achieves
Aoki et. al (2019) [33] 2038 882 209 high specificity for normal cases. In comparison to lako-
Ours (Ulcer) 99.59 98.56 100 vidis et al. [27] with similar scale of data (Table 1.
Ours (Erosion) 99.32 94.88 98.56 40% of 1812 and 5489), and Ding et al. [8] with much more
Polyp (or Protruding Lesions) data (approx 100 times more images), we perform better
Yuan et. al (2017) [34] 98 _ _ than both the earlier approaches under limited training data
Aoki et. al ( 2021) [29] _ 99 _ (40% train and 10% validation), indicating robust represen-
Ours 99.91 96,78 100 tations for filtering suspected abnormality.
Angiectasia
Noya et. al (2017) [35] 89.51 96.8 C., PER-PATHOLOG,Y RES(,”-.TS . .
Leenhardt et al (2018) [12] 0 ” I?lfferent pathol(?gles .eXhlblt different levels of complexi-
ties, due to varying visual appearances and scales as com-
Tsuboi et. al (2019) [36] - 8.8 8.4 pared to normal images, for example blood pathology is
Aokiet. al (2021) [29] - 9 - easier to distinguish due to large changes in overall color
Ours 99.08 97.88 99.55

system (Ubuntu 20.04). The training was conducted with
30 epochs, with a batch size of 32 and a base learning rate of
Se-4. Three milestone epochs were used at epoch number 5,
8 and 12 to decrease the learning rate by 0.3 to converge the
learning faster using multi step learning rate scheduler from
PyTorch.
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in the image whereas small scale inflammation or lesions
may be harder. Thus resulting classification models may
have varying sensitivities for different pathologies. We test
if the model generalization extends to different pathologies
through multiple binary classifications against each of the
commonly known pathology classes in WCE. Table 2 shows
the results. The sensitivity in all cases (except erosion) equals
or exceeds 97%. Furthermore, the high specificity of our
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approach on all classes (especially the fine-grained classes
like Erosion and Erythema) can be attributed to the residuals
being strong indicators of pathological structures, despite
the presence of possible confounding factors like debris and
bubbles. This can also be observed from Figure 4 which
localizes the residuals helping in classifying the pathology
better.

Next, Table 3. presents a comparison of pathology-wise
sensitivities with other recent works in WCE. As seen, our
work surpasses on sensitivity baseline from most other works
and shows competitive performance to Aoki et al. [29] who
use a dataset of over 66,000 images (approximately 12 times
larger than ours).

D. MULTICLASS PATHOLOGY CLASSIFICATION

One crucial aspect for computer-assisted-diagnosis under
WCE is when multiple challenging pathologies can be
reliably discriminated within a single end-to-end network.
To evaluate this, we perform a multi-class pathology clas-
sification to evaluate the strength of features in discrim-
inating such categories as the inflammatory and vascular
lesion [17] (in contrast to only discriminating pathology
from normal). We provide a comparison of our results with
other recent works on the same dataset D2 [11], [17] as
presented in Table 4. It can be noted that our method surpasses
Vats et al. [17] by a large margin and closes the gap with
Valerio et al. [11], who also perform the same classifica-
tion with features transferred from ImageNet [23], but with
a larger (DenseNetl161) architecture. The superiority of the
results can be attributed to residual features and colour chan-
nels in a multi-channel ResNet architecture helping learn
discriminative features.

V. EXPLANABILITY ANALYSIS

A commonly employed way of gaining trust in model
predictions is to examine its behavior through visual expla-
nations and checking if this agrees with domain knowl-
edge/intuition about the problem. We test the behavior of our
classifier in the locality of test samples using ’Local Inter-
pretable Model-agnostic Explanations’ (LIME) [37]. LIME
works by using the classifier to be evaluated as an input
and generates post-hoc explanations contributing to a predic-
tion. For images, this amounts to visualizing image compo-
nents contributing positively to the true class. We visualize
these for a random selection of abnormal images from D2
for the multi-class pathology classifier (Table 4) in Fig.5.
The image with abnormality show in yellow circle can
be seen in the first columns (Image), followed by com-
ponents that weight positively to pathology class (middle
column). The visualizations show that image regions with
abnormality (yellow circle) factor in positively to pathology,
whereas seemingly normal regions contribute to normalcy.
Interestingly also, we see that visually pervasive patholo-
gies (row 4. and 5.) can be explained with sparser com-
ponents within the image, whereas obscure cases like in

91420

Positive Features Negative Features

FIGURE 5. Figure shows image components with positive and negative
contribution to the ground truth pathology class. The pathology in left
column is indicated within the circle. The middle column shows
superpixels with positively affect prediction towards true class, the right
column shows superpixels that contribute to non-pathology/normal class.

row 2. and 3. includes comparatively denser explanatory
components.

We also visualized components contributing negatively to
abnormality (positively to the normal class), these can be seen
in the right column. In line with expectation, most of the
right column’s components comprise of non-pathology sub-
regions within images.

VI. ABLATION: CHANNELS

In this section, we study the impact of dropping different
channels on the model’s performance. Table 5 shows the
classification performance by dropping one of the 6 channels.
Similarly, Fig. 6 shows the change in the relative contribution
of superpixels to the true class as each of the channels are
sequentially zeroed out.

VOLUME 10, 2022
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Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5
o -] 8 - 00:40:56 0 L

FIGURE 6. lllustration of effect of dropping different channels on model explanations. Column headings indicate the dropped channel.
We observed that dropping channel 5 produces consistently sparser explanation as channel 5 encodes low level frequency details of input, while
channel 0 exhibits higher pathology sensitivity.

TABLE 5. Impact of each channel on model performance. Evaluated for Multi-pathology classification on D2.

Channel 0 Channel I ~ Channel 2  Channel 3  Channel 4  Channel 5  Accuracy  Sensitivity ~AUC

X v v v v v 36.9 52.8 37.1
v X v v v v 28.3 46.3 28.5
v v X v v v 33.5 50 33.3
v v v X v v 72.8 72.9 79.6
v v v v X v 40.0 39.8 54.9
v v v v v X 36.6 36.8 52.6
v v v v v v 91.35 91.38 93.52
VII. ABLATION STUDY : IMPACT OF LOSS FUNCTIONS obtained for each loss function and the combination of losses

We study the impact of the different loss functions in the used in this work. For the sake of simplicity, we present the
proposed approach in this section. Table 6 shows performance ablation studies on dataset D2 alone, where the extremes of
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TABLE 6. Performance comparison on dataset D2 for different
combination of the three losses, Multi-channel Pixel-wise reconstruction
(Lr), Negative Log Likelihood (NLL) (Lg) and feature-level triplet (L;) loss.

Loss Type Normal vs Inflammatory ~ Normal vs Vascular lesion
Lo, Lt L, Accuracy Sensitivity Accuracy Sensitivity
v 0.99 0.98 0.98 0.97
v 0.43 0.65 0.5 0
v 0.46 0.53 0.5 0
v v 0.98 0.99 0.99 0.99
v v 1 1 0.99 0.99
v v 0.42 0.69 0.5 0

the loss function behaviour can be observed. The Negative
Log-Likelihood (NLL) loss (L,) which operates solely on the
embedding of the ultimate layer, is the dominant discrimina-
tory signal for classification between normal and abnormal
classes. However, the sensitivity for hard cases is improved
even further with the addition of both feature-level (triplet)
L; and pixel-level (Pix-Reg) L, discrimination. We further
observe that in the absence of the dominant discrimination
from the supervised categorical classification loss, neither of
the two losses or their combination is particularly useful in
classification. The combination (L, and L,) tends to almost
perfect performance, therefore we interpret the results more
strictly in this case, as too good a performance may indicate
a lack of generalizability or be caused by overfitting (for
e.g., to samples coming from the same patient exhibiting
similarities). We suspect the learning to benefit additionally
from the regularization effect coming from L, as seen in the
combination (L, L, ), hence the loss being a weighted average
of all three L,. L,, L,.

VIIl. CONCLUSION

We have proposed a multi-channel cascaded encoder-decoder
network in this work for learning a generalizable fine-grained
pathological classifier. Noting the differences in the colour
appearance of pathology in different directions and ori-
entations, we have proposed to extract residual cues by
extracting the differences in wavelets across horizontal, ver-
tical, and diagonal directions in addition to using regu-
lar colour channels. The proposed encoder-decoder network
fully exploits the multi-channel inputs for learning a gener-
alizable pathology classifier. By employing 40% data (fewer
than 2500 labels) for training, we have demonstrated the gen-
eralizability of the proposed approach on two WCE datasets
(two different capsule modalities) and provided a compre-
hensive benchmark for different pathologies within a single
framework. Our results are better than the state-of-the-art in
sensitivity for abnormality detection and fine-grained clas-
sification on several of nine different pathologies with much
fewer labels and establish a new benchmark with a specificity
higher than 97% across all pathology classes.
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