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A deadlock occurs when two or more trains are preventing each other from moving forward by occupying

the required tracks. Deadlocks are rare but pernicious events in railroad operations and in most cases are

caused by human errors. Recovering is a time-consuming and costly operation, producing large delays and

often requiring crew rescheduling and complex switching moves. In practice, most deadlocks involve only

two long trains missing their last potential meet location. In this paper we prove that, for any network

configuration, the identification of two-train deadlocks can be performed in polynomial time. This is the first

exact polynomial algorithm for such a practically relevant combinatorial problem. We also develop a pseudo-

polynomial but efficient oracle which allows real-time early detection and prevention of any (potential)

two-train deadlock in the Union Pacific (a U.S. class 1 rail company) railroad network. A deadlock prevention

module based on the work in this paper will be put in place at Union Pacific to prevent all deadlocks of this

kind.
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1. Introduction

Rail traffic has shown a steady increase over the last decade, and recent studies predict continued

growth in the next years. Indeed, before the COVID-19 pandemic, the global rail supply market

was projected to grow at an annual rate of 2.7% over the next few years (UNIFE (2018)). Also,

the freight hauling segment, particularly important in such Countries as the United States, China

and Russia, was predicted to be the fastest growing segment of the railway system market (M&Ms

(2019)). Investments in rail infrastructure and capacity, while also on the rise, are not expected

to meet this surge in demand, which will inevitably lead to increased congestion. Rail traffic

controllers, also known as dispatchers, will experience a mounting pressure, both in workload and

complexity of the tasks. At the same time, there is growing awareness among rail companies of the

potential of planning technology, and the opportunity it presents in terms of increasing efficiency.

Such context sets the stage for a large-scale adoption of “intelligent” decision support tools in the

rail industry, which still lags relatively behind compared to other transport modes and industries

(see Lamorgese et al. (2018)).

In this paper we focus on a particular problem that arises in rail traffic management, namely

the detection and avoidance of deadlocks (Pachl (2011)). A group of trains are in deadlock if no

train can move because another train is blocking the next track along its route. More in general,

we say that a group of trains are bound-to-deadlock if every combination of feasible trajectories for

the involved trains ends up in a deadlock (Arbib et al. (1990)). For an example, see Figure 1. On

the right, the trains are blocking each other’s next movements (i.e. a deadlock). On the left, the

trains are bound-to-deadlock because any subsequent routing choice will lead to a deadlock.

Releasing trains from a deadlock typically requires complex switching moves such as pulling

back trains, and, once a deadlock is in place, it may take many hours to resume regular traffic
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Figure 1 Trains bound-to-deadlock (left) and in a deadlock (right)

flow. This can trigger a number of unanticipated costs, such as crew overtime, re-crewing costs,

transporting the crews to/from the location, train fuel, and costs associated with loss of locomotive

productivity. Furthermore, there is a risk of missing contractually defined deadlines, a damaging

event both financially and in terms of customer satisfaction, and thus taken very seriously by the

railroads. The severity of such events is further compounded in parts of the network that cannot

be routed around by other incoming trains, which propagates the impact of the deadlock. In other

words, a bound-to-deadlock situation is a highly expensive and operationally challenging event to

recover from for a railroad, one that must be avoided at all costs. Furthermore, detecting these

situations as early as possible is critical for two key reasons. The first is that there is generally

some time between when the dispatcher lines a blocking path and when the train actually occupies

it. This means that if caught soon enough, the command could still be reversed, thus avoiding the

deadlock. The second is that, even should the deadlock be inevitable, trains should in any case be

stopped as soon as possible to minimize the cost and complexity of recovering from the deadlock.

It follows from this discussion that preventing deadlocks is arguably the first and foremost

responsibility of a dispatcher. This is particularly the case for dispatchers operating predominantly

freight traffic (as in North America), which presents a number of specific challenges (see also Pachl

(2011)):

- Freight trains are typically ”overlength”, that is, longer than the majority of railroad resources.

This largely restricts the number of locations for two such trains to meet, because long stretches of

the railroad are single-track and trains can meet and pass each other only when sufficiently long,

parallel tracks are available (a current trend in the North American freight market, precision rail-

roading is expected to further significantly increase the average size and number of trains operated

under these conditions). This means that a meet/hold decision may have to be taken many hours

before the trains are projected to meet.
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- The goal in operating freight is to transport goods from origin to destination in the shortest

time possible, responding to constant changes in supply and demand. This leads to a fairly dynamic

planning environment, which lacks the structure and regularity that is instead a feature of passenger

services. Indeed, many operators run an ”unscheduled” railroad, where typically train composition

is known only on the short-term (a day to a week beforehand) and timetables are defined only at

a high-level (no conflict resolution). This leaves much of the routing and scheduling decisions in

the hands of the dispatchers, which increase their burden compared to dispatchers that operate

predominantly passenger services. Indeed, freight traffic conditions may vary significantly from day

to day.

In this paper we focus on a specific case of deadlock detection, namely when a deadlock is caused

by two trains, which is the most common kind of deadlocks on freight railroads (see Pachl (2011)).

This application was introduced to these authors by Union Pacific (UP), a primarily freight-hauling

railroad operating 7700 locomotives and thousands of trains over its approximately 52000 km

network (covering 23 U.S. states and 7 border crossings). At 37000 employees, over 10000 customers,

$34 billion USD capital expenditure over the last decade, UP is by all measures one of the largest

transport companies in the world. The information and data provided by UP was essential to study

the problem and to set up meaningful computational experiments. Finally, the algorithm presented

in this paper will be embedded in a deadlock detection and avoidance tool soon to be deployed at

Union Pacific. To the best of our knowledge, UP is the first railroad to systematically approach

this serious challenge, that all railroads share, by supporting the development of deadlock detection

and avoidance tools based on advanced mathematical techniques. Deploying such technology will

lead to eliminating the risk of deadlocks of the kind described in this paper, generating large value

for UP’s customers and shareholders alike.

1.1. Background and literature.

A railroad can be represented as a network of connected tracks and the trajectory of a train from

its origin to destination is an ordered sequence of adjacent tracks (the route). In general, there
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exists a very large number of potential routes for each train (their number can grow exponentially

with the number of switches). For each train t in the set of controlled trains T , a plan specifies the

route of t and the time (schedule) t enters each track in its route. Note that a train cannot enter a

blocked track, i.e. a track already occupied by another train (a track can actually be blocked even

if the other train is occupying some nearby tracks). The plan is feasible if this rule is never violated.

In the literature, the problem of finding a feasible, possibly optimal plan (according to some cost

function) is often referred to as Train Scheduling (with or without routing), or Train Dispatching,

and may be solved to produce strategic or tactical timetables (Galli and Stiller (2018)), or in

real-time to dispatch trains (see Lamorgese et al. (2018)).

Note that, if we have a feasible plan for a set of trains, then no trains are bound-to-deadlock,

and if some trains are bound-to-deadlock then we do not have a feasible plan. Given a railroad

network and a set of trains, each with an origin, a destination and a specified length, we define

the Bound-to-Deadlock Train Problem (BDTP), as the problem of deciding whether the trains in

the set cannot all reach their final destination. This is a decision problem: if the answer is YES,

then the trains are bound-to-deadlock, if the answer is NO then a feasible plan exists. The BDTP

is NP-complete as it generalizes problem (P4) in Arbib et al. (1990). So there is little hope that a

polynomial time algorithm exists for the general case.

In mathematical optimization terms, a YES instance of BDTP corresponds to an infeasible instance

of train scheduling (with routing). It follows that, at least in principle, we can solve the BDTP by

applying any exact method to the train scheduling problem. Indeed, if the algorithm is given enough

time to terminate and it does not find a feasible plan, then the answer to BDTP is YES; otherwise a

plan is found and the answer is NO. Note that the train scheduling problem generalizes the job-shop

scheduling problem, where jobs are trains and machines are tracks or track segments (see Mascis

and Pacciarelli (2002)), which, in turn, is known to be NP-hard (see Garey and Johnson (1979)).

So there is no (known) polynomial time algorithm for the train scheduling problem. In practice,

especially with infeasible input instances, exact methods may require extremely large computing
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times to terminate, time which typically grows exponentially with the size of the instance. This is

why there is a need to develop ad-hoc, exact methods for the BDTP.

On the other hand, one may still resort to heuristic algorithms for solving the train scheduling

problem. If the heuristic algorithm terminates with a plan, then the answer is NO and the trains

are obviously not bound-to-deadlock. The drawback is that if the algorithm does not terminate

with a plan, we cannot conclude that the trains are bound-to-deadlock. A plan may indeed exist

but the algorithm is simply not able to find it (false positive). There is a very large body of scientific

literature devoted to train scheduling, with several exact models and approaches, and even more

heuristic approaches. We refer the reader to recent surveys on the topic, such as Corman and Meng

(2015), Lamorgese et al. (2018), Wen et al. (2019), among others. Also note that other transport

systems face similar scheduling problems, in particular in maritime traffic control (Lübbecke et

al. (2019)), on ground and airborne air traffic control (Kjenstad et al. (2013), Mannino et al.

(2021)) and automated guided vehicles (Gawrilow et al. (2008)). Indeed, the mathematical models

adopted for such problems share many features with the models for train scheduling. However, to

the best of our knowledge, deadlock handling is not specifically addressed in the literature on these

other transport systems, nor does it seem there is a special need to do so in practice.

Besides this general literature on train and transport scheduling, there is a small set of papers

explicitly devoted to handling deadlocks for train scheduling instances. They may be distinguished

in two classes: heuristic approaches for the general case, exact approaches for special cases (our

paper belongs to the latter class).

Heuristic approaches are based on exploiting the relationship between the train scheduling prob-

lem and BDTP. The basic idea is to find a feasible schedule to prove that the answer to BDTP is

NO. Note that if one provides the order in which trains occupy the contended resources, then a

feasible schedule can be immediately derived (unless the order contains a cycle).

To this first class of approaches belongs the seminal work of Petersen and Taylor (1982), where

a train move (from the current position to the next) is performed only if it leaves the possibility
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for opposite trains to reach their destination. More recently, Pachl (2011) presents a rule based

approach to construct an ordering of trains on the resources. The paper is also interesting because

it provides a nice introduction to the problem and a classification of actions related to deadlock

handling: deadlock detection, which amounts to deciding whether a set of trains are bound-to-

deadlock; and deadlock avoidance, i.e. never taking routing or scheduling decisions which lead to

a bound-to-deadlock situation. Banker’s algorithm is a simple, greedy algorithm to construct an

ordering of the trains on each resource (Haberman (1969)). The algorithm is so basic that it fails

to find feasible schedules even in simple situations where such schedules exists. Several authors

developed techniques to extend and enhance the Banker’s algorithm: among these, Lu et al. (2004),

Cui (2010) and Cui et al. (2017). Finally, Li et al. (2014) present an original heuristic approach

to train scheduling in single track lines, based on necessary conditions for deadlocks to occur.

As for the class of exact approaches, Li et al. (2014) present an exact MILP formulation for

train scheduling in single track lines (but resorts to the discussed heuristic approach to solve it).

The work in Simon et al. (2014) is also devoted to single track lines, with the additional (very

special) layout feature that stations have exactly two sidings. The authors present a polynomial

time solution algorithm for this special case. In Mazzanti et al. (2014), a model checking approach

is presented in which train routes are assumed fixed in advance. Finally, a more general deadlock-

related discussion can be found in job-shop scheduling and store-and-forward network literature.

In Mascis and Pacciarelli (2002) it was observed that train scheduling - at least when trains are

short - reduces to an instance of multi-machine, blocking, no-wait job-shop scheduling (see Pinedo

(2012), Queyranne and Schulz (1994)). Arbib et al. (1990) provides a proof that the BDTP is

NP-complete for generic transport networks, but can be solved in polynomial time if the network

has a tree structure.

1.2. Our contribution

In this paper, we focus on the special case of BDTP between two trains of any length. We consider a

general network that can model any track layout, including multiple lines and complex stations. We
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refer to this problem as the Bound-to-Deadlock 2 Trains Problem (BD2TP). Our key contributions

are two:

• Practical: in Section 4 we develop an algorithm which solves the BT2DP in a general railroad

network. The algorithm performs very well in all instances based on the UP network. Moreover, it

is embedded in a deadlock detection and avoidance tool that will be deployed on the UP network

in the near future.

• Theoretical: in Section 3.2 we show that the BT2DP can be solved in polynomial time. The

proof is constructive, namely we develop an algorithm for the problem and prove that the algorithm

terminates in polynomial time with the input size. To the best of our knowledge, there are very few

interesting cases of polynomially solvable deadlock detection problems in job-shop scheduling, and

only one devoted to train scheduling (Simon et al. (2014)). Note that the latter, however, requires

an ideal network configuration that is very unlikely to occur in practice; moreover, trains must be

short (i.e. they can occupy only one railroad resource at the time).

In Section 2 we formally introduce the notation and define the problem, then give some pre-

liminary results. We present our main theoretical contribution in Section 3, where we prove that

the BD2TP can be solved in polynomial time. The proof is based on a characterization of bound-

to-deadlock situations for two trains (1). The theorem provides also the basis for the pseudo-

polynomial algorithm of Section 4 which turned out to be very effective in practice. Computational

results are presented in Section 5, showing the efficacy of such algorithm over a set of realistic

instances derived from the UP network and traffic, along with some additional information regard-

ing the data and application. Section 6 concludes the paper.

2. Modelling rail network and train movement

We consider trains that run in a railroad network. Trains have different lengths, from head to

tail. In practice, the railroad is decomposed in sub-networks called lines. Informally, lines can

be traversed in two directions by trains, conventionally called eastbound and westbound. A train

running westbound and a train running eastbound can share parts of the lines, always traversing

sequences of shared resources (like tracks and stations) in reverse order.
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tE (tW ) eastbound (westbound) train

HE (HW ) signals for eastbound(westbound) trains

B bifurcation points

G= (H ∪B,S), H =HE ∪HW segment graph

GE = (H ∪B,SE) (GW = (H ∪B,SW )) eastward (westward)-oriented segment graph

δ−(u) (δ+(u)) incoming (outgoing) arcs of u∈H ∪B

PX = (σX1 , . . . , σ
X
r ), X ∈ {E,W} X-bound path on G

S(P ) (SX(P ),X ∈ {E,W}) set of non-oriented (oriented) segments that belong to P

≺E (≺W ) partial order on the segments of SE (SW )

PX ,X ∈ {E,W} set of blocking paths associated with tX ,X ∈ {E,W}

PX
o ,X ∈ {E,W} path blocked by the train in its initial position

PX
d ,X ∈ {E,W} path blocked by the train at destination

PX
1 → PX

2 (in GX) PX
2 is reachable from PX

1 in GX

RE(PE, PW ) set of blocking paths in PE reachable from PE while PW is occupied

PE is PW -green (-red) PW
d is (not) reachable from PW while PE is occupied

Table 1 Notation

A schematic example of a portion of rail line is shown in Figure 2. Here, the orange and the blue

dots indicate the points where trains can stop, which in turn correspond to signals: an eastbound

(westbound) signal faces eastbound (westbound) trains and force them to stop when on red. In

particular, the orange dots are the stopping points (denoted by HE) for the eastbound trains TE

(running from left to right in the picture), while the blue dots (HW ) are the stopping points for the

westbound trains (TW , that go from right to left). Dots are joined by (pieces of) tracks. Observe

that, in rail jargon, the portion of track between two successive signals in a given direction is called

interlocking route. However, we can do without this term and the associated concept in this paper,

also in order to avoid confusion with the standard meaning of “route” in graph theory. Besides the

signals H =HE ∪HW , other relevant points in the rail network are the bifurcation points B, where

tracks split. Such splitting corresponds to a physical switch which allows a train to select the next

track among exactly two tracks, or joins two tracks into a single one.
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The movement of a train across the network is identified by the movement of its head. To our

purpose we can decompose such a movement into a discrete sequence of elementary movements,

or steps, from a stopping point to the next stopping point, and we can assume that, at the end of

the elementary movement, the head of the train is always at a stopping point.

1 2 3 4 7 8 9 10 13 14

5 6 11 12

(a) Single main

1 2 3 4

5 6 7 8

(b) Multiple main

Figure 2 Schematic railway network

The segments graph. In general, trains may use different paths in their movement across the

rail network. To represent all potential movements, we introduce the undirected segment graph

G = (H ∪B,S). Each node corresponds to a relevant point of the railroad, namely it is either a

stopping point or a bifurcation point. Each edge of S corresponds to the segment of track between

two adjacent points. Points (nodes of G) and segments (edges of G) of the rail sections of Figure

2 are shown in Figure 3 (nodes are represented as solid squares, black for bifurcations and blue

or orange for respectively westward or eastward signals). Because the edges of G correspond to

segments, we will use indifferently both terms. Similarly, we may refer to the nodes as “points” or

“signals” for the elements of H. Notice that, for the physical switch of Figure 2b, we introduce a

fictitious segment σ15 to represent the crossing point of the switch tracks. This extra segment has

0-length and will only be used in the proofs.
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1 2 3 4

5 6

7 8 9 10

11 12

13 14

σ1 σ2 σ3 σ4

σ5

σ6

σ7

σ8

σ9

σ10 σ11 σ12σ13

σ14

σ15

σ16

σ17

σ18

σ19 σ20 σ21

(a) Single main

1 2 3 4

5 6 7 8

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ11 σ12

σ13 σ14

σ15

(b) Multiple main

Figure 3 Segmentation of the network in Figure 2. The squares are the extreme points of the segments

Orienting segments. A rail segment σ ∈ S can be traversed by trains in both directions. For

instance, a train running eastbound will traverse from left to right the segment σ2, with endpoints

signal 1 and signal 2. A train running westbound will traverse σ2 from right to left. Therefore, we

consider two orientations of the undirected graph G, namely the directed graph GE = (H ∪B,SE)

where edges are oriented eastbound, and the directed graph GW = (H ∪B,SW ) where edges are

oriented westbound. So, an undirected edge (or segment) σ = {p, q} ∈ S, corresponds to directed

edges σE = (p, q) ∈ SE and σW = (q, p) ∈ SW . An eastbound (westbound) train travelling from its

origin to its destination traverses an ordered sequence of segments, which corresponds to a directed

path in GE (in GW ) from the origin to destination. Notice that some particular short sequences

may be forbidden for a certain train (for instance the sequence σ12 − σ15 − σ11 for a westbound

train in Figure 3b). For sake of simplicity, here we neglect this case, as it can be easily handled by

slightly adapting the algorithm described in the sequel.

If σX = (u, v) ∈ SX is a directed segment in SX for some X ∈ {E,W}, we let head(σX) = v and

tail(σX) = u; by δ−(u)(δ+(u))⊆ SX we denote the incoming (outgoing) star of u, namely the set

of segments σX ∈ SX such that head(σX) (tail(σX), resp.) = u, for each u∈H ∪B.

A path in GE (GW ) is called an E-bound (W -bound) path. If PX = (σX1 , . . . , σ
X
r ) is a X-bound

directed path, we let Head(PX) = σXr be its head segment and Tail(PX) = σX1 be its tail segment.
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1 2 3 4

5 6

7 8 9 10

11 12

13 14

σ1 σ2 σ3 σ4

σ5

σ6

σ7

σ8

σ9

σ10 σ11 σ12σ13

σ14

σ15

σ16

σ17

σ18

σ19 σ20 σ21

(a) Single main, eastward orientation

1 2 3 4

5 6 7 8

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ11 σ12

σ13 σ14

σ15

(b) Multiple main, westward orientation

Figure 4 The eastward/westward orientation of the segment graphs of Figure 3

In the rail networks we consider, trains will never travel back or cycle, and we may assume the

following:

Assumption 1. The graphs GE and GW do not contain directed cycles.

A directed graph with no directed cycles (as GE and GW ) is also called a DAG. Moreover, we

can also take for granted the following assumption, as it descends directly from the way segments

are connected to each other in the rail network. In particular, recall that physical switches either

join two entering tracks into a leaving one, or split one entering track into two leaving ones.

Assumption 2. The graph GX is such that min{|δ+(u)|, |δ−(u)|} ≤ 1 and max{|δ+(u)|, |δ−(u)|} ≤

2, for all u∈H ∪B and X ∈ {E,W}.

As a consequence of Assumption 1, GE induces a partial order ≺E on the segments of SE. With

some abuse of notation, we can extend such an order to S. In particular, for σ, θ ∈ S, we let σ≺E θ

if and only if there is a directed path from σE to θE in GE (with σE and θE being the oriented

segments corresponding to σ and θ, resp.). Similarly, also GW induces a partial order ≺W on the

segments S.

The next observation corresponds to the fact that two trains in opposite directions will traverse

any pair of shared segments in reverse order.
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Observation 1. Let σ, τ ∈ S be two segments, and let σE, τE ∈ SE, σW , τW ∈ SW be the cor-

responding directed segments in the eastbound and westbound orientation, respectively. Then,

σE ≺E τE implies τW ≺W σW .

Finally, observe that any potential physical path across the rail network of an eastbound (west-

bound) train corresponds to a directed path in GE (GW ). In practice, when considering a specific

train t, say eastbound, not all existing physical paths from the origin to the destination of t are

actually feasible for t. Indeed, some segments may be forbidden for various reasons, or train t may

be required to pass through specific points (called way-points, or platforms in stations, etc.). So,

the graph representing the feasible potential movements of t will in general be a subgraph GE
t of

GE. Also, since we are interested only in segments contained in some feasible paths from origin to

destination, GE
t is a single-source, single-sink acyclic digraph. In the sequel, for sake of simplicity,

we will assume that GE
t =GE ( GW

t =GW ).

We are now ready to define the Bound-to-Deadlock 2 Trains problem. We will look at cases in

which only two trains are present in the network. Because two trains running in the same direction

(trailing trains) cannot end up in a deadlock, we will focus only on two trains running in opposite

directions (crossing trains). In short, we want to determine whether a pair of opposite trains tE

and tW are bound-to-deadlock or not.

2.1. Blocked segments and blocking paths

As mentioned, we can ideally decompose the movement of a train tE ∈ TE in a discrete sequence

of elementary steps. At each step, tE moves from the current signal until its head reaches the

next signal along its trajectory. Suppose that, at some point in time, tE has its head in a segment

σEn = (qEn , p
E
n ) ∈ SE, where pEn ∈ HE is an eastbound signal. Let P = (σE1 , . . . , σ

E
l , . . . , σ

E
n ) be the

path travelled by tE from the origin to pEn , where σEl is the segment containing the tail of tE.

Because of its length, train tE may occupy several segments from its head to its tail, i.e. we may

have l < n. The occupied segments {σEl , . . . , σEn } are blocked for any other train. If another train is
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approaching, it will have to wait at a previous signal until tE has released the segments. Moreover,

for safety reasons, the set of blocked segments may also include segments which are not physically

occupied by train tE. Namely, all the segments preceding the tail of tE on the path P backward to

the first segment hosting a signal (either eastbound or westbound). For instance, with reference to

Figure 5, suppose that segments σ6, σ15 have length 2100 m, σ4, σ13 have length 750 m and σ3, σ12

have length 600 m. Assume that an eastbound train t1 is less than (or equal to) 2100 m long and

has its head at signal 4. Then t1 occupies only segment σ6 (in correspondence with the westbound

signal 3). On the other hand, if the eastbound train t2 is 2800 m long and its head is at signal 10,

then t2 blocks the entire path between stopping points 10 and 8, i.e. the three segments σ15, σ13,

and σ12.

1 2 3

σ4σ3

4

σ6

7 8 9 10 13 14

5 6 11 12

σ13σ12 σ15

t1 t2

Figure 5 Examples of blocked segments for trains of different length. Train t1 is short and occupies and blocks

only one segment. Train t2 is longer than the first segment, so it blocks all the segments from its tail

backward to the first signal.

So, when the head of tE is in σEn , and the tail is in σEl , the blocked segments are those belonging

to a sub-path (σEi , . . . , σ
E
l , . . . , σ

E
n ) of P , with i≤ l≤ n. We call such directed sub-path a blocking

path. More formally:

Definition 1. For an X-bound train t ∈ TX , with X ∈ {E,W}, a direct path P̄ =

(σXi , . . . , σ
X
l , . . . , σ

X
n ) of GX , with head segment σXn and tail segment σXi , is a blocking path if

and only if:

1. the head (node) of the head segment of P̄ is an X-bound signal, i.e. head(σXn )∈HX .

2. the tail (node) of the tail segment of P̄ is a signal, i.e. tail(σXi )∈H.

3. P̄ is long enough to accommodate the length of train t but any proper sub-path of P̄ satisfying

1. and 2. is not.
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For a train tX and directed segment graph GX = (H ∪ B,SX), with X ∈ {E,W}, we let PX

be the family of distinct blocking paths associated with all possible positions of tX . In principle,

the size of PX can grow exponentially with the the number of segments SX . In real-life instances,

however, because the length of the train is limited (typically no more than a dozen segments) and

because the degree of the nodes of GX is small and GX is sparse, the number of elements of PX is

reasonably small even for large real-life instances (see Section 5).

Summarizing, at any point in time a train tX , from head to tail, physically or “logically” occupies

all the segments of a certain blocking path, blocking them for other trains: no other train can

occupy or block at the same time such blocked segments. The overall movement of the train along

its trajectory can be represented as a sequence of blocking paths that move forward. Since a train

can stop only in proximity of a signal (indeed, the train MUST stop if the signal is red), the

head segment Head(PX) = (pXn , q
X
n ) of any blocking path PX ∈ PX is such that qXn ∈HX . When

performing a step forward a train will travel through one or more new segments, i.e., all segments

which separate the current HX signal from the next HX signal on the path followed by tX .

Now, let PX
1 and PX

2 be two paths of GX . If there is a path P
X

in GX that contains both PX
1 and

PX
2 as sub-paths and such that Head(P

X
) =Head(PX

2 ) and Tail(P
X

) = Tail(PX
1 ), we say that PX

2

is reachable from PX
1 in GX and we write PX

1 → PX
2 (in GX). We also say that P̄X connects PX

1 to

PX
2 . Note that if PX

1 and PX
2 are blocking paths of tX and PX

1 → PX
2 , then tX can move from PX

1 to

PX
2 . For example, in Figure 4a, PE

1 = (σ2, σ3, σ4)→ PE
2 = (σ11, σ12, σ14). Observe that PX

1 and PX
2

may also overlap (again, in Figure 4a, PE
1 = (σ2, σ3, σ4, σ6, σ9, σ10)→ PE

2 = (σ6, σ9, σ10, σ11, σ12, σ14)).

Observe also that the binary relation → induces a partial order on the paths of a DAG, with

P1 ≺ P2 if and only if P1→ P2. Then, if we consider two elementary paths P1 = (σ1) and P2 = (σ2)

of GX , with σ1, σ2 ∈ SX , then P1→ P2 if and only if σ1 ≺X σ2.

For P ∈ PX , we let S(P ) (SX(P )) be the set of non oriented (oriented, resp.) segments that

belong to P . Then, observe that, if PX
1 → PX

2 in GX , then no segment in S(PX
2 ) can precede all

the segments in S(PX
1 ).
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3. A polynomial time algorithm for BD2TP

In this section we present the main theoretical contribution of the paper, proving that the Bound-

to-Deadlock 2 Train Problem can be solved in polynomial time. In order to achieve this result, we

first reduce BD2TP to the problem of finding two arc disjoint paths in a suitable graph, and then

show that this can be solved with a polynomial time algorithm.

To this end, observe that the movement of a train, for example an eastbound train tE, from

origin to destination can be represented as a sequence PE
o , P

E
1 , . . . , P

E
d of blocking paths of GE,

where PE
o is the path blocked by the train in its initial position, whereas PE

d is the path blocked

by the train at destination. Now, when tE is in a certain blocking path PE
j of its sequence, it

may impede an opposite (westbound) train tW to access some segments of network. Moreover, if

these prohibited segments disconnect (in GW ) the current position PW
k of tW from the destination

PW
d of tW , then tW cannot reach its destination while tE holds in PE

j . In this case, we will say

that PE
j is red for PW

k , otherwise it is green for PW
k (we will give formal definitions in the next

section). Clearly, if tE moves forward from PE
j , then the situation may change. But it is also possible

that, no matter where tE or tW move next, the situation does not change and tW will always be

disconnected from its destination. Then the two trains are bound-to-deadlock. Starting from this

simple observation, the next discussions will give necessary and sufficient conditions for when the

trains are bound-to-deadlock.

3.1. Green and red paths

We consider two opposite trains, tE ∈ TE and tW ∈ TW , and let GE = (H ∪ B,SE) and GW =

(H ∪B,SW ).

From now on the roles of trains tE and tW can be interchanged. Observe that, when train tE is

in a (position of the network corresponding to a) blocking path PE ∈ PE, then tE is blocking all

the segments in S(PE), that is all the corresponding westbound oriented segments SW (PE) cannot

be accessed by the other train tW . Then, we let GW (PE) = (H ∪B,SW \ SW (PE)) be the graph

obtained from the westbound graph by deleting the blocked edges, that is the segments of PE.



Dal Sasso et al.: Two trains deadlock detection
Article submitted to Operations Research; manuscript no. OPRE-2020-08-535.R2 17

Denote now by PE
o ∈PE and PE

d ∈PE (PW
o , PW

d ∈PW ) the initial position and final destination of

train tE (train tW , resp.). In particular, let σEo =Head(PE
o ) and σEd =Head(PE

d ) (σWo =Head(PW
o )

and σWd = Head(PW
d )) be the segments occupied by the head of tE (tW ) in its initial and final

positions, respectively.

Then, for any PE ∈ PE and PW ∈ PW , we denote by RE(PE, PW ) the set of blocking paths

P̄E ∈ PE such that PE → P̄E in GE(PW ). Analogously, let RW (PW , PE) be the sets of blocking

path that tW can reach from PW when tE is in PE. The sets RE(PE
o , P

W
o ) and RW (PW

o , PE
o ) play

a crucial role, because they represent the set of positions that trains tE and tW , respectively, can

reach from their origin while the other train holds in its own origin. Since the initial position of each

train is not blocked by the other train, we assume that PE
o ∈RE(PE

o , P
W
o ) and PW

o ∈RW (PW
o , PE

o )

(incidentally, observe that the origins can be simultaneously blocked only if the trains are virtually

crashing!).

Now, also following the discussion in the introduction of the section, it should be apparent that

if two trains are not bound-to-deadlock there must exist two sequences of non blocked paths (one

for tE and one for tW ) which bring the trains from origin to destination. This can be formalized in

the next

Definition 2. Two trains tE, tW are not bound-to-deadlock if, for {X,Y }= {E,W} there exist

two sequences of blocking paths (PX
0 , ..., P

X
k ) and (P Y

0 , ..., P
Y
k ) such that

• PX
0 = PX

o , P Y
0 = P Y

o , PX
k = PX

d , and P Y
k = P Y

d ;

• PX
i → PX

i+1 in GX(P Y
i ), for each i= 0, ..., k− 1;

• P Y
i → P Y

i+1 in GY (PX
i+1), for each i= 0, ..., k− 1.

In other words, the two trains are not bound-to-deadlock if they can both reach their destination

through a sequence of feasible alternate moves (at each iteration i, first tX moves from PX
i to PX

i+1

while tY holds in P Y
i and then tY moves from P Y

i to P Y
i+1 while tX is in P Y

i+1). Observe that could

be the case that PX
i = PX

i+1 or P Y
i = P Y

i+1 for some i= 0, ..., k− 1.

In the rest of this sub-section, we will prove that such a couple of sequences exists if and only if

there exists a couple of feasible sequences with k= 2.
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In order to better explain such result, we need to introduce some further notation. In particular,

we say that PE is PW -green if train tW can reach its destination when tE holds in PE, i.e. PW
d ∈

RW (PW , PE); otherwise we say that PE is PW -red. The same for PW , that is said to be PE-green

if PE
d ∈RE(PE, PW ), and PE-red, otherwise (see Figure 6).

1 2 3

σ4σ3

4

σ6

7 8 9 10 13 14

5 6 11 12

σ13σ12 σ15

PE
o PW

oPWPW
d PE

d

Figure 6 Example of connectivity: PWo is PEo -red, PEo is PWo -red, while PW is PEo -green

Note that if PE
o is PW

o -green, then we are not bound to deadlock. Indeed, since PW
d can be

reached from PW
o in GW (PE

o ), then train tW can travel to its destination while tE holds in PE
o .

Similarly when PW
o is PE

o -green. Therefore, for a bound to deadlock situation, we need both PE
o

to be PW
o -red and PW

o to be PE
o -red and in the following we will use this assumption. Indeed, we

have the following necessary condition for deadlocks, whose proof is straightforward.

Lemma 1. If tE and tW are bound to deadlock then all (blocking) paths in RE(PE
o , P

W
o ) are

PW
o -red and all paths in RW (PW

o , PE
o ) are PE

o -red.

In the following, we will show now that the condition of the above Lemma is also sufficient for

two opposite trains to be bound to deadlock. This is good news, because, as we will see in Section

3.2, the condition of the lemma can be tested efficiently.

Suppose the condition of Lemma 1 holds. We already know that if one of the two trains, say tE,

is holding in PE
o or in any other node in RE(PE

o , P
W
o ), then tW cannot reach its destination from

its origin, because PW
o cannot reach PW

d . However, at least in principle, there could be a sequence

of moves which “clears” one of the trains. For instance, tE could move in PE
1 ∈RE(PE

o , P
W
o ), then

tW could move in PW
1 ∈RW (PW

o , PE
1 ), then tE could move in PE

2 ∈RE(PE
1 , P

W
1 ), and so forth until

the destination becomes now reachable for one of the two trains. We will show that this cannot
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happen, and the condition of Lemma 1 is also sufficient for the trains to be bound to deadlock. In

particular, we will show that when one of the trains move forward from PX
o to one of its reachable

paths PX , the set of paths which are reachable for the other train can only “shrink”. To this end,

we need first a few intermediate results.

Lemma 2. [Shrinking lemma] Let P̄E ∈ PE and P̄W ∈ PW . Then for all PE ∈ RE(P̄E, P̄W ) we

have that

1. RE(PE, P̄W )⊆RE(P̄E, P̄W ).

Moreover, if PE is P̄W -red, then

2. RW (P̄W , PE)⊆RW (P̄W , P̄E).

Proof. Claim 1. P̃E ∈ RE(PE, P̄W ) implies (i) PE → P̃E in GE(P̄W ); since PE ∈ RE(P̄E, P̄W )

then (ii) P̄E→ PE in GE(P̄W ). Finally (i) and (ii) imply P̄E→ P̃E in GE(P̄W ), and then P̃E ∈

RE(P̄E, P̄W ).

σσ̄PW
d P̄W

PW

Q̄W

QW
d

PE

P̄E

Figure 7 Proof of Lemma 2 (Claim 2.)

Claim 2. (See Figure 7) Suppose, by contradiction, that there exists PW ∈ RW (P̄W , PE) such

that PW /∈ RW (P̄W , P̄E). Hence P̄W → PW in GW (PE) but not in GW (P̄E). Then let Q̄W be

a path that connects P̄W to PW in GW (PE). Then there exists σ ∈ S(Q̄W ) ∩ S(P̄E) (otherwise

Q̄W would connect P̄W to PW in GW (P̄E), a contradiction). Observe that, as σ is a segment of

Q̄W , then σ /∈ S(PE). Moreover, there exists a path QW
d that connects PW to PW

d in GW (such

a path exists because, by construction, the destination PW
d can be reached from every blocking

path in GW ). Since, by hypothesis, PE is P̄W -red, then PW
d /∈RW (P̄W , PE). Therefore, there exists

σ̄ ∈ S(QW
d ) ∩ S(PE). Note that, since PW ∈ RW (P̄W , PE), then σ̄ /∈ S(PW ), and thus σ̄ strictly
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follows PW on QW
d . It follows that σ ≺W σ̄ and therefore σ̄ ≺E σ. But then we have two paths

PE, P̄E ∈ PE with P̄E → PE in GE and two segments σ, σ̄ ∈ S with σ̄ ≺E σ such that σ ∈ S(P̄E)

and σ̄ ∈ S(PE). This implies that σ ∈ S(PE). Contradiction. Q.E.D.

In particular, when P̄E = PE
o and P̄W = PW

o , Lemma 2 shows that, if we move train tE from PE
o

to any path PE ∈RE(PE
o , P

W
o ) that is PW

o -red, the set of paths reachable for train tW shrinks from

RW (PW
o , PE

o ) to RW (PW
o , PE)⊆RW (PW

o , PE
o ). Next, we will prove that the paths in RW (PW

o , PE)

are all PE
o -red with respect to the new position PE of train tE. Intuitively, this is all we need to

prove, because, after each move, the cardinality of reachable paths will decrease and no green paths

will ever appear.

Lemma 3. Suppose all paths in RE(PE
o , P

W
o ) are PW

o -red and all paths RW (PW
o , PE

o ) are PE
o -red.

Then, if PE
u ∈RE(PE

o , P
W
o ), we have that

Claim 1. all paths in RE(PE
u , P

W
o ) are PW

o -red;

Claim 2. all paths in RW (PW
o , PE

u ) are PE
u -red.

Proof.

Claim 1. Follows from RE(PE
u , P

W
o )⊆RE(PE

o , P
W
o ) (Claim 1 of Lemma 2) and the hypothesis

that all paths in RE(PE
o , P

W
o ) are PW

o -red.

Claim 2. Suppose not and let PW
v ∈ RW (PW

o , PE
u ) be PE

u -green. Then there is a path QE
ud in

GE(PW
v ) that connects PE

u to PE
d . Moreover, let QE

ou be a path that connects PE
o to PE

u in GE (such

a path always exists by construction of GE). Then, there exists σ1 ∈ S(QE
ou) ∩ S(PW

v ), otherwise

tE could use the path that connects QE
ou to QE

ud to go from PE
o to PE

d in GE(PW
v ) (i.e. while tW

holds in PW
v ), so contradicting the assumption that PW

v is PE
o -red. Note that σ1 /∈ S(PE

u ), since

PE
u → PE

d in GE(PW
v ) (see Figure 8a).

Similarly, let QW
ov be the path of GW (PE

o ) that connects PW
o to PW

v (recall that PW
v ∈

RW (PW
o , PE

o )) and let QW
vd be the path of GW that connects PW

v to PW
d . Then there exists σ2 ∈

S(QW
vd)∩S(PE

u ), otherwise tW could use the path that connects QW
ov to QW

vd to go from PW
o to PW

d ,

while tE is in PE
u , contradicting the hypothesis that PE

u is PW
o -red. Note that σ2 /∈ S(PW

v ), since

PW
o → PW

v in GW (PE
u ) (see Figure 8b).
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σ1PE
o PE

d

PE
uQE

ou QE
ud

(a)

PW
d PW

oPW
v

QW
ovQW

vd

(b)

Figure 8 Proof of Lemma 3

Then we have: (i) σ1 ∈ S(PW
v ) and σ2 ∈ S(QW

vd), with PW
v → QW

vd in GW and σ2 /∈ S(PW
v ); (ii)

σ1 ∈ S(QE
ou) and σ2 ∈ S(PE

u ) with QE
ou→ PE

u in GE and σ1 /∈ S(PE
u ). Therefore, (i) implies σ1 ≺W σ2

and (ii) implies σ1 ≺E σ2, a contradiction (Observation 1).

Q.E.D.

We are now ready to prove the main result of the section.

Theorem 1. Let trains tE and tW have starting positions in PE
o ∈PE and PW

o ∈PW , respectively.

Then tE and tW are not bound-to-deadlock if and only if there exists at least one path PE ∈

RE(PE
o , P

W
o ) that is PW

o -green or one path PW ∈RW (PW
o , PE

o ) that is PE
o -green.

Proof. Sufficiency was proven earlier (Lemma 1).

Necessity. Suppose, by contradiction, that all paths in RE(PE
o , P

W
o ) are PW

o -red and all paths in

RW (PW
o , PE

o ) are PE
o -red, but the trains are not bound-to-deadlock. Then there exists a sequence

of alternating moves for tE and tW

PE
o , P

W
o , PE

1 , P
W
1 , . . . , PE

k+1 = PE
d , P

W
k+1 = PW

d

such that PE
i−1→ PE

i in GE(PW
i−1) and PW

i−1→ PW
i in GW (PE

i ) for each i. Observe that, for some

i ∈ [1, ..., k], we may have PE
i−1 = PE

i or PW
i−1 = PW

i . Let this sequence be defined in such a way
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that k is the minimum index from which tE can reach its destination (i.e., PE
d ∈RE(PE

k , P
W
k ) but

PE
d /∈RE(PE

i , P
W
i ) for any i < k). Hence PW

k is PE
k -green.

By Lemma 2, RW (PW
k , PE

k ) ⊆ RW (PW
o , PE

k ) ⊆ RW (PW
o , PE

o ) and, by Lemma 3, each PW ∈

RW (PW
k , PE

k ) is PE
k -red. In particular, as PW

k ∈RW (PW
k , PE

k ), it follows that PW
k is PE

k -red, con-

tradicting the statement above. Q.E.D.

We are now ready to prove that the Bound-to-Deadlock 2 Train Problem can be solved in

polynomial time.

3.2. BD2TP can be solved in polynomial time

Because of Theorem 1, the Bound-to-Deadlock 2 Train Problem can be solved by enumerating

all possible blocking paths of a train and, for each of them, check if the other train can reach its

final destination. Unfortunately, this procedure (although very effective in practice - as explained

in detail in the next two sections) is only pseudo-polynomial, as the number of blocking paths

can grow exponentially with the length of the train. In the following, we will present a strongly

polynomial algorithm for the problem. Indeed, we will show that, given the initial position of the

trains, the condition of Theorem 1, can be checked without actually generating the blocking paths.

As usual, we let G = (H ∪B,S) be the rail network and GE = (H ∪B,SE), GW = (H ∪B,SW )

be the eastbound and westbound orientation of G, respectively. Recall that GE and GW are both

acyclic (Assumption 1). Then let tE and tW be the two opposite trains we are considering and let

lE be the length of train tE. Moreover, for each X ∈ {E;W}, let PX
o and PX

d be the origin and

destination (respectively) positions of train tX . Now, GE and GW share the same rail resources. A

PW
o -green blocking path PE for tE corresponds to a sequence of (one or more) segments of GE of

total length at least lE which, when occupied/blocked by train tE, leave a path PW in GW allowing

train tW to move from PW
o to its destination. Note that the two paths PE and PW live in different

graphs, namely GE and GW . Without loss of generality, for each X ∈ {E,W}, we assume that GX

contains all and only the feasible trajectories of tX .
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So, if a PW
o -green path is reachable for tE given the current position PW

o of tW , then the two

trains are not bound-to-deadlock. Viceversa, Theorem 1 tells us that if no such green path exists

either for tE of for tW , then the two trains are bound-to-deadlock. In this section we will show that

checking whether such green path exists for any of the two trains can be performed in polynomial

time, which in turn implies that problem BD2TP is polynomially solvable. To this end, we will

need a technical result (Lemma 4), which adapts to our case a result presented in Li et al. (1992).

The lemma allows to check in polynomial time whether there exist two node disjoint paths (with

given origins and destinations) in an acyclic directed graph, one of which is at least of a prescribed

length.

In our problem, we do seek for two paths, but in different graphs. So, the first step will be to

reduce our original problem to the problem of searching (suitable) two disjoint paths in a suitable

directed graph.

Constructing auxiliary graph GXY . Now, let PX be a blocking path for tX that we want to

test if P Y
o -green for Y ∈ {E,W}, Y 6= X. Denote by l(PX) the length of PX and by o(PX) ∈H

and d(PX) ∈ HX its first and last node. Recall that the last node of a X-bound blocking path

(where tX has its head) is always a X-signal, and thus belongs to HX , whereas the first node

can be any signal in H =HX ∪HY , respectively. Then, let oY denote the head node of P Y
o (i.e.

oY = o(P Y
o ) = head(Head(P Y

o ))) and dY the tail node of P Y
d (i.e. dY = d(P Y

d ) = tail(Tail(P Y
d ))).

Moreover, let G
Y

be the X-bound oriented graph obtained from GY by reversing the direction of

its arcs. Therefore, any oY -dY in GY , corresponds to a dY -oY path in G
Y

.

Now, let GXY = (H ∪B,A) be the X-bound oriented graph whose set of arcs A contains all the

arcs of GX and G
Y

(the two sets in general do overlap) minus the arcs that corresponds to the

segments of P Y
o . Then, PX is a o(PX)-d(PX) path of GXY of length l(PX)≥ lX for some o(PX)∈H

and d(PX)∈HX . Furthermore, PX is P Y
o -green if and only if there exists a dY -oY path P Y of GXY

such that: i) P Y uses only arcs from GY (in their X-bound orientation); ii) PX and P Y are arc

disjoint.

Therefore, Theorem 1 can be rephrased as follows.
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Corollary 1. Let trains tE and tW have starting positions in PE
o ∈PE and PW

o ∈PW , respectively.

Then tE and tW are not bound-to-deadlock if and only if the graph GXY contains two node disjoint

paths PX and P Y such that:

• PX is a oX-dX path of length at least lX , for some oX ∈H and dX ∈HX . It uses only arcs

from GX ;

• P Y is a dY -oY path that uses only arcs from G
Y

, with oY = head(Head(P Y
o )) and dY =

tail(Tail(P Y
d ));

for some X,Y ∈ {E,W} with X 6= Y .

Hence, we reduced BD2TP to the problem of checking the existence of the two paths PX and

P Y that satisfy the conditions of Corollary 1.

In Li et al. (1992), the authors present an O(|A|k) algorithm that solves the k arc disjoint path

problem with non-uniform costs in an acyclic graph G = (V,A). Here, we adapt their proof of

Lemma 8 to get the following result.

Lemma 4. Let G = (V,A) be an acyclic oriented graph and let A1 and A2 be two (possibly

overlapping) sets of arcs such that A1 ∪ A2 = A. Moreover, let s, t ∈ V , l1 : A1 → R+ be a cost

function on the arcs of A1 and L ∈ R+ a parameter. Then the problem of finding whether there

exist two node disjoint s-t paths P1 ⊆A1 and P2 ⊆A2 such that l(P1) =
∑

σ∈P1
l1(σ)≥ L, can be

solved in polynomial time.

Proof. As the graph G is acyclic, we can assume, w.l.o.g., that its nodes are ordered in such a

way that (u, v)∈A implies u< v. Then build a 2-dimensional graph Ḡ= (V̄ , Ā) as follows.

V̄ = {(u, v)|u, v ∈ V and (u 6= v if u, v /∈ {s, t})}

Ā= Ā1 ∪ Ā2, with {Ā1 = ((u, v), (w,v))|(u,w)∈A1 and u≤ v}

and Ā2 = {((u, v), (u,w))|(v,w)∈A2 and v≤ u}

Notice that both (s, s) and (t, t) belong to V̄ . Moreover, since (u, v)∈A implies u< v, then the

arcs of Ā define a partial order on the nodes of V̄ . Hence, also Ḡ is acyclic, (x, y)∈ Ā implies x< y.
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Figure 9 Example of how to build the 2-dim network

An arc of type ((u, v), (w,v)) (resp. ((u, v), (u,w))) is called a 1st-(2nd-)dimensional arc. We give

the cost ca = l1(u,w) to any arc a= ((u, v), (w,v))∈ Ā1, while we set ca = 0 for all 2nd-dimensional

arcs a∈ Ā2. For an example of how these 2-dimensional networks look, see Figure 9.

We now show that G admits two s-t node-disjoint paths P1 ⊆A1 and P2 ⊆A2 if and only if Ḡ

contains an (s, s)-(t, t) path P̄ of cost l(P1).

Necessity Suppose Ḡ admits an (s, s)-(t, t) path P̄ and let (u1, v1), . . . , (up, vp) be the sequence

of nodes defined by P̄ , with u1 = v1 = s and up = vp = t. Then there is an s-t path in G which uses

only arcs of A1. Indeed, suppose P̄ contains at least one arc of Ā1.

Now, the sequences {s= u1, u2, . . . , up = t} and {s= v1, v2, . . . , vp} (with possible repeated nodes

skipped) define two distinct s-t paths P1 and P2 of G, P1 only using arcs in A1 and P2 only in

A2. Node indices in both sequences are non-decreasing. Moreover, for i = 2, . . . , p− 1, if ui < vi,

then ((ui, vi), (ui+1, vi+1))∈ Ā1, v
i = vi+1 and (ui, ui+1)∈A1 (informally, P1 moves forward to ui+1
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while P2 stays in vi+1 = vi). Otherwise, if vi < ui, then ((ui, vi), (ui+1, vi+1)) ∈ Ā2, u
i = ui+1 and

(vi, vi+1)∈A2 (i.e. P2 stretches to vi+1 while P1 remains in ui+1 = ui). Observe that ui = vi implies

ui = vi = s or ui = vi = t; in the first case ((ui, vi), (ui+1, vi+1)) can be either in Ā1 or in Ā2; in the

second case, i= p and we are done.

We show now that P1 and P2 are node disjoint (except for s and t). Suppose not. As ui = vi only

for i= 1 or i= p, then there must be two distinct nodes (ui, vi), (uj, vj) of P̄ , with 1< i < j < p,

such that ui = vj or vi = uj. Suppose ui = vj (a symmetric argument holds for the other case).

Since uj 6= ui (otherwise uj = ui = vj), in the subpath P̄ ij of P̄ from (ui, vi) to (uj, vj) we move

away from ui and thus P̄ ij contains (at least) an arc from Ā1. It follows that there is an index

i≤ k < j such that uk < vk and thus ui ≤ uk < vk ≤ vj = ui, a contradiction.

Sufficiency. Let P1 = (a11, . . . , a
k
1), P2 = (a12, . . . , a

h
2) be two node-disjoint s-t paths of G.

We arrange the arcs of these paths in ascending order of their tails. Let this sequence be

σ1, σ2, σ3, . . . , σd, with d = k + h. As s = tail(a11) = tail(a12), we can assume, w.l.o.g. that σ1 = a11

and σ2 = a12. Now, let P̄ = (α1, . . . , αd) be defined as follows. First, set α1 = ((s, s), (head(σ1), s))

and α2 = ((head(σ1), s), (head(σ1), head(σ2))). For each i = 3, ..., d, let σi−1 = (u, v). Then,

σi ∈ P1 implies u < v; in this case, set αi = ((u, v), (head(σi), v)). Otherwise, if σi ∈ P2, then set

αi = ((u, v), (u,head(σi))). It is easy to check that all αi are arcs of Ḡ and that P̄ is an (s, s)-(t− t)

path of cost l(P1).

As a consequence, in order to solve our problem, it suffices to answer whether the longest path

on Ḡ from (s, s) to (t, t) has cost not smaller than L. The computational complexity of finding

the longest path on an acyclic graph is O(|Ā|) (Ahujia et al. (1993)). Notice that |Ā| ≤ 2|V ||A| ≤

2|H ∪B||S|, hence the complexity of our problem is polynomial and it is O(|H ∪B||S|). Q.E.D.

Finally, we can prove our main result.

Theorem 2. The Bound-to-Deadlock 2 Trains Problem can be solved in polynomial time.

Proof. For both the cases X,Y ∈ {E,W} with X 6= Y , we can verify the conditions of Corollary

1 by iteratively applying Lemma 4 for all possible oX ∈H and dX ∈HX . Let AX and AY denote
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the set of arcs of GX and G
Y

, respectively. Then, at each iteration, we set G= (V,A), A1, A2, l1

and L as follows

• V =H ∪B ∪{s, t};

• A1 =AX ∪{(s, oX), (dX , t)} and A2 =AY ∪{(s,head(Head(P Y
o ))), (tail(Tail(P Y

d )), t)};

• A=A1 ∪A2;

• l1(a) = l(a), for all a∈AX ; l1(s, oX) = l1(dX , t) = 0;

• L= lX .

It is important here to observe that Lemma 4 can be properly applied because, as GXY is a

subgraph of GX , then G is acyclic. As the number of s1− t1 pairs is bounded by |H ∪B|(|H ∪B|−

1)/2, we have a total complexity of O(|H ∪B|3||S|). Q.E.D.

4. The Path Coloring algorithm (PCA) for BD2TP

In the previous section we have shown that BD2TP is solvable in polynomial time. However,

the computational complexity grows as the cubic of the cardinality of nodes times the number

of segments of the rail network, so, roughly speaking, as the number of nodes to the power of 4

(because in our representation rail networks are sparse). Based on the results of Section 3.1, we give

here an alternative algorithm, which we named Path Coloring algorithm (PCA), whose complexity

is proportional to the number of blocking paths in the eastbound and westbound orientations of G.

Even if in principle this leads to a potentially exponential time algorithm, in practice, because rail

networks are sparse and trains have bounded (and small in terms of number of segments) lengths,

the resulting algorithm behaves very well on the real-life instances (see Section 5).

1 2 3

σ4σ3

4

σ6 σ8

7 8

σ10 σ11

9 10 13 14

5 6σ7

σ9

11 12

PE
i

PE
j

Figure 10 Different blocking paths for t with same head signal.
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Building the blocking paths. Given an eastbound train tE and the orientation GE = (H ∪B,SE),

we give a recursive algorithm to construct all the blocking paths of PE (the westbound case is

symmetric). Some examples of how these paths are built can be seen in Figure 10 and Figure 11.

In particular, Figure 10 shows two different blocking paths PE
i and PE

j which correspond to two

sequences of segments ending in the same signal. Figure 11 shows how different train lengths induce

different blocking paths. Notice that, in the second example, segment σ11 is enough to contain the

whole train, hence the blocking path PE
2 ends with a blue (westbound) signal. In the third example,

instead, the train fits into σ10 and σ11 but, as σ10 does not end with a signal, we extend the blocking

path to the previous signal (σ8). The forth example shows that two successive blocking paths may

overlap. Notice that, in all four cases, the path PE from point 2 to point 8 connects PE
1 to PE

2 .

PE

1)
1 2 3 4 7 8 9 10

σ1 σ2 σ3 σ4 σ6 σ8 σ10 σ11 σ12σ13 σ15

PE
1 PE

2

2)
1 2 3 4 7 8 9 10

σ1 σ2 σ3 σ4 σ6 σ8 σ10 σ11 σ12σ13 σ15

PE
1 PE

2

3)
1 2 3 4 7 8 9 10

σ1 σ2 σ3 σ4 σ6 σ8 σ10 σ11 σ12σ13 σ15

PE
1 PE

2

4)
1 2 3 4 7 8 9 10

σ1 σ2 σ3 σ4 σ6 σ8 σ10 σ11 σ12σ13 σ15

PE
1 PE

2

Figure 11 In all the four cases, PE1 → PE2 and PE connects PE1 to PE2 .

Blocking paths are constructed recursively by Procedure Extend described in Algorithm 1.

According to Definition 1, the head segment σ1 of a blocking path (σ1, σ2, . . . ) for an eastbound train

must host an eastbound signal at its head point. So, for every segment σ such that head(σ)∈HE,

we build all paths having σ as head segment, and satisfying the other two conditions of Definition 1.

The recursive procedure Extend(P,Nσ) receives in input a non-empty path P , satisfying con-

dition 1 of Definition 1 (but not necessarily also conditions 2 and 3) and extends it (backwards)
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to all blocking paths having P as a head sub-path. As usual, if σ is a directed segment and P a

directed path, with head(σ) = tail(Tail(P )), we let σ ◦ P be the path obtained concatenating σ

with P .

Algorithm 1 Extends a path P backward to all blocking paths with P as head sub-path

1: procedure Extend(P,Nσ)

2: if (P enough for tE) AND (tail(Tail(P ))∈H) then . P fulfills all conditions 1

3: Nσ =Nσ ∪{P} . i.e. P is a blocking path

4: else

5: for γ ∈ δ−(Tail(P )) do

6: Extend (γ ◦P,Nσ) . Extends P backwards in all possible ways

7: end for

8: end if

9: return

10: end procedure

Procedure Extend is initially invoked (first recursive call) for every segment σP ∈ SE hosting an

eastbound signal, by initializing P = (σP ) and Nσ = ∅. Eventually, PE = ∪σ∈SENσ. As mentioned

in Section 2, some paths in the graph satisfying the conditions of Definition 1 may not correspond

to available blocking paths. It is straightforward to modify Procedure Extend and avoid returning

such paths.

Coloring the blocking paths. Once the blocking paths are built for both tE and tW , with

initial positions respectively PE
o and PW

o , we compute the sets RE(PE
o , P

W
o ) and RW (PW

o , PE
o ).

Then, for each PE ∈ RE(PE
o , P

W
o ), we decide if PE is PW

o -red or PW
o -green. Similarly, for each

PW ∈RW (PW
o , PE

o ) we decide if PW is PE
o -red or PE

o -green. All these calculations can be done with

any efficient algorithm for exploring graphs and checking connectivity (Ahujia et al. (1993)). Then,

we check the condition of Theorem 1 to determine whether the trains are bound-to-deadlock.
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Finally, algorithms searching for feasible plans may exploit the information about for which pairs

of initial positions a pair of trains are not-bound-to-deadlock. To this end, for any pair of crossing

trains tX , tY , starting from their initial positions (origins) PX
o , P

Y
o , we repeat the PCA for each pair

of potential “initial” positions between the two origins. Namely, for each pair PX , P Y of potential

initial positions, with PX ∈ RX(PX
o , P

Y
o ) and P Y ∈ RY (P Y

o , P
X
o ), we establish whether the two

trains are bound-to-deadlock. Of course, if tE and tW are bound-to-deadlock while in positions PE

and PW respectively, it is not necessary to test any pair of positions belonging to RE(PE, PW ) and

RW (PW , PE), as the trains will still be bound-to deadlock. If this is not the case, we can apply

some shortcuts whenever the color of a blocking path can be derived from what we have already

computed. In particular:

1. PX ∈RX(PX
o , P

Y
o ) is P Y

o -green, if PX does not share any segment with any P Y ∈RY (P Y
o , P

X
o ),

2. if PX ∈RX(PX
o , P

Y
o ) is P Y

o -red, then PX is P Y -red for each P Y ∈RY (P Y
o , P

X
o );

3. if PX is P Y
o -green for PX ∈RX(PX

o , P
Y
o ), then PX will be P Y

o -green also when investigating

a different initial position PX
u such that PX

u ∈RX(PX
o , P

Y
o ) and PX ∈RX(PX

u , P
Y
o ).

5. Practical experience

In this section we show the relevance in the dispatching practice of the graph-theoretical results

presented in the previous sections. We present two sets of experiments over a family of realistic

instances, with features similar to the real-life instances from the Union Pacific network. Data set

and executable code are both available here: http://www.optrail.com/en/downloads/.

A railroad the size of UP may have several hundreds, or even more than a thousand, trains on

the network at any given time, some of which operating long trips through the network (up to days

at the time). In general, however, each train interacts only with a subset of all the other trains and,

for the purpose of real-time deadlock prevention, our focus can be limited to those that interact

within a certain frame of time (we fix this time to 5 hours). This allows us to considerably reduce

the number of trains pairs to be tested. The benchmark used in this paper is made of 10 instances,

each one containing a set of trains (18 on average, with a minimum of 14 and a maximum of
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22 trains) travelling on a network with both single main and multiple main areas. Experiments

on larger instances were not included. Indeed, the computational times increase linearly with the

number of pairs of interacting trains, and each pair can be processed independently. From each

instance we randomly select a single pair of trains, making sure that in total we identify 5 pairs

that interact exclusively in a single main scenario, that is a region of the network where adjacent

stations are connected only by one track, which must be shared by trains running in both directions

(in Europe, these are called single track regions). Because in this case trains can only meet in

stations, single-track regions are typically the most prone to the risk of deadlocks. In the remaining

5 instances, the considered couples of trains span mixed regions, with both single and multiple

tracks connecting adjacent stations. These pairs will be used to give more computational details.

As mentioned, we carried out two sets of experiments.

• The primary goal of our experiments is to test the efficacy of the PCA in checking whether

pairs of trains are bound-to-deadlock. Recall that this test must be performed in real-time after a

dispatcher has taken a specific decision about a train, typically preparing the outbound route from

a station. The dispatcher’s decision is enforced by the traffic management system by activating

necessary signals and switches in the field. Therefore, the feasibility test must be very fast, to

immediately notify the dispatcher of the potential risk and suspend the procedure before the action

is taken. As we will show, the PCA only needs a few milliseconds to compute feasibility for a pair

of trains. Since, as reported in Table 3, only a few other opposite trains interact with a given train

in the planning horizon (as already mentioned, in our experiments as well as in operations, we

considered on average 5 hours), this means that less than a hundredth of a second is required to

perform the check.

• The second batch of experiments is devoted to compute how far a pair of opposite trains

can move forward on their routes without risking to end up in a deadlock. This information can

be exploited to enhance enumerative algorithms for train dispatching (such as Lamorgese and

Mannino (2015)), namely for ranking meeting decisions and for identifying infeasible subtrees in

early branchings. Indeed, the number of green blocking paths that a train has on its route is an

important indicator of how critical choices are for that train.
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Train tX Train tY bound-to- alert total

ltX |PX | |PX |/|HX | ltY |PY | |PY |/|HY | deadlock time time

4789 65 1.41 13897 77 1.85 No 8.77 14.06

10200 133 1.69 11800 162 1.72 Yes 50.06 50.06

6897 55 1.34 9452 77 1.56 No 8.12 15.01

11278 249 1.85 11780 180 1.92 Yes 51.42 51.42

13897 127 1.89 9452 125 1.61 No 20.40 34.97

8300 181 1.79 8889 152 1.82 No 76.49 111.53

9889 143 1.89 8569 157 1.56 No 24.65 39.28

11500 149 1.96 8889 152 1.82 No 31.43 53.08

7700 62 1.41 8300 76 1.52 No 7.68 12.17

5200 63 1.37 9861 89 1.75 No 10.04 17.81

Table 2 Results over pairs of opposite trains. lt is the train length, |P| the number of blocking paths and

|P|/|H| the ratio between the number of blocking paths and of stopping points. The time in the last two columns is

expressed in milliseconds.

First Batch Results. Here we describe our results for the main application of the PCA, namely

determining whether a decision taken by a dispatcher, if executed, would lead a pair of trains to a

deadlock.

Table 2 presents results on the individual pairs of trains extrapolated from the 10 instances,

which are projected to interact within a given amount of time. Notice that in the upper half of

the Table we report results for pairs interacting in single track regions, while in the lower half the

entries refer to pairs in multiple tracks regions.

In Table 2, every line corresponds to a different pair of opposite trains and, for each train tX , tY

in the pair, we report the corresponding length ltX , ltY (in meters), the number |PX |, |PY | of

associated blocking paths and the ratio between the number of blocking paths and the number

|HX |, |HY | of stopping points of the associated graph GX , GY . Note that this ratio never exceeds 2,
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and so, although in theory the number of blocking paths could be much larger than the the number

of stopping points (as it may grow exponentially with train lengths), in practice trains are short

enough and tracks long enough to keep this ratio small. Column bound-to-deadlock displays whether

the PCA detected a bound-to-deadlock situation for the pair, given the initial train positions. If

trains are bound to deadlock, a warning should be sent to the dispatcher. Column alert time is

the time in milliseconds required by the PCA to run and return the response. Note that in these

instances deadlocks were found only for pairs in single main scenarios. Nevertheless, deadlocks

occur also in multiple main regions, where it may be more difficult for dispatchers to anticipate

them. Thus, it is crucial that PCA perform well on all scenarios. The figures reported in column

alert time show that this is the case, as the maximum time for all instances is well below one tenth

of a second.

Finally, column total time presents the time (in milliseconds) needed to compute, for each possible

initial positions PX , P Y , with PX ∈RX(PX
o , P

Y
o ) and P Y ∈RY (P Y

o , P
X
o ), whether the two trains

are bound-to-deadlock. Note that when the trains are bound-to-deadlock in their original positions,

then they remain bound-to-deadlock for any forward position and the total time coincides with

the alert time. As we can see, these values show that the speed-ups described in Section 4 are

very effective in reducing the total computing time. Indeed, in all instances, more than half of the

time is used by the PCA on the original initial positions (PX
o , P

Y
o ) (alert time). In all 10 instances,

less than 50% of the time is needed to extend the information to all the other (potential) initial

positions of the two trains.

Second Batch Results. The figures presented in the last column (total time) of Table 2 are

relevant for the second batch of tests. Indeed, on average, determining, for any possible initial

positions of the trains, if a pair of trains is bound-to-deadlock takes just dozens of milliseconds.

Such a performance makes it viable to extend the computation to an entire dispatching instance,

i.e. for all pairs of interacting trains. As mentioned, this information can be used to guide search

in enumerative methods for scheduling trains.
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Instance #trains #pairs #inter. total time min max

I1 18 26 3.06 753.67 0.98 97.01

I2 22 44 4.00 1587.83 7.11 77.25

I3 16 22 2.93 1047.43 1.50 85.94

I4 16 34 4.86 1439.97 9.04 108.86

I5 15 21 3.23 391.73 5.96 42.96

I6 15 17 2.83 587.07 3.01 111.53

I7 20 36 3.60 1083.76 2.03 71.95

I8 16 25 3.13 899.18 9.64 85.16

I9 14 17 2.62 688.65 9.38 45.78

I10 20 31 3.65 1353.68 8.03 86.46

Table 3 Results over complete instances. Time is expressed in milliseconds

Table 3 shows aggregate computational times for our benchmark. Column #trains shows the

total number of trains in each instance. Not all pairs of trains actually will meet/interact in the

planning horizon. The number of pairs of interacting trains is reported in column #pairs. Column

#inter. shows, on average, how many interactions a train has with other trains travelling in the

opposite direction. As we can see, this number is quite small, with a maximum of almost 5 for

instance I4. The total time needed to perform the feasibility test, together with the minimum and

maximum time for a single pair (in milliseconds) are recorded respectively on columns total time,

min and max. These results show that the time needed to build all the information for detecting

bound-to-deadlock pairs is compatible with the real-life application.

6. Conclusions and future developments

In this paper we introduce the Bound-to-Deadlock 2 Trains Problem (BD2TP). It consists in

deciding if two trains in a rail network are bound to end up in a deadlock situation, whatever

trajectory they choose to reach their destination. We discuss the practical relevance of the problem
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and explain why avoiding deadlocks is a very critical issue, particularly for railroads that operate

predominantly freight traffic.

We first give an algorithmic proof that BD2TP can be solved in polynomial time, reducing it to

the solution of a polynomial number of longest path problems in a suitable acyclic graph. We also

introduce an alternative algorithm that, although theoretically not polynomial, works very well in

practice. We give evidence of its effectiveness by showing the results of a session of computational

experiments conducted on a data set of realistic instances. In particular, we show that the Path

Coloring algorithm can detect a possible 2 train bound-to-deadlock occurrence among a set of trains

in a realistic size network within a few milliseconds of computing time. A deadlock prevention tool

based on the Path Coloring algorithm will be integrated in Union Pacific’s traffic management

system in the near future.

As future development of the results presented here, we are currently developing approaches for

the Bound-to-Deadlock Problem with any given number of trains, exploiting a recently introduced

formulation (Lamorgese and Mannino (2019)) for this type of job-shop scheduling problems. Also,

we are looking for possible extensions of the Path Coloring Algorithm to the case with three trains.
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